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The central arteries dampen the pulsatile forces from myocardial contraction, limiting

the pulsatility that reaches the cerebral vasculature, although there are limited data on

this relationship with aging in humans. The purpose of this study was to determine

the association between aortic stiffness and cerebral artery pulsatility index in young

and older adults. We hypothesized that cerebral pulsatility index would be associated

with aortic stiffness in older adults, but not in young adults. We also hypothesized that

both age and aortic stiffness would be significant predictors for cerebral pulsatility index.

This study included 23 healthy older adults (aged 62 ± 6 years) and 33 healthy young

adults (aged 25 ± 4 years). Aortic stiffness was measured using carotid-femoral pulse

wave velocity (cfPWV), while cerebral artery pulsatility index in the internal carotid arteries

(ICAs), middle cerebral arteries (MCAs), and basilar artery were assessed using 4D Flow

MRI. Cerebral pulsatility index was calculated as (maximum flow – minimum flow) / mean

flow. In the combined age group, there was a positive association between cfPWV and

cerebral pulsatility index in the ICAs (r = 0.487; p< 0.001), MCAs (r = 0.393; p= 0.003),

and basilar artery (r = 0.576; p < 0.001). In young adults, there were no associations

between cfPWV and cerebral pulsatility index in any of the arteries of interest (ICAs: r =

0.253; p = 0.156, MCAs: r = −0.059; p = 0.743, basilar artery r = 0.171; p = 0.344).

In contrast, in older adults there was a positive association between cfPWV and cerebral

pulsatility index in the MCAs (r = 0.437; p = 0.037) and basilar artery (r = 0.500; p =

0.015). However, the relationship between cfPWV and cerebral pulsatility index in the

ICAs of the older adults did not reach the threshold for significance (r = 0.375; p =

0.078). In conclusion, age and aortic stiffness are significant predictors of cerebral artery

pulsatility index in healthy adults. This study highlights the importance of targeting aortic

stiffness in our increasingly aging population to reduce the burden of age-related changes

in cerebral hemodynamics.
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INTRODUCTION

As the lifespan of older adults continues to increase, the
percentage of this subset of the population over 65 years of
age is expanding, and is expected to surpass the amount of
children in the United States for the first time by 2034 (1).
The leading cause of death in adults 65 years and older is
cardiovascular disease due to increases in the prevalence of
atherosclerosis, hypertension, myocardial infarction, and stroke
(2). Mechanistically, aortic stiffness increases with advancing
age (3) and there is substantial evidence that it is predictive
of cardiovascular disease and mortality (4). Specifically, a 1
m/s increase in carotid-femoral pulse wave velocity (cfPWV) is
associated with a 7% increased risk of cardiovascular events (5).
Age-related increases in aortic stiffness result in elevated pulse
pressure and incident hypertension (6).

Due to arterial stiffening, aortic impedance increases with
advancing age, while impedance in the distal muscular arteries
does not increase, leading to greater impedance mismatching
and resulting pulsatility (7, 8). Additionally, cerebrovascular
impedance has also been demonstrated to increase with age (9).
As such, this increased arterial stiffness with aging facilitates
excessive pressure and flow pulsatility and may result in
microvascular damage (10). Of concern, the brain is a high
perfused organ and is susceptible to excessive pressure and
increased pulsatility index (11). It has been demonstrated that
increased aortic stiffness impairs memory via increased white
matter hyperintensities and higher prevalence of subcortical
infarctions (10). As such, cerebral artery pulsatility index has
been demonstrated to be elevated in patients with vascular
dementia (12, 13) and Alzheimer’s disease (14–16), both of which
increase in prevalence with advancing age. It has also been
postulated that intracranial arteries are less compliant in patients
with Alzheimer’s disease, thereby increasing cerebral pulsatility
index and exacerbating the pulsatile forces that reach the cerebral
microvessels (15).

