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Abstract  1 

 2 

Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be 3 

formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic 4 

and lactic acid bacteria, which can metabolise residual sugars to increase volatile acidity. 5 

Acetic acid has a negative impact on yeast fermentative performance and affects the quality 6 

of certain types of wine when present above a given concentration. In this mini-review we 7 

present an overview of fermentation conditions and grape-must composition favouring 8 

acetic acid formation, as well the metabolic pathways leading to its formation and 9 

degradation by yeast. The negative effect of acetic acid on the fermentative performance of 10 

Saccharomyces cerevisiae will also be covered, including its role as a physiological inducer 11 

of apoptosis. Finally, currently available wine deacidification processes and new proposed 12 

solutions based on zymological deacidification by select S. cerevisiae strains will be 13 

discussed. 14 
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 1 

Production of acetic acid in grape must and wine 2 

 3 

Volatile acidity is derived from acids of the acetic series present in wine both in the free 4 

state and combined as salts (OIV 2009). The volatile acidity of wines must always be low 5 

(Boulton et al. 1996). In excessive quantities, volatile acids are seen as a spoilage 6 

characteristic conferring the wine an acrid taste and the unpleasant vinegar aroma. The main 7 

component of the volatile acidity of wines is acetic acid, which typically occurs in wines in 8 

concentrations ranging from 0.2 to 0.6 gl
-1

, but they may be higher under certain conditions 9 

(Bely et al. 2003). The OIV (2010) refers that the maximum acceptable limit for volatile 10 

acidity in most wines is 1.2 gl
-1

 of acetic acid. The aroma threshold for acetic acid depends 11 

on the wine variety and style. Ribéreau-Gayon et al. (2006a) refers that an acetic acid 12 

concentration of at least 0.90 gl
-1

 is required to produce a noticeable bitter, sour aftertaste in 13 

wine, though it does not cause a strong odor. 14 

High levels of volatile acidity can however be acceptable in some types of wine such as 15 

icewines (Erasmus et al. 2004) and botritized wines, with a maximum acetic acid 16 

concentration of 2.1 gl
-1

 (OIV 2010). Acetic acid can be formed at any time from the 17 

beginning of wine production (in grapes) until the final product (bottled wine), as a bacterial 18 

or yeast metabolite (Table 1). It can be produced before alcoholic fermentation by bacterial 19 

spoilage in Botrytis cinerea-infected grapes. This fungal infection leads to a ruptured grape 20 

berry skin, allowing access of bacteria to the berry’s interior. Acetobacter species can 21 

dominate on the surface of rotten grapes, using the ethanol produced by wild yeasts as their 22 

preferred carbon source, though Gluconobacter species are also usually present on grapes 23 

(Du Toit and Lambrechts 2002). 24 



Acetic acid is also formed as a by-product of alcoholic fermentation by Saccharomyces 1 

cerevisiae. Studies on the production of volatile acidity by S. cerevisiae under winemaking 2 

conditions showed that this acid is mainly formed at the beginning of alcoholic fermentation 3 

(Alexandre et al. 1994; Coote and Kirsop 1974) and its production is affected by different 4 

factors, namely the yeast strain (Erasmus et al. 2004; Orlić et al. 2010; Patel and Shibamoto 5 

2002; Shimazu and Watanabe 1981; Torrens et al. 2008), grape-must composition (Delfini 6 

and Costa 1993), and fermentation conditions such as nitrogen content (Barbosa et al. 2009; 7 

Vilanova et al. 2007), vitamins, initial sugar concentration (Radler 1993) and other physical 8 

factors such as temperature (Monk and Cowley 1984; Llauradó et al. 2005; Beltran et al. 9 

2008). Wine yeasts also produce acetic acid to equilibrate the redox balance in response to 10 

the hyperosmotic stress caused by high sugar concentrations, which can be especially severe 11 

in the high ºBrix (>35 ºBrix) grape-must (Erasmus et al. 2004) and in wines made from 12 

botritized grapes (Amerine et al. 1972). It has been shown that compounds like gluconic acid 13 

and glycerol produced as a consequence of Botrytis infection can affect the biological aging 14 

of this type of wines. Indeed, gluconic acid can be metabolised by heterofermentative lactic 15 

acid bacteria, which produce high concentrations of lactic acid and volatile acidity 16 

