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The greatly improved prediction of protein 3-D structure from sequence, achieved by the 
second version of AlphaFold in 2020, has already started to have a huge impact on 
biological research; however, in our view a number of challenges remain, and the protein 
folding problem cannot be considered solved yet. We expect fierce competition to 
improve the method even further and new applications of machine learning to help 
illuminate proteomes and their many interactions.  
 
 
It is now one year since it was announced in the CASP14 meeting, that DeepMind’s 
AlphaFold2 algorithm had done remarkably well1 in predicting the 3D coordinates of a 
protein, given its amino acid sequence. Their models proved to be the most accurate of all 
the submissions for over 90% of the targets, with a fairly large gap to the next best group in 
most of those cases. AlphaFold2 was the result of using modern machine learning 
approaches and 170,000 protein structures in the public Protein Databank (PDB) to train the 
model. Furthermore, they published their method2, made it freely available and released 
the predicted models for over 350,000 proteins for 21 model organism proteomes. These 
are available in the AlphaFold Protein Structure Database hosted at EMBL-EBI, which provides 
tools to view and interrogate the structures3. Furthermore, they intend to release models 
for UniRef904 – i.e. over 130 million protein models by the end of 2021 – ultimately 
providing more than 700 times as many models as the experimental structures that are 
currently available in PDB. 
 
This effort has generated an enormous amount of interest in the life sciences community 
and beyond – not least because this was a problem of many years’ standing and it 
potentially has many applications in proteomics in all domains of life, such as the design of 
new molecules – either as therapeutics or the design of proteins with new functions. Here 
we discuss what has happened since the publication of their papers and the release of the 
models; assess the strengths and weaknesses of the models; identify what has been 
achieved and what has not been achieved and look ahead to how this might evolve in the 
future. 
 
The AlphaFold2 Method 
The complete description of the AlphaFold2 system takes up 62 pages of supplementary 
material, and as further details on how AlphaFold2 works can be found elsewhere in this 
issue, we are not going to detail the inner workings of it here. The basics, however, are that 

https://www.alphafold.ebi.ac.uk/


the system was constructed as a linked set of transformer neural networks, using the 
concept of attention5. These are very different from the standard feedforward neural 
networks that have been used in bioinformatics for many years, in that they work on strings 
of input tokens. These tokens are simply vectors which can represent anything from 
different English words to different amino acids (as they do in AlphaFold2). What makes 
transformers so powerful is that the attention mechanism considers the relationships not 
just between tokens found close together in the input sequence, but between any pair of 
tokens. This gives them an essentially global view of how every token relates to every other 
token. For AlphaFold2, this gives it a complete view of the interplay between amino acid 
substitutions modulated by the underlying tertiary (and quaternary) structure. 
 
The overall system architecture of AlphaFold2 has two main processing “tracks”, with the 
inputs to one track representing the rows and columns of a multiple sequence alignment 
(MSA), and those of the other track essentially representing the interatomic distances 
between each amino acid in the model. The MSA path allows the network to keep track of 
amino acid conservation and covariation features, whilst the distance matrix provides the 3-
D spatial information for every pair of amino acids. Information is exchanged between these 
two tracks, which means that the MSA can be reinterpreted as the distance information is 
improved. Similarly, the distance information can be improved as the MSA is reinterpreted. 
At the end, information from the two tracks is fed into the so-called structure module, 
which attempts to construct a 3-D model of the protein i.e., it directly outputs 3-D 
coordinates for the amino acid residues without needing an external modelling program 
(called end-to-end prediction). The job of the structure module is not just to produce a 
single set of coordinates, but also to make iterative improvements to the initial 3-D model, 
again using an attention-based mechanism, though using a special geometric representation 
that is invariant to rotations of the structure. Other groups had speculated (wrongly as it 
turns out) that DeepMind had made use of some new developments in geometric machine 
learning, called SE(3) equivariant attention6, which could ensure that the results produced 
are not affected by rigid body rotations of the protein chain. It turned out, however, that 
this rotational invariance was achieved using a much older idea from structural 
bioinformatics where local coordinate frames are defined around each amino acid, based on 
standard covalent geometry7. 
 
In some respects, seeing the final complete description of the method was a tiny bit 
disappointing, after the huge anticipation that built up following the CASP14 meeting. Not 
because the method, when laid bare, wasn’t sophisticated or well thought-out, but simply 
because there appeared to be no radical new biological insights that were essential to the 
method’s success. In many respects, AlphaFold2 is ‘just’ a very well-engineered system that 
takes many of the recently explored ideas in the field, such as methods to interpret amino 
acid covariation, and splices them together seamlessly using attention processing. 
 