In animal models (e.g., mice) it has been demonstrated that
increased arterial stiffness via imposed carotid artery calcification
(typically observed with aging) results in increased blood flow
pulsatility in the cerebral arteries (17), while studies in humans
have described increased cerebral pulsatility as a consequence
of elevated peripheral resistance (18). Additionally, cerebral
pulsatility has also been linked to elevated arterial stiffness in
middle-aged adults using transcranial doppler ultrasound (19).
As such, we can assume that increased aortic stiffness with aging
results in augmented cerebral vessel pulsatility index. However,
the impact of age on the association between aortic stiffness and
cerebral pulsatility index inmultiple intracranial vessels has yet to
be evaluated. Therefore, the purpose of this study was to compare
the association of aortic stiffness (as measured by cfPWV) and
cerebral pulsatility index in the internal carotid arteries (ICAs)
middle cerebral arteries (MCAs), and basilar artery in young
adults vs. older adults, in the absence of clinical disease. We
hypothesized that cerebral pulsatility index in the older adults
would be associated with cfPWV, but not in the young adults. We
also hypothesized that both age and cfPWV would be significant
predictors for cerebral pulsatility index.

METHODS

Participants
Thirty-three young (between 18 and 35 years old) and twenty-
three older (between 50 and 68 years old) physically active
healthy adults participated in the study. Participants were
excluded from the study if they had a body mass index (BMI)
> 30 kg/m2, and if they 1) were current smokers; 2) were
diagnosed with hypertension based on the latest guidelines (20)
or taking blood pressure medications; 3) presented with a history
or evidence of hepatic or renal disease, hematological disease,
peripheral vascular disease, stroke, neurovascular disease,
cardiovascular disease, diabetes; or 4) had contraindications
for magnetic resonance imaging (MRI) scan (as determined
by a health history questionnaire and MRI screening form).
All scans were reviewed by a neuroradiologist (HAR) for
incidental findings. Physical activity was determined using a
weekly exercise log and physical activity questionnaire (21).
Data collection occurred on two separate days, with an average
of ∼16 days between the study visits. Additionally, the MRI
scan was conducted with the participants in a rested and
fasted state, similar to the laboratory study day when cfPWV
was measured. All study procedures were approved by the
Institutional Review Board of the University of Wisconsin–
Madison and were performed according to the Declaration of
Helsinki, including obtaining written informed consent from
each participant.

Aortic Stiffness
To assess aortic stiffness, carotid-femoral pulse wave velocity
(cfPWV) was measured using applanation tonometry
(Sphygmocor, AtcorMedical, Sydney, NSW, Australia). High-
fidelity pressure waveforms were measured at the common
carotid and common femoral arteries as previously described
(22). Briefly, a pencil like probe was placed on each of the
arteries and pressure waveforms were recorded in order to
determine the delay of the foot of the pressure waves from the
R wave recorded using an electrocardiogram. The distance was
calculated using the length between the common carotid and
femoral arteries minus the distance from the suprasternal notch
and the carotid pulsating point. This distance was divided by
the time delay between the pressure waveforms to calculate
cfPWV. An average of three measurements were used for the
analysis (23). Additionally, using the same device, an aortic
pressure waveform was derived from the radial pulse using
the application of a generalized transfer function to measure
augmentation index (AIx), which was corrected at a heart rate
(HR) of 75 beats per minute. Aortic pulse pressure was calculated
by subtracting aortic diastolic blood pressure from aortic systolic
blood pressure. Augmentation pressure was also calculated
during the pulse wave analysis as the height above diastolic
pressure of the first shoulder of the aortic pressure waveform
(24). We included AIx in our stepwise regression analyses to
determine if it was a significant predictor for cerebral pulsatility,
as it is an index of arterial wave reflection that is indirectly
associated with arterial stiffness.
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Magnetic Resonance Imaging and Flow
Analysis
Cranial MRI scans were performed at the Wisconsin Institutes
for Medical Research using a 3T clinical MRI system (MR750,
GE Healthcare, Waukesha, WI, United States) and a 32-channel
head coil (Nova Medical Head Coil, Nova Medical, Wilmington,
MA, United States) with a gradient strength of 50 mT/m, and a
gradient slew rate of 200 mT/m/ms. Cerebral artery pulsatility
index was assessed using 4D Flow Phase ContrastMRI using a 3D
radially undersampled sequence that included volumetric, time-
resolved PC MRI data with three-directional velocity encoding
(PC-VIPR) (25, 26). The imaging parameters were as follows:
velocity encoding (Venc) = 80 cm/s, field of view = 220mm,
acquired isotropic spatial resolution = 0.7mm × 0.7mm ×