(Ribéreau-Gayon et al. 1979; Perez et al. 1991). Anaerobiosis, pH values below 3.1 or above 17 

4.0, and excessive grape-must clarification are among other factors that favour the 18 

production of acetic acid by S. cerevisiae (Ribéreau-Gayon et al. 2006b). Variations in acetic 19 

acid production in natural S. cerevisiae strains can also have a genetic basis. A study using 20 

genome hybridization on DNA microarrays revealed that when asparagine is used as a major 21 

nitrogen source, acetic acid production is inversely associated with asparaginase type I 22 

activity and linked the production of this acid to nitrogen assimilation and the CO2 23 

production rate (Marullo et al. 2007). Acetate is also secreted in high levels by certain 24 

yeasts, such as Dekkera and its anamorph Brettanomyces, that have attracted attention as 25 



spoilage agents of wine (Sponholz 1993; Gerós et al. 2000a; Pretorius 2000). Other apiculate 1 

wine yeasts, mainly species of Hanseniaspora, anamorph of Kloeckera (Romano et al. 1992; 2 

Ciani and Maccarelli 1998) as well as wine species of the genus Candida (Fleet and Heard 3 

1993), involved in the early phase of both spontaneous and inoculated fermentations, can 4 

lead to a high content of acetic acid in wine. Saccharomycodes ludwigii is another spoilage 5 

frequently isolated from wine at the end of the fermentation process and during wine 6 

storage. Some strains from this species, known for its high alcohol tolerance and high 7 

resistance to antimicrobial compounds, produce undesirable amounts (more than 0.75 gl
-1

) 8 

of acetic acid (Romano et al. 1999). Malolactic fermentation, the decarboxylation of malic 9 

acid into lactic acid by lactic acid bacteria, is associated with changes in the amino acid and 10 

volatile composition of the wine and also increases the initial volatile acidity (Lonvaud-11 

Funel 1999; Pozo-Bayon et al. 2005). Acetate is produced by starter cultures of Oenococcus 12 

oeni under pantothenic acid deprivation due to CoA deficiency (Richter et al. 2001). Other 13 

factors contributing to the excessive formation of acetic acid during grape-must fermentation 14 

are, among others, products derived from nutrient imbalance and competition between 15 

coexisting yeasts and bacterial populations during concurrent malolactic fermentations 16 

(Boulton et al. 1996; Moruno et al. 1993). Lactic acid bacteria (Cogan 1987) and/or acetic 17 

acid bacteria (Acetobacter pasteurianus and A. liquefaciens) that survive during 18 

fermentation can also increase the acetic acid content of wines and may cause wine spoilage 19 

(Du Toit and Lambrechts 2002). Even after bottling, red wines may under peculiar 20 

circumstances carry a small population of acetic acid bacteria that can proliferate in bottles 21 

stored in an upright position, spoiling the wine (Bartowsky and Henschke 2008). 22 

 23 

Acetic acid metabolism in yeast 24 

 25 



As referred above, acetic acid in grape-must or wines can be the product of bacterial or yeast 1 

metabolism. Herein both the anabolic and catabolic pathways of acetic acid in yeast will be 2 

covered with regards to their implications in the production and quality of wine. The ability 3 

of yeasts to catabolise acetic acid can be especially exploited to develop methods for the 4 

zymological deacidification of grape-musts or wines. This issue will be discussed below. 5 

The actual yeast biochemical pathways contributing to acetic acid formation in wine have 6 

not yet been clearly elucidated (Boulton et al. 1996, Ribéreau-Gayon et al. 2006b). Several 7 

enzymatic reactions have been suggested to contribute to acetic acid formation by yeast 8 

during beer fermentations (Jost and Piendl 1975): (i) reversible formation from acetyl Co-A 9 

and acetyl adenylate through acetyl Co-A synthetase (ACS), (ii) cleavage of citrate by citrate 10 

lyase (iii) production from pyruvate by pyruvate dehydrogenase (PDH), yielding acetyl Co-11 