Open questions remain as to how AlphaFold2 has managed to reach such a high accuracy. 
Some explanation can be had from the ablation study results presented in the final paper. 
Ablation in machine learning relates to removing critical parts of a machine learning model 
to see how important they are. In one experiment, the detailed MSA track was effectively 
removed from the model, leaving just the pairwise distance representation track to produce 
the predictions. This radical surgery only reduced the performance of AlphaFold2 by a few 



percentage points. That’s really surprising, because it seemed to most people that the 
interplay between the two tracks must be the key driver of AlphaFold2’s success, and yet, 
when almost half of the neural network model is deleted, the performance (e.g. on the 
CASP14 targets) was seen to drop only very slightly. There are two ways we can interpret 
this. One possibility is that AlphaFold2 is currently over-engineered. In this scenario it should 
be possible for researchers to simplify the model, and perhaps further improve the accuracy 
by removing the less important aspects and replacing them with new better ideas. The 
other, perhaps less optimistic possibility, is that AlphaFold2 is just a collection of many 
individually small ideas, each of which is adding a tiny percentage to the final performance 
of the model. An analogy to this might be the design of a Formula 1 racing car, where 
although none of the little aerodynamic tricks and engine gimmicks contribute much 
individually, when you remove any of them, the final performance drops just enough to lose 
the race. Further improvement in this case would be a matter of just piling on even more 
such tricks. 
 
 
The quality of AlphaFold2 models can be very variable 
AlphaFold2 models have variable quality, often with major differences in reliability across 
different parts of the chain. This means that the models must be used with great care, with 
a full understanding of their strengths and weaknesses. Critically, AlphaFold2 provides two 
measures of confidence, which provide good information about the local reliability 
(predicted local-distance difference test, pLDDT8-9) and the reliability of pairwise 
interactions between different residues in the chain. It is essential to take both of these 
measures into account when trying to use the models. 
 
By comparison with proteins for which experimental structures are already available in the 
PDB, it is clear that most of the AlphaFold2 models generated are of very high quality, with 
good side chain placement and very low RMSDs. In contrast, for proteins without clear 
homologues, the pLDDT scores are usually lower and show a very broad range of predicted 
reliability.  (See Fig. 1).  



 

 
Fig. 1 Distribution of average confidence score per AlphaFold2 model (obtained by averaging 
the individual residue confidences over the whole model) for human proteins with no close 
homologue in the PDB (dark blue), and proteins where at least part of the sequence can be 
homology modelled from a structure in the PDB (orange). The latter distribution is heavily 
skewed to higher average confidence scores, suggesting models of higher quality. For long 
proteins, only the model of the first fragment has been included in the data. (See 
https://www.nature.com/articles/s41591-021-01533-0) 
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Fig. 2 Entry Q99558 (MAP3K14) from the EBI AlphaFold Database. The model is coloured by 
confidence score, blue being most confident and orange being least, and three compact 
structured domains can be seen (D1-D3). The N and C termini are also labelled. 
 
 
Fig.2 shows a model for a typical large human protein (MAP3K14), taken from the EBI 
AlphaFold Database. The first two domains (D1 & D2) have already been experimentally 
determined (e.g. PDB code 6z1t), and so are just being recapitulated in this model, but 
another compact domain (D3), without any obvious homologues in PDB, is visible at the C-
terminus, near the bottom of the figure. This single de novo modelled domain is not packed 
against the other domains, and it is unclear why AlphaFold2 is only sometimes able to pack 
domains together. One possibility is that it relies on some aspect of similarity to known 
structures, not necessarily simple homology, but perhaps common motifs or other 
conserved structural features and without these constraints, the domains are placed 
seemingly arbitrarily. 
 
The parts of the model where the predictions have very low reliability, are modelled as long 
loops, which project from the structured core.  These regions do not appear to ‘obey’ the 
stereochemical rules for polypeptides and should be regarded as arbitrary linkers. For over 
half of the structure of MAP3K14, AlphaFold2 produces such random coil-like structure at 
low confidence, interspersed with a few elements of secondary structure at slightly higher 
confidence. There are minimal interactions between these secondary structures and the 
well-modelled domains, but some tantalising loose interactions might be in line with the 
native structure, though it’s impossible to say more without further experimental 
investigation.  
 