0.7mm, repetition time (TR)= 7.4ms, echo time (TE)= 2.7ms,
flip angle= 10◦, bandwidth= 83.3 kHz, 14,000 projection angles
and scan time ∼7min. Time-resolved velocity and magnitude
data were reconstructed offline by retrospectively gating into 20
cardiac phases using temporal interpolation (27, 28).

The 4D Flow MRI scans were evaluated offline. The scans
underwent background phase offset correction, eddy current
correction (29) and automatic phase unwrapping to minimize
potential for velocity aliasing (30). Vessel segmentation of right
and left ICAs, MCAs, and basilar artery were performed in
MATLAB using an in-house tool as previously described for
semi-automated cerebrovascular hemodynamic analysis (29).
The ICAs were measured below the carotid siphon along the
cervical and petrous portions. The basilar artery was measured
above the bifurcation of the vertebral arteries and below the
superior cerebellar artery. The MCAs were measured at the
M1 segment. Pulsatility index for each artery was calculated as
(maximum flow – minimum flow) / mean flow.

Statistical Analyses
Data analyses were performed using the Statistical Package for
the Social Sciences version 28 (SPSS, IBM Corp., Armonk, NY,
United States). Statistical differences in participant characteristics
between young and older adults were evaluated using Student’s
t-tests for unpaired data. Associations of interest were analyzed
by Pearson correlational analyses and stepwise regression
analyses. The Fisher r-to-z transformation was used to
compare correlations of interest. Additionally, multivariable
linear regression was used to evaluate if age and cfPWV would
be a significant predictor for cerebral pulsatility index. Statistical
significance was set α priori at p < 0.05.

RESULTS

Age Group Comparisons
Participant characteristics are presented in Table 1, while
cerebral vessel data are presented in Table 2. There were no
group differences between the young and older adults for
height, weight, BMI, MET minutes per week, and resting HR.
However, the older adults had elevated systolic blood pressure,
diastolic blood pressure, mean arterial pressure, augmentation
index, augmentation pressure, and cfPWV. Cerebral artery
characteristics are shown on Table 2. As expected, pulsatility

TABLE 1 | Characteristics of participants.

Variable Young adults

N = 33

Older adults

N = 23

p-value

Males / Females (n) 16 / 17 13 / 10

Age (years) 25 ± 4 62 ± 6 <0.001

Height (cm) 172 ± 7 174 ± 8 0.54

Weight (kg) 69 ± 9 73 ± 14 0.20

Body mass index

(kg/m2 )

23 ± 2 24 ± 3 0.18

Heart rate at rest (beats

per minute)

55 ± 8 57 ± 7 0.38

MET minutes per week 3,076 ± 1,718 3,002 ± 2,141 0.27

Systolic blood pressure

(mmHg)

119 ± 10 125 ± 10 0.04

Diastolic blood

pressure (mmHg)

69 ± 6 76 ± 6 <0.001

Mean arterial pressure

(mmHg)

86 ± 7 93 ± 7 0.001

AIx (%) −0.8 ± 10.6 16.6 ± 9.1 <0.001

Augmentation pressure

(mmHg)

2.6 ± 4.0 10.5 ± 5.3 <0.001

cfPWV (m/s) 6.2 ± 0.9 8.2 ± 1.5 <0.001

MET, metabolic equivalent, AIx, augmentation index at 75 beats per minute, cfPWV,

carotid-femoral pulse wave velocity. Data are presented as mean ± standard deviation.

TABLE 2 | Cerebral vessel variables.

Variable Young Adults

N = 33

Older Adults

N = 23

p-value

Internal carotid artery

diameter (mm)

4.4 ± 0.3 4.5 ± 0.3 0.18

Internal carotid artery

pulsatility index (a.u.)