A that can be hydrolysed into acetate through acetyl Co-A hydrolase (iv) reversible 12 

formation from acetyl-phosphate by acetyl kinase and (v) oxidation of acetaldehyde by 13 

aldehyde dehydrogenase (ALD). It is known that NADP
+
-dependent ALD is active during 14 

alcoholic fermentation while PDH activity is limited under anaerobic conditions (Ribéreau-15 

Gayon et al. 2006b). When pyruvate dehydrogenase is repressed, the PDH bypass still 16 

allows the formation of acetyl Co-A from pyruvate, used for example to synthesize fatty 17 

acids. This pathway (Fig. 1) involves the sequential transformation of pyruvate to 18 

acetaldehyde (through pyruvate decarboxylase), acetate (through ALD) and acetyl-CoA 19 

(through ACS). Therefore, under anaerobiosis, yeast with the lowest ALD activity and the 20 

highest ACS activity produce the least amount of acetic acid (Verduyn et al. 1990). This 21 

observation supports the proposal that acetic acid is mainly produced through the PDH 22 

bypass though, as mentioned above, other suggested enzymatic reactions may be involved. 23 

Yeast cultures exposed to oxygen and actively synthesizing fatty acids for growth may 24 

produce acetic acid upon entry into anaerobic conditions as a mechanism for the 25 



regeneration of free Co-A (Fig. 1) needed for other biosynthetic activities (Boulton et al. 1 

1996). This mechanism may explain the accumulation of acetic acid by yeasts with a 2 

shortage of pantothenic acid, a precursor of Co-A (Ribéreau-Gayon et al. 2006b). Acetate 3 

formation may also play a physiological role in the regeneration of reducing equivalents 4 

(NADH and NADPH) that are essential for the maintenance of the redox balance (Saint-Prix 5 

et al. 2004; Remize et al. 2000). 6 

Acetate, like other non-fermentable substrates such as ethanol, glycerol and lactate, can be 7 

used as a sole carbon source for the generation of energy and cellular biomass under aerobic 8 

conditions (Barnett et al. 1990; Schuller 2003). In S. cerevisiae, acetate transport and 9 

metabolism are subject to glucose repression similarly to the utilization of many other 10 

alternative carbon
 
sources, since glucose is the preferential carbon and energy source of this 11 

species. Hence, when grown in medium containing glucose and acetic acid, this yeast 12 

displays a diauxic growth with consumption of acetic acid only after glucose exhaustion 13 

(Casal et al. 1996; Rodrigues 1998). This behaviour is also described for other yeast species 14 

like Candida utilis (Leão and Van Uden 1986), Torulaspora delbrueckii (Casal and Leão 15 

1995) and Dekkera anomala (Gerós et al. 2000b). However, as referred below, some 16 

commercial S. cerevisiae wine strains are able to consume acetic acid in the presence of 17 

glucose (Vilela-Moura et al. 2008). This behaviour resembles that of species 18 

Zygosaccharomyces bailii ISA 1307, which displays a biphasic growth in medium 19 

containing a mixture of glucose and acetic acid; the first phase is associated with 20 

simultaneous consumption of glucose and acetic acid, and the second with the utilization of 21 

the remaining acid (Sousa et al. 1998). It was proposed that regulation of both membrane 22 

transport and ACS are important for the ability of Z. bailii to metabolise acetic acid in the 23 

presence of glucose. Perfusion experiments also showed that Z. bailii is more resistant than 24 