Another way to characterise the models is to look at their stereochemistry – in particular 

the  distribution, or Ramachandran plot, which depicts the conformation of the main 
chain of the protein. This distribution was shown to strongly reflect the resolution of an 
experimental structure11 and is often used as part of the wider validation of an 
experimentally determined structure provided in the PDB. These plots can be used to 
explore the variation of reliability for individual structures, and also reflect how those parts 
of the chain for which adequate information is not available, have been constructed.  The 

distribution of  values for the AlphaFold2 human models is shown in Fig. 3. 



 
 

Fig 3. Ramachandran plots of the  main chain torsion angles for experimentally 
determined protein structures (a and b) and AlphaFold2 models (c to e). a. Structures solved 
since 2000 by X-ray crystallography at resolutions of 1.5-2.0Å. b. NMR structures solved 
since 2000. c-e. Residues in AlphaFold2 models of human proteins with (c) very high pLDDT 
scores (>90), (d) low scores (70 > pLDDT > 50), and (e) very low scores (pLDDT < 50). For very 
low pLDDT scores the distribution is radically different from expected. This has implications 
for running programs based on coordinates of models with large unstructured and poorly 
resolved loops. 
 
 

These plots show that below a pLDDT score of 70, the  distributions of AlphaFold2 
models differ from those observed for highly resolved experimental structures, and for very 
low pLDDT scores, the distribution is radically different from what we expect to see. The low 
resolution ‘loop’ regions are clearly not at all physically realistic and will cause errors when 
using the complete coordinate model for some calculations (eg accessibility, pockets, 
electrostatic potential etc). An obvious explanation for these spaghetti-like regions in larger 
AlphaFold2 models is that these regions are disordered13. That probably does account for 
some of it, but it is unlikely to be an explanation for all of it. Many disordered regions 
become ordered upon binding, and this is an important aspect of their function. Quite 
possibly, many of these regions may depend on obligate interactions from other chains to 
create stability, and in this aspect the exclusion of multimeric information from the 
database is a critical limitation. 
 
Despite this, without very thorough testing, we cannot dismiss the simplest of all 
explanations for these regions, and that is simply that AlphaFold2 is unable to find the right 
information in its internal knowledge-base to model these regions. As a rule, when AI 
systems are given inputs that are far outside the distribution of their training data, they 
tend to behave in unpredictable ways. One common failure modality is that they simply 
output either the most common or “average” values, and this is a quite likely explanation 
for how these low confidence regions are being produced - AlphaFold2 may simply be 



outputting structures with close-to-average main chain torsion angles, with maybe some 
small adjustment for the amino acid type. For sure, in our own tests on AlphaFold2, when 
we present it with just a long sequence of alanine-residues, we see a single long alpha helix 
predicted with high confidence, as we might expect. However, presented with a similar 
sequence of isoleucine residues, which would not be a common feature in the program’s 
training set, it produces the same high confidence alpha helix prediction, which is probably 
not what we might expect for this amino acid. 
 
 
Outstanding Challenges Remain 
Although the AlphaFold2 software predicts the coordinates of a typical folded protein, there 
are several related challenges which it is not designed to address. Firstly, AlphaFold2 models 
do not include any ligands (neither small molecules nor other macromolecules, such as 
proteins or nucleic acids). Interestingly, AlphaFold2 does sometimes reproduce the holo 
form of a protein without the ligand being present, which again suggests that it is carrying 
out some kind of comparative modelling process, albeit a very arcane one. Presumably, in 
these cases, the majority of structures AlphaFold2 is sampling from have the ligands 
present, and so the model includes the correct binding site as a useful artefact so to speak. 
Secondly the method does not aim to elucidate the folding pathway, nor the dynamics of 
the structure18. It may be possible to couple AlphaFold2 with dynamics simulations in the 
future, however. Lastly, and perhaps the more immediate problem is that AlphaFold2 
models cannot be explained or externally validated. From our human perspective, it’s 
essentially ‘alien’ technology that is currently beyond our understanding, so “asking” it why 
it predicted something in a particular conformation is clearly not feasible. Other than 
experimental validation in a lab, there currently seems little prospect of designing computer 
programs which can independently validate AlphaFold2 models. Its own internal confidence 
estimates are likely to remain the best indicators of whether a model is right or wrong. This 
is going to increase as a problem when AlphaFold2 gets serious competition, which it 
inevitably will. In that case, we will need to be able to compare confidence estimates 
between different models, and that will be a major challenge. One possible way forward in 
that respect will be to very carefully curate standardized test sets of protein structures, 
against which different prediction programs can be calibrated. 
 