0.92 ± 0.09 1.01 ± 0.10 0.001

Middle cerebral artery

diameter (mm)

2.9 ± 0.2 2.9 ± 0.2 0.69

Middle cerebral artery

pulsatility index (a.u.)

0.98 ± 0.11 1.08 ± 0.12 0.003

Basilar artery diameter

(mm)

3.2 ± 0.2 3.1 ± 0.3 0.33

Basilar artery pulsatility

index (a.u.)

0.96 ± 0.10 1.11 ± 0.16 <0.001

Data are presented as mean ± standard deviation.

index was higher in the ICAs, MCAs, and basilar artery in the
older adults compared with the young adults. Importantly, the
diameter of the ICAs, MCAs, and basilar artery were equivalent
between the young and older adults.

Correlation Analyses
In the combined group, there was a positive association between
aortic stiffness (cfPWV) and the cerebral artery pulsatility index
for the averaged ICAs (r = 0.487; p < 0.001), averaged MCAs (r
= 0.393; p = 0.003), and basilar artery (r = 0.576; p < 0.001) as
shown in Figure 1. Additionally, when using partial correlations
to determine the influence of age with cfPWV and pulsatility
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FIGURE 1 | The relationship between internal carotid artery (ICAs), middle cerebral artery (MCAs), and basilar artery pulsatility index with aortic stiffness (cfPWV) in

combined age groups (N = 56) using Pearson correlations.

index, the association remained significant for the averaged ICAs
(r = 0.277; p = 0.041) and basilar artery (r = 0.310; p = 0.021);
however, the correlation for averaged MCAs was no longer
significant (r = 0.200; p = 0.143) indicating this association is
driven by age. Next, when evaluating the associations within each
group (presented in Figure 2), there was no association between
cfPWV and ICA pulsatility index in the young adults (r = 0.253;
p = 0.156) and the association did not reach the threshold for
significance in older adults (r = 0.375; p = 0.078). In addition,
although there was no association between cfPWV and MCA
pulsatility index in young adults (r = −0.059; p = 0.743), the
association was significant in older adults (r = 0.437; p = 0.037).
Similarly, there was no relationship between cfPWV and basilar
artery pulsatility index in young adults (r = 0.171; p = 0.344),
while there was a significant positive association in older adults
(r = 0.500; p= 0.015).

We also investigated the associations of aortic pulse pressure
and cerebral pulsatility index, in the combined age group aortic
pulse pressure was associated with cerebral pulsatility index in
the ICAs (r = 0.334, p = 0.014), MCAs (r = 0.312, p = 0.023),
and basilar artery (r = 0.398, p = 0.003). Using the Fisher r-to-z
transformation these correlations are not significantly different to
those of cerebral pulsatility index and cfPWV for the ICAs (z =
0.95, p = 0.342), MCAs (z = 0.48, p = 0.631), and basilar artery
(z = 1.21, p = 0.226). When evaluating the associations within
each age group, there was no relationship between aortic pulse
pressure and cerebral pulsatility index in young adults (ICAs: r=
0.191; p = 0.296, MCAs: r = 0.199; p = 0.275, basilar artery r =
0.317; p = 0.077). Similarly, there were no associations between
aortic pulse pressure and cerebral pulsatility index in any of the
arteries of interest in the older adults (ICAs: r = 0.230; p= 0.316,
MCAs: r = 0.183; p= 0.427, basilar artery r = 0.188; p= 0.416).

We also investigated regional differences in pulsatility index of
the left and right ICA and MCA for associations with cfPWV, as
anatomical variations may influence results. Interestingly, in the
older participants we found significant correlations for the left
ICA (r = 0.418; p = 0.047) and left MCA (r = 0.440; p = 0.035)
with cfPWV, but not for the right ICA (r = 0.306; p = 0.155)
and right MCA (r = 0.227; p = 0.297). Similar to the averaged
data, there were no significant correlations in either the left ICA
(r = 0.218; p = 0.223) or right ICA (r = 0.266; p = 0.135) and

left MCA (r = −0.224; p = 0.211) or right MCA (r = 0.258; p =
0.148) for the young participants.