S. cerevisiae to short-term intracellular pH changes caused by acetic acid (Arneborg et al. 25 



2000). These physiological traits are responsible for the high resistance of the species in 1 

environments containing mixtures of sugars and acetic acid such as those often present 2 

during wine fermentation. 3 

Catabolism of acetic acid in yeast, including its cellular uptake, is obviously important to 4 

promote its degradation and therefore reduce acetic acid concentration in grape-musts and 5 

wines. Acetic acid entry into the cells depends on the extracellular pH and growth 6 

conditions. In glucose-repressed yeast cells at low pH, where acetic acid is mostly 7 

undissociated (pKa is 4.75), it enters mainly by facilitated diffusion (Casal et al. 1996). 8 

Ethanol enhances the passive influx of labeled acetic acid, which follows first-order kinetics 9 

with a rate constant that increases exponentially with ethanol concentration (Casal et al. 10 

1998). More recently, it was shown that deletion of FPS1, coding for an aquaglyceroporin 11 

channel, abolishes acetic acid accumulation at low pH (Mollapour and Piper 2007). When 12 

grown at low pH, S. cerevisiae acquires enhanced resistance to acetic acid through loss of 13 

Fps1p mediated by transient activation of the Hog1p mitogen-activated protein kinase. 14 

Hog1p directly phosphorylates Fps1p, targeting this channel for endocytosis and degradation 15 

in the vacuole. Evidence for the existence of at least two acetate carriers in de-repressed S. 16 

cerevisiae cells has been obtained (Casal et al. 1996; Paiva et al. 1999). It is known that 17 

Jen1p is required for the uptake of lactate in S. cerevisiae and can also transport other 18 

monocarboxylates, including acetate (Casal et al. 1999). The protein Ady2p was later found 19 

to be essential for acetate transport activity in acetic acid-grown cells (Paiva et al. 2004). 20 

When available as the sole carbon and energy source, acetate is metabolised to acetyl
 

21 

coenzyme A (acetyl Co-A) by one of the two ACS proteins: Acs1p (peroxisomal) or Acs2p 22 

(cytosolic). Acetyl Co-A is then oxidized in the tricarboxylic acid cycle after entering 23 

mitochondria. It is also used to produce succinate and hence replenish the cell with 24 

biosynthetic precursors by entering the glyoxylate cycle, which involves the key enzymes 25 



isocitrate lyase and malate synthase outside the mitochondria. In addition, acetyl Co-A is 1 

used for synthesis of macromolecules, which requires active gluconeogenesis (dos Santos et 2 

al. 2003; Kruckeber and Dickinson 2004). 3 

The aforementioned studies have characterized the transport and catabolism of acetic acid in 4 

yeast using mainly synthetic media. Therefore, further work is required to assess how these 5 

two steps in acetic acid catabolism are affected by the stress conditions present in grape-6 

musts and wines. 7 

 8 

Cytotoxic effect of acetic acid on the fermentative yeast S. cerevisiae and its role as 9 

physiological inducer of apoptosis 10 

 11 

Acetic acid can affect the metabolic activity of fermentative yeast and give rise to sluggish 12 

or stuck fermentations (Alexandre and Charpentier 1998). Therefore, in light of the 13 

biotechnological relevance of S. cerevisiae, the cytotoxic effects induced by this and other 14 

weak carboxylic acids on fermentative yeast have been the subject of extensive research. It 15 

was shown that when acetic acid enters cells by simple diffusion it dissociates if the 16 

extracellular pH is lower than the intracellular pH. This leads to intracellular acidification, 17 

anion accumulation (Casal et al. 1996) and inhibition of cellular metabolic activity, namely 18 

fermentation (Pampulha and Loureiro 1989). Studies on enzymatic activities showed that 19 

enolase is the glycolitic enzyme most affected by acetic acid, resulting in an alteration of 20 

glycolysis (Pampulha and Loureiro 1990). Moreover, acetic acid compromises the cellular 21 

viability of S. cerevisiae under certain conditions, and ultimately results in two types of cell 22 

death, high and low enthalpy cell death (Pinto et al. 1989). Assessment of cellular structural 23 

and functional changes induced by acetic acid in S. cerevisiae by flow cytometry pointed to 24 

an intracellular localization of the acetic acid cellular target(s) (Ludovico 1999; Prudêncio et 25 