 
New work Inspired by AlphaFold 
The AlphaFold2 success and media hype has caused a huge flurry of excitement within the 
structural biology field and already MANY papers inspired by or using the AlphaFold2 
models have been published (mainly as preprints). In fact, the excitement has been such 
that even preprints were deemed not speedy enough, and quite a lot of useful information 
ended up being exchanged via social media. One interesting development from this has 
been the very rapid deployment of AlphaFold2 on Google’s Python notebook service called 
the Google Colaboratory or Colab for short19.  
 
The flood of AlphaFold2 associated papers, so far, are generally in the area of benchmarking 
i.e. attempting to validate it using various benchmark sets. Our earlier comments on the 
importance of proper cross-validation need to be re-emphasised here, and in some respects 
a lot of this early work does look somewhat rushed. In general, these papers assess 



prediction accuracy for particular types of protein domains (eg transmembrane regions) or 
specific families of proteins; some consider specifically the regions which are not predicted 
with any accuracy – attempting to use this as a marker of potential disorder20. Attempts to 
use AlphaFold2 to predict the impact of variants on function have not produced convincing 
results21-22, and probably more work will need to be done for it to have a bearing on this 
important area. One other interesting application of AlphaFold2 has been inverse protein 
folding, or protein design23-24. 
 
Overall, perhaps the biggest effort to evaluate AlphaFold2 has come from trying to “hack” 
the software to predict protein-protein interactions. The basic idea is simply to tack the two 
sequences together and pretend that they are two domains. Surprisingly, this has even had 
reasonable success at predicting obligate homomeric interactions accurately20,25-26. 
Surprising, because as far as anyone knows, AlphaFold2 was only trained on single protein 
chains, and so in theory should not have any knowledge of protein-protein interfaces. It’s 
still puzzling how the original AlphaFold2 model, trained only on single chains, can predict 
multimeric structures at all, but our best guess here, is that there probably is much more in 
common between domain-domain packing interactions and multimer packing interactions 
than perhaps we previously thought. This unexpected application has been so popular that 
DeepMind have already brought out a version of AlphaFold2 that was trained to predict 
multimeric structures27. 
 

 
What are the models most useful for? 
Perhaps the single most useful role for the AlphaFold2 models is to seed and solve the 
determination of experimental structures – especially for large complexes or even 
tomograms for whole cells. Already several (unpublished) structures have been determined 
using the models, whilst others (which had already been solved but not published) have 
proven the accuracy of the predictions. There have been several methodological papers on 
using the models for molecular replacement29 . Looking forward with the advent of high 
resolution cryo EM, the possibility to solve large complexes using these models is very 
attractive. Indeed, some have already been published30  
 
The challenge of solving complexes of proteins with small molecule ligands is greater, since 
there are a huge number of metabolites (especially in plants) and accurate interaction data 
are only available for a relatively small number of molecules. The field of docking remains 
challenging for this reason and it will be interesting to see if these new AI methods can 
improve docking and energy calculations. 
 
Perhaps the last big question is whether these methods will improve our ability to design 
proteins with new functions. Great strides have been made in the last decade in designing 
very stable protein folds with a given structure31 and even integrating functions. But this 
remains challenging. The hope is that improved structure prediction will in turn allow us to 
focus more on protein function and eventually to tame it to the benefit of humankind.  
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Box 1 - Benchmarking AlphaFold2 requires Care and Attention (no pun intended) 
Since the AlphaFold2 software was made available, over 30 different benchmarking studies 
have been made available as preprints through BioRxiv. We can’t comment individually on 
all these studies, but considering them as a whole, a few common concerns have become 
apparent. As seen in Fig. 1, AlphaFold2’s confidence scores are clearly correlated with 
whether the target structure has homologues in PDB or not. Again, this arises from either 
the explicit use of templates or from the occurrence of similar structures in AlphaFold2’s 
training set. Removing the effects of directly using templates is easy to control for - that 
option simply needs to be turned off. Accounting for the effects of bias from the original 
training data is a wholly different thing. It’s already clear that AlphaFold2 is able to build 
homology models better than any previous homology modelling approach. This means that 
designing an experiment to properly evaluate its ability to predict new structures is not at all 
easy. It should be obvious that simply checking the degree of sequence identity (say less 
than 30%) between the test samples and the training set (effectively all of PDB released 
prior to May 2018) is not going to be sufficient to avoid bias14. Nevertheless, this is the most 
common approach people seem to have used to produce test sets for AlphaFold2, rendering 
those studies highly unreliable. Better options exist, such as fold classification databases like 
CATH15, SCOP16 and ECOD17. No benchmarking of systems like AlphaFold2 should ever be 
done without reference to at least one of these resources, which provide evidence for very 
distantly related homology between protein domains. 
 