Regression Analyses
Stepwise regression analyses were used to determine the main
predictive variables responsible for the observed associations.
The stepwise regression analyses revealed that the strongest
correlate for ICA pulsatility index was cfPWV, explaining 19% of
the variance. For MCA pulsatility index, cfPWV explained 16%
of the variance. Similarly, with basilar artery pulsatility index,
cfPWV explained 30% of the variance. These results included all
of the participants with the averaged ICAs and MCAs. We then
used multiple linear regression with age and cfPWV to test our
hypothesis that they would be significant predictors of cerebral
pulsatility index. Indeed, there was a significant association for
averaged ICA pulsatility index (β (SE) = 0.744 (0.062), p <

0.001), averaged MCA pulsatility index (β (SE) = 0.822 (0.077),
p < 0.001), and basilar artery pulsatility index (β (SE) = 0.677
(0.079), p < 0.001) when all the participants were included.
Additionally, age and cfPWV explained 26% of the variance for
ICA pulsatility index, 17% for MCA pulsatility index, and 38%
for basilar artery pulsatility index.

DISCUSSION

Our study is the first to demonstrate that aortic stiffness (cfPWV)
is positively correlated with cerebral artery pulsatility index
within the ICAs, MCAs, and basilar artery using 4D Flow MRI.
Although we hypothesized that ICA pulsatility index would be
associated with cfPWV in the older adults, this association did
not reach the threshold for significance. The ICAs have a larger
diameter than theMCAs and basilar artery and previous research
has demonstrated that increased arterial diameter influences
pulsatility index (31). As such, we speculate that the ICAs may
have higher elasticity than the MCAs and basilar artery, which
may account for the slightly lower pulsatility index values in
the ICA compared to the MCAs and basilar artery. However, as
expected, we did demonstrate a significant association between
cfPWV andMCA pulsatility index in the older adults. The overall
association between cfPWV and MCA pulsatility index with
the combined age groups was dependent on age, as the partial
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FIGURE 2 | The relationship between internal carotid artery (ICAs), middle cerebral artery (MCAs), and basilar artery pulsatility index with aortic stiffness (cfPWV) split

by age groups, young adults (N = 33) vs. older adults (N = 23) using Pearson correlations.

correlation was no longer significant when controlling for aging.
Further illustrating that with advancing age, cerebral pulsatility
index increases with elevated aortic stiffness. Additionally, the
multiple linear regression analysis supported the hypothesis that
both age and cfPWV are significant predictors of cerebral vessel
pulsatility index. As predicted, this relationship was only present
in the older adults when we evaluated the age groups.

Our study is novel in that we utilized 4D FlowMRI tomeasure
pulsatility in multiple cerebral vessels (ICAs, MCAs, and basilar
artery) to comprehensively assess the effect of aortic stiffness on
cerebral pulsatility with advancing age. Additionally, because the
older adults included in this study were healthy, we were able
to elucidate the role aging plays on the relationship between
aortic stiffness and intracranial cerebral pulsatility. Importantly,
our findings are in agreement with previous data that cfPWV
is positively associated with MCA pulsatility index using
transcranial doppler ultrasonography, which measures blood

velocity (19), whereas the current study calculated pulsatility
index using flow.

It is well-established that with advancing age, arterial stiffness
increases (7, 32) and does not seem to be dependent on
atherosclerosis (33). Over time, mechanical fraying of elastin
structures occurs within the vessel wall from repeated bouts
of mechanical stress and crosslinking of collagen fibers from
advanced glycation end-products. This process leads to increased
stiffening of the arteries (34–36). With elevated arterial stiffening,
pulsatile flow within the arteries are generated via myocardial
contraction, which propagates to the peripheral microvasculature
and results in end organ damage (37). The brain is especially
susceptible to excessive pulsatility due to its high demand
for blood flow and low resistance of the arterioles located in
the brain (38, 39). This highlights the importance of large
conducting arteries to buffer pulsatility prior to reaching the
cerebral circulation (40, 41). For example, pulsatility index in
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the ICA decreases from proximal to distal in the carotid siphon,
aiding to attenuate pulsatility (42). Additionally, accelerated
stiffening of the aorta with aging is directly related to end-organ
damage to the brain via increased microvascular brain pulsatility
and development of cerebral small vessel disease (43). Previous
research has demonstrated aortic stiffness measured via phase-
contrast MRI predicts white matter hyperintensities (44), while
aortic stiffness measured with cfPWV is also associated with
white matter hyperintensities and cognitive decline (45).