al. 1998). Identification of morphological, structural and functional cellular death markers 1 

allowed the characterization of the cell death process. High doses of acetic acid (120-200 2 

mM) lead to a necrotic phenotype in exponential phase cells of S. cerevisiae whereas low 3 

doses (20-80 mM) trigger a programmed cell death (PCD) exhibiting characteristics of 4 

mammalian apoptosis (Ludovico et al. 2001). 5 

Alterations associated with cell death induced by low levels of acid include: (i) 6 

cycloheximide-inhibitable chromatin condensation along the nuclear envelope verified by 7 

transmission electron microscopy and DAPI staining; (ii) exposure of phosphatidylserine on 8 

the surface of the cytoplasmic membrane, revealed by the FITC–annexin V reaction; and 9 

(iii) the occurrence of DNA strand breaks, demonstrated by the TUNEL assay. Pulsed field 10 

gel electrophoresis of chromosomal DNA from stationary phase cells dying by apoptosis 11 

after exposure to acetic acid (175 mM) revealed DNA breakdown into fragments of several 12 

hundred kilobases, consistent with the higher order chromatin degradation preceding DNA 13 

laddering in apoptotic mammalian cells (Ribeiro et al. 2006). Subsequent studies 14 

demonstrated the involvement of mitochondria in the S. cerevisiae PCD process triggered by 15 

acetic acid, indicating that, like in mammalian cells, PCD in yeast can be mediated by 16 

mitochondria. Biochemical and molecular evidence provided by such studies included the 17 

accumulation of mitochondrial reactive oxygen species (ROS), transient hyperpolarization 18 

followed by depolarization, decrease in cytochrome oxidase activity affecting mitochondrial 19 

respiration, and release of lethal factors like cytochrome c (Ludovico et al. 2002). ROS, in 20 

particular hydrogen peroxide, are mediators rather than by-products in S. cerevisiae cells 21 

committed to apoptosis triggered by acetic acid (Giannattasio et al. 2005). Mitochondrial 22 

outer membrane permeabilization (MOMP) is a crucial step in the apoptotic pathway. This 23 

triggers the release of proteins from the mitochondrial intermembrane space into the cytosol, 24 

where they ensure propagation of the apoptotic cascade and execution of cell death. Opening 25 



of a mitochondrial pore called the permeability transition pore (PTP), which leads to the 1 

swelling of mitochondria and rupture of the mitochondrial outer membrane, has been put 2 

forward as one of the mechanisms underlying mammalian MOMP. Although the molecular 3 

composition of the pore is not completely defined, it has been proposed that its major 4 

components are the adenine nucleotide transporter (ANT), the voltage dependent anion 5 

channel (VDAC) and cyclophilin D (for a review, see Crompton 1999; Martinou et al. 2000; 6 

Bras et al. 2005). Yeast genetic approaches revealed that while deletion of POR1 (yeast 7 

VDAC) enhances apoptosis triggered by acetic acid, absence of ADP/ATP carrier (AAC) 8 

proteins (yeast orthologues of ANT) protects cells exposed to acetic acid (Pereira et al. 9 

2007). Absence of AAC proteins does not completely prevent acetic acid-induced apoptosis, 10 

suggesting that alternative redundant pathways are involved. One such pathway may be the 11 

translocation of Aif1p, the yeast apoptosis inducing factor, from the mitochondria to the 12 

nucleus in response to acetic acid (Wissing et al. 2004). Other mitochondrial proteins have 13 

been implicated in the execution of the yeast apoptotic program induced by acetic acid, 14 

including those involved in fission/fusion, namely Fis1p, Dnm1p, Mdv1p (Fannjiang et al. 15 

2004) and Nuc1p, the yeast ortholog of the mammalian endonuclease G (Buttner et al. 16 