Box 2 - The Task of Sisyphus 
The EBI AlphaFold Database is a very nice resource to have. Hundreds of thousands of 
models generated by the current state-of-the-art method in protein modelling, and a nice 
viewer to look at the models quickly. Also, the models can be downloaded by anyone and 
therefore used in further studies. However, some issues are likely to emerge in the future. 
 
Firstly, AlphaFold2 is not a single well-defined protocol. Comparing the results from the 
default AlphaFold2 on CASP14 targets with the results that DeepMind produced themselves, 
shows quite substantial differences on the harder targets. The AlphaFold Database likely 
contains a substantial number of currently bad models which could be improved with some 
changes to the inputs. These changes might arise from new structures being deposited in 
PDB (providing new templates) or more certainly, additional protein sequences becoming 
available from metagenomics studies. 
 
Secondly, without any doubt, AlphaFold2 will end up spawning many implementations and 
even serious competitor methods from other labs. Before long there may be a whole family 
of methods, some of which may be better (on average) than the current version of 
AlphaFold, but there then being no obvious way to pick just one “best” model from the 
alternatives available. 
 
These two concerns will create a huge dilemma. Should the AlphaFold Database be 
updated? How can it not be? But if so, how often? If the database does grow to 130 million 
entries, is it feasible (or even desirable) to regenerate that amount of data? A back-of-
envelope calculation (assuming roughly 5 minutes of computation per model) gives an 
estimated total amount of computation of well over 1000 (GPU or TPU) years. Despite 
carbon offsetting, this is still a lot of energy to use. And unlike the job of painting the Forth 



Bridge, which now only needs to be done every 25 years, updating the AlphaFold Database 
will need to be done much more often. And none of this accounts for the fact that in 5 
years’ time, UniProt is likely to have twice as many proteins in it, that also will need to be 
modelled. Of course, computer hardware should get faster in that time, but even if it is just 
about feasible to keep rerunning AlphaFold, can we afford to ignore the emergence of 
perhaps better methods that get developed by other labs? Should those models also be 
stored in the database, and if so, how often should they be updated? Answers to some of 
these questions will be needed really very soon. We need to know if updating the AlphaFold 
Database will be merely a labour of Hercules or whether it will end up being a task fit for 
Sisyphus. 
 
 
Box 3 - Open Source but not Open Science 
One of the most surprising things that came from the AlphaFold2 paper was that it was 
accompanied by fairly complete source code, released under a standard open source 
license. DeepMind were rightly applauded for doing this, but there was a fly in the 
ointment. Although the source code was complete enough to allow users to run the model, 
either on cloud systems or on local computer systems, which was a definite improvement 
over the first version of AlphaFold, the all-important neural network parameters were not 
released under the same license terms. Instead, these parameters were released under a 
non-commercial license. Of course, as a company, it is entirely up to DeepMind whether or 
not they release their source code, and under what terms. However, publication of 
computational work in many of the top journals is increasingly predicated on full open 
release of the software used to generate the results in the published article. This is 
particularly important with something as complex as AlphaFold2, where having the source 
code to look at has been essential to understanding the method fully. Indeed, some minor 
discrepancies have already been reported between what’s written in the paper and what’s 
actually in the source code. In some cases, actually running the code was essential to check 
exactly how a particular subroutine worked, thus, the ability for all researchers to be able to 
test computer software is an absolutely vital aspect of the proper academic publishing of 
computational science research. As things stand, AlphaFold2 cannot be used by commercial 
researchers, and worse still, the AlphaFold2 models stored at the EBI, although available to 
download without any restrictions, cannot be validated by commercial users either. 
 
Now, it’s somewhat debatable whether the weights of a neural network can be protected as 
intellectual property, and it’s also worth noting that DeepMind are not alone in using this 
possible loophole to prevent commercial usage of ostensibly open-source machine learning 
software. The RosettaFold software28 from David Baker’s laboratory has similar restrictions 
on using its neural network weights. As we say, Open Source certainly, but not truly Open 
Science. 
 
 
 