Arterial stiffness is a sensitive predictor of cognitive
dysfunction and has been suggested to be a target to reduce
or delay the onset and progression of dementia in older
adults (46). Previous studies have suggested that aging-related
increases in aortic stiffness results in impedance matching with
stiffer peripheral muscular arteries, that results in reduced
wave reflections at first-order bifurcations (10). However, other
studies have suggested that impedances are relatively well-
matched between central elastic arteries and peripheral muscular
arteries prior to aortic stiffening observed with advancing age,
although increased pulsatile energy from the central arteries can
penetrate and damage the cerebral microvasculature (45). Our
data supports the notion that increased aortic stiffness with aging
results in elevated cerebral pulsatility. Furthermore, elevated
arterial stiffness is associated with worse executive function,
memory, and global cognition (47). As such, a recent meta-
analysis concluded elevated arterial stiffness with older adults
is associated with deteriorating memory and processing speed
(48) and higher aortic stiffness is associated with faster cognitive
decline (49). Our study attempts to provide a mechanistic
link (i.e., cerebral pulsatility) to help explain why increases in
aortic stiffness with advancing age in humans may result in
cognitive decline.

In the present study, older adults had higher pulsatility index
in the cerebral vasculature compared with young adults, which
was associated with elevated aortic stiffness. As such, we speculate
that this age-related increase in aortic stiffness plays a role in
pulse wave encephalopathy (50). This term describes the process
of how increased pulsatile flow results in microvascular damage
in the brain and increases the risk for mild cognitive impairment
and dementia (38, 51). Therefore, reducing aortic stiffness at mid-
life may be successful in preventing or delaying the onset of
stroke, dementia, and other consequences of cerebral small vessel
disease (52). Recently, it has been demonstrated that increased
estimated cardiorespiratory fitness was associated with decreased
pulsatility index in large cerebral vessels (28). Moreover, a
“normal” heart rate (around 75 bpm) has been demonstrated to
provide an optimum wave condition in the aorta to attenuate
cerebral pulsatility (53). These findings further highlight the need
to develop interventions (e.g., exercise) to mitigate age-related
increases in aortic stiffness to help reduce the risk of developing
cognitive dysfunction with our growing aging population.

This study is not without limitations. First, a larger sample
size may be needed to demonstrate a significant correlation
between with cfPWV and ICAs pulsatility index in older adult
cohorts. Second, this study used a cross-sectional design to
infer the impact of aging on associations of aortic stiffness

and cerebral pulsatility index. Third, although there is a strong
correlation between tonometry-based cfPWV and PC-MRI aortic
PWV values, error is introduced by the use of linear surface
measurements for length to determine carotid to femoral
distance (54). However, this error could be considered negligible
because age-related aortic stiffness is mainly influenced by
decreased pulse transition time (55). Finally, the older adults
included in this study were healthy, which may limit the
translation of this study to the general population who typically
have cardiovascular risk factors or disease. Future longitudinal
studies are needed to confirm these relationships.

In conclusion, our study demonstrated that age and cfPWV
are significant predictors of cerebral pulsatility index (ICAs,
MCAs, and basilar artery). Additionally, with combined age
groups, arterial stiffness is associated with pulsatility index
in each of the cerebral vessels examined. These relationships
remained significant in the older adults for the MCAs and
basilar artery. This study highlights the importance of targeting
aortic stiffness in our increasingly aging population to reduce the
burden of age-related changes in cerebral hemodynamics.
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