2007). Ysp2p is another mitochondrial protein with a direct function in mitochondria-17 

mediated PCD, since its absence hinders mitochondrial thread-to-grain transition and 18 

confers resistance to acetic acid-induced PCD (Sokolov et al. 2006). Caspases (cysteine 19 

aspartic proteases), key components of the mammalian apoptotic machinery, have a crucial 20 

role in cell dismantling. The metacaspase Yca1p, the only yeast ortholog of mammalian 21 

caspases identified so far, is activated in cells undergoing acetic acid-induced apoptosis in a 22 

manner strongly dependent on the cell growth phase (Pereira et al. 2007). Since cells lacking 23 

Yca1p undergo apoptosis in response to acetic acid, though more slowly than wild type 24 

cells, a caspase-independent pathway was also proposed (Guaragnella et al. 2006). Besides 25 



Yca1p, the Kex1p protease, involved in programmed cell death caused by defective N-1 

glycosylation, also contributes to the active cell death program induced by acetic acid stress 2 

(Hauptmann et al. 2006). Transient proteasome activation is also necessary for protein 3 

degradation during acetic acid-induced apoptosis (Valenti et al. 2008). The occurrence of 4 

mitochondrial degradation following apoptosis induction is a common feature of 5 

mammalian cells (reviewed in Tolkovsky et al. 2002). This event usually occurs through an 6 

autophagic process that shows selectivity for mitochondria, termed mitophagy (Lemasters 7 

2005). Recent evidence supports the view that the PTP could be the trigger for 8 

mitochondrial degradation (Rodriguez-Enriquez et al. 2006; Kim et al. 2007). In yeast cells 9 

undergoing apoptosis, mitochondrial degradation has also been reported (Fannjiang et al. 10 

2004). Selective removal of mitochondria was reported following heterologous expression 11 

of Bax (Kissova et al. 2007), mitochondrial dysfunction (Priault et al. 2005), osmotic 12 

swelling (Nowikovsky et al. 2007) and in yeast stationary phase cells (Tal et al. 2007). 13 

However, removal of mitochondria is not always dependent on the autophagic machinery 14 

(Matsui et al. 2006). It was recently found that autophagy is not active during acetic acid-15 

induced apoptosis (Pereira et al. 2010). Alternatively, the vacuolar protease Pep4p is 16 

translocated to the cytosol and, together with the AAC proteins, plays an important role in 17 

mitochondrial degradation. Moreover, it was proposed that the AAC proteins relay a signal 18 

of mitochondrial dysfunction, targeting their destruction. Another work also documented the 19 

involvement of the vacuole in the apoptotic process. Deletion of class C vacuolar protein 20 

sorting genes results in drastically enhanced sensitivity to treatment with acetic acid and lead 21 

to a necrotic death (Schauer et al. 2009). These results unveil a complex regulation and 22 

interplay between mitochondria and the vacuole in yeast PCD. 23 

As described above, acetic acid-induced death has been characterized to a great extent, and 24 

we are beginning to understand the intricate interplay between the large number of players 25 



involved in this response. However, there are no studies available regarding the 1 

characterization of cell death in response to ethanol and acetic acid. Ethanol-induced cell 2 

death of S. cerevisiae also exhibits features of apoptosis and is mediated by the 3 

mitochondrial fission protein Fis1 (Kitagaki et al. 2007), and it is known that octanoic and 4 

decanoic acid enhance ethanol induced cell death (Sá-Correia 1986). It will be important to 5 

confirm whether cell death occurs through a regulated process in the presence of ethanol and 6 

acetic acid, and to assess its implications on yeast fermentative performance. These studies 7 

will contribute to overcoming limitations in large-scale fermentation processes, such as 8 

those utilized in the production of alcoholic beverages and ethanol-based biofuels. 9 

 10 

Current methods and new solutions for the reduction of volatile acidity in wines and 11 

grape musts 12 

 13 

Several methodologies aiming to decrease excessive volatile acidity of acidic wines have 14 

been proposed, which include: i) microbial stabilization of the acidic wine followed by 15 

mixture with other wines; ii) use of membrane processes such as reverse osmosis and 16 

nanofiltration (Fugelsang and Edwards 2007); iii) biological removal of acetic acid through 17 

refermentation (Ribéreau- Gayon et al. 1975; Ribéreau- Gayon et al. 2000). The first 18 

approach relies on microbial stabilization of the acidic wine, which is then blended with 19 

other wines with low acetic acid content, but the resulting wine usually has reduced 20 

commercial value (Zoecklein et al. 1995). Alternatively, the acidic wine can be sold for 21 

distillation purposes to obtain ethanol, also with economical losses. Reverse osmosis (RO) 22 

and nanofiltration can also be used for the deacidification of acidic wines. These techniques 23 

yield an acetic acid rich-permeate which is then treated by ion exchange to remove the acid 24 

(Boulton et al. 1996). RO is similar to membrane filtration and removes many types of large 25 



molecules and ions from solutions by applying pressure to the solution when it is on one 1 

side of a selective membrane. It removes particles larger than 0.1 nm, whereas nano- ultra- 2 

and microfiltration remove particle sizes larger than 1, 3, and 50 nm, respectively. The 3 

separation efficiency is dependent on solute concentration, pressure and water flux rate. 4 

Several companies market RO systems for volatile acidity reduction. Vinovation, a 5 

Californian company, proposes coupling reverse osmosis and anion exchange resins, 6 

whereby the permeate of reverse osmosis (containing mainly water, ethanol and acetic acid) 7 

is coupled with an ion exchange resin for volatile acidity removal. The treated permeate is 8 

then combined with the retenate. The company VA Filtration proposes a combination of RO 9 

and selective adsorption of acetic acid. A third approach consists of the combination of two 10 

stages of RO, where the targeted acid of the first permeate is transferred in a salty form and 11 

then retained by the second stage RO membrane (Massot et al. 2008). 12 

Several approaches have been developed for biodeacidification in order to achieve wines 13 

with a fine balance between sugar and acid contents, but they are limited to the metabolism 14 

of malic acid (Bony et al. 1997; Husnik et al. 2006; Husnik et al. 2007; Main et al. 2007; 15 

Silva et al. 2003; Sousa et al. 1995; Volschenk et al. 1997). Nonetheless, a genetically 16 

modified strain that substantially decreases acetate yield has been obtained (Remize et al. 17 

2000). However, due to the controversial discussion regarding the use of genetically 18 

modified food in Europe, it is likely that such strains will not be used for winemaking in the 19 

near future (Schuller and Casal 2005; Schuller 2010). Alternatively, abnormally high 20 

concentrations of acetic acid can be removed from wines by refermentation (Riberéau-21 

Gayon et al. 1975). In this process, one third of an acidic wine is mixed with two thirds of 22 

freshly crushed grapes or of the residual marc from the fermentation of a finished wine 23 

(remaining pulp, after draining the newly made wine), such that the volatile acidity of this 24 

mixture does not exceed 0.73 gl
-1

 of acetic acid. This rather empirical approach reduces 25 



volatile acidity to values in the range of 0.37 gl
-1

of acetic acid and implies low costs. 1 

However, it harbors the risk of unexpected final results and detrimental effects on 2 

fermentation since the involved yeast flora is largely unknown (Zoecklein et al. 1995). In an 3 

approach to search for yeasts that are the most suitable for a deacidification process, 135 4 

yeast isolates and 9 commercial S. cerevisiae strains were characterized regarding their 5 

ability to use glucose and acetic acid simultaneously. The most promising strains 6 

(commercial strains S26 and S29) were then evaluated in synthetic media containing acidic 7 

wines that were supplemented with high glucose/low ethanol or low glucose/high ethanol 8 

concentrations. This simulates the refermentation of a wine with grape-must from the 9 

beginning of fermentation or with the residual marc from a finished wine, respectively. Both 10 

strains remove over 80% of the acetic acid, though strain S29 is more efficient under the 11 

first condition, with limited aerobiosis, whereas strain S26 is more efficient under the second 12 

condition, in an aerobic environment (Vilela-Moura et al. 2008). However, even the low 13 

amounts of oxygen required under the limited-aerobic conditions tested might compromise 14 

the application of the strains in refermentation processes. Therefore, acetic acid removal 15 

from acidic white or red wines by the S26 and S29 strains was also evaluated at a pilot scale 16 

under enological conditions. When grape-must is used for the supplementation of acidic 17 

white wines, strains S26 and S29 still reduce approximately half the acetic acid and exhaust 18 

the sugar. Similar results were obtained for mixtures of acidic red wines with grape-must or 19 

residual marc, which were not improved by micro-oxygenation (MO). This study also 20 

showed that lower concentrations of acetic acid do not always correlate with higher sensory 21 

classification. Indeed, although the red wines obtained by refermentation with the grape-22 

must have a somewhat lower acetic acid concentration, those obtained by marc addition 23 

when strain S26 is used without MO achieve the best sensory scores. A separate study found 24 



that the volatile aroma compound composition is not affected by MO, but rather by the 1 

refermentation process itself (Vilela-Moura et al. 2010a). 2 

The reduction in acetic acid by the strains mentioned above was also assessed under the very 3 

stressful conditions imposed by the combination of ethanol, acetic acid, and SO2 to evaluate 4 

their applicability in the deacidification of different types of acidic wines (Vilela-Moura et 5 

al. 2010b). Both S26 and S29 strains efficiently reduce the volatile acidity (78% and 48%) 6 

from acidic wines with acetic acid and ethanol concentrations not higher than 1.0 gl
-1 

and 7 

11% (v/v), respectively. However, the strong anti-oxidant and antiseptic effect of sulphur 8 

dioxide (SO2) concentrations in the range of 95 - 170 mgl
-1 

inhibits the reduction of volatile 9 

acidity. Deacidification by strain S26 is associated with significantly increased 10 

concentrations of wine aromatic compounds, such as isoamyl acetate (banana) and ethyl 11 

hexanoate (apple, pineapple) but acetaldehyde concentration also increases slightly (Vilela-12 

Moura et al. 2010b). Efficient removal of acetic acid from an acidic wine (1.1 gl
-1 

acetic 13 

acid, 12.5% ethanol, pH 3.12) is also observed when S. cerevisiae S26 cells are entrapped in 14 

double-layer alginate-chitosan beads, a method which would allow for facilitated separation 15 

of the yeast from the finished wine (Vilela-Moura, unpublished data). 16 

The aforementioned studies support the use of refermentation processes using select 17 

commercial yeast strains as enological practices to correct grape-musts or wines with 18 

excessive volatile acidity. Moreover, they provide the basis of efficient and inexpensive 19 

alternative deacidification methods that contribute to improving the quality of wines with 20 

excessive levels of volatile acidity. 21 

 22 

Acknowledgments 23 

 24 



This work was funded by Institute for Biotechnology and Bioengineering, Centre of 1 

Genetics and Biotechnology (IBB/CGB-UTAD), by the projects 2 

PTDC/AGRALI/71460/2006, POCI/AGR/56102/2004 and PTDC/AGR-ALI/103392/2008 3 

from the Portuguese Research Agency (Fundação para a Ciência e Tecnologia). Research 4 

leading to this work has also received funding from the European Community´s Seventh 5 

Framework Programme (FP7/2007-2013) under grant agreement nº 232454. 6 

 7 

Figure 1. Schematic representation of the main reactions and enzymes involved in acetic acid 8 

metabolism in yeast. When pyruvate dehydrogenase (PDH) is repressed, acetyl-9 

CoA is synthesized through the PDH bypass (grey arrows) which involves the 10 

sequential action of pyruvate decarboxylase (PDC), aldehyde dehydrogenase 11 

(ALD) and acetyl CoA synthetase (ACS). Acetyl-CoA is used for fatty acid 12 

synthesis, or oxidized in the tricarboxylic acid cycle (TCA) after entering 13 

mitochondria. Acetyl-CoA can be converted to acetate and generate Co-A by 14 

acetyl-CoA hydrolase (ACH). 15 
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