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Abstract

Background: The field of oncology is at the forefront of advances in artificial intelligence (AI) in health care, providing an
opportunity to examine the early integration of these technologies in clinical research and patient care. Hope that AI will
revolutionize health care delivery and improve clinical outcomes has been accompanied by concerns about the impact of these
technologies on health equity.

Objective: We aimed to conduct a scoping review of the literature to address the question, “What are the current and potential
impacts of AI technologies on health equity in oncology?”

Methods: Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines for scoping reviews, we systematically searched MEDLINE and Embase electronic databases from
January 2000 to August 2021 for records engaging with key concepts of AI, health equity, and oncology. We included all
English-language articles that engaged with the 3 key concepts. Articles were analyzed qualitatively for themes pertaining to the
influence of AI on health equity in oncology.

Results: Of the 14,011 records, 133 (0.95%) identified from our review were included. We identified 3 general themes in the
literature: the use of AI to reduce health care disparities (58/133, 43.6%), concerns surrounding AI technologies and bias (16/133,
12.1%), and the use of AI to examine biological and social determinants of health (55/133, 41.4%). A total of 3% (4/133) of
articles focused on many of these themes.

Conclusions: Our scoping review revealed 3 main themes on the impact of AI on health equity in oncology, which relate to
AI’s ability to help address health disparities, its potential to mitigate or exacerbate bias, and its capability to help elucidate
determinants of health. Gaps in the literature included a lack of discussion of ethical challenges with the application of AI
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technologies in low- and middle-income countries, lack of discussion of problems of bias in AI algorithms, and a lack of justification
for the use of AI technologies over traditional statistical methods to address specific research questions in oncology. Our review
highlights a need to address these gaps to ensure a more equitable integration of AI in cancer research and clinical practice. The
limitations of our study include its exploratory nature, its focus on oncology as opposed to all health care sectors, and its analysis
of solely English-language articles.

(J Med Internet Res 2022;24(11):e39748) doi: 10.2196/39748
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Introduction

Background
Artificial intelligence (AI), a field that aims to create computers
that can achieve human-like understanding and perform tasks
normally associated with human intelligence, is finding
increasing applications in health care and public health [1,2].
Machine learning (ML) is a form of AI that involves algorithms
that draw on big data—data sets whose size go beyond the
capabilities of standard data analysis software—to learn to make
predictions [3]. Oncology has been the focus of significant AI
research and development and serves as an important area to
observe and assess the early integration of AI in health care [4].
AI applications in oncology are expanding to cover a wide range
of uses, from pathology and diagnostic imaging to clinical risk
prediction and treatment planning for several types of cancer
[5-7].

Despite its promise, the use of AI in health care raises several
ethical issues, most notably concerns over bias and the potential
for AI systems to adversely impact health equity. Health equity
has been defined as “the absence of systematic disparities in
health between groups with different levels of underlying social
advantage/disadvantage” [8]. Studies have demonstrated how
the use of biased data sets in training ML algorithms can
exacerbate health inequities [9-11]. For example, Obermeyer
et al [11] revealed how an ML algorithm trained to predict health
risk consistently underestimated the health of Black patients
because of the use of health care cost as a proxy for health.
However, others have argued that AI systems can help illuminate
health inequities and, if used correctly, may help address existing
disparities [12-15]; for example, AI has been used to analyze
search engine results from 54 African nations to guide resource
allocation and improve access to care [15]. It is no wonder that
a recent report from the Wellcome Trust on the ethical, social,
and political challenges of AI in health care was not able to
reach a clear consensus on the impact of AI on health equity
[16]. Moreover, despite cancer being a major focus of AI
research and development, the impact of AI on health equity in
oncology remains underexplored. There is growing literature
characterizing the problems of health disparities in oncology,
which range from issues of access to high-quality care and
research to structural barriers in health promotion and the lack
of awareness of existing health inequities [17]. Given the
expanding use of AI in oncology, there is an urgent need to
assess the interplay between AI technologies and health equity

in oncology to better understand the social and ethical
dimensions surrounding the integration of AI.

Objective
This scoping review of the literature aimed to address the
question, “What are the current and potential impacts of AI
applications on health equity in oncology?” We analyzed the
literature on contemporary AI applications in oncology with a
focus on implications for health equity to identify recurring
themes as well as important gaps and areas for future research.

Methods

Overview
Our scoping review protocol followed previously established
methods [18] with reporting in accordance with the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
framework [19].

Search Strategy
We used a sensitive search strategy to identify a representative
sample of the available literature on the influence of AI on health
equity in oncology. On the basis of a combination of
synonymous searches comprising controlled vocabularies, such
as Medical Subject Headings in MEDLINE or EMTree
descriptors in Embase, and free-text terms using alternative
word spellings and endings for the 3 core concepts: AI
(algorithm, machine learning, artificial intelligence, deep
learning, and convolutional neural networks), equity (health
equality, health inequality, health disparity, and socioeconomic
factors), and oncology (neoplasm, cancer, squamous, and
metaplasia), which informed a comprehensive search strategy
developed by the clinical librarian (AI) with experience in
conducting electronic literature searches on the
recommendations from the review authors (PI, ALL, and BCY).
We searched both databases (MEDLINE and Embase, via the
OVID platform) from January 2000 to August 2021, and a
preliminary search was performed on December 4, 2020. A
detailed description of our search strategy is provided
Multimedia Appendix 1.

Eligibility Criteria and Article Screening
In addition, the web-based search engine Google Scholar was
used to identify additional potentially relevant studies that were
not indexed in bibliographic databases. The bibliographies of
all relevant retrieved articles were also examined to identify
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further relevant studies. To capture the breadth of literature on
AI and health equity in oncology, we did not impose limits
based on study type and included clinical studies—that is,
studies in which AI was applied and evaluated for a specific
clinical intervention, whether it be diagnostic, prognostic,
screening, or treatment planning—commentaries and opinion
articles. Limits were imposed for English-language-only articles,
as it was the main language of proficiency for the research team,
thus allowing for detailed and critical examination of the
selected articles to take place. All identified records from the
electronic search were imported into Covidence systematic
review software (Veritas Health Innovation) for further analysis
and screening.

After duplicate records were removed, 2 reviewers (PI and
WSL) independently screened the titles and abstracts of selected
records using the inclusion and exclusion criteria, which were
defined a priori: records were selected during the title and
abstract screening if they mentioned the core concepts (AI,
health equity, and oncology) or related terms. Abstracts were
excluded if they did not meet the inclusion criteria or if they
involved nonhuman participants. All conflicts were resolved
by a third reviewer (BCY). The list of selected abstracts was
then reassessed by all 3 reviewers (PI, WSL, and BCY) in
full-text reviews to identify records related to the research
question. Records that generated a unanimous consensus were
selected for full-text review, whereas those that did not engage
with the 3 key concepts were excluded. Conflicts were resolved
through discussion between all 3 reviewers. A further full-text
review was conducted by all 3 authors, further applying the
eligibility criteria.

Data Extraction and Analysis
Data extraction and analysis involved both descriptive and
qualitative components. Descriptively, we extracted data on the
year of publication, country of affiliation of the senior author,
type of institution of affiliation of the senior author, type of
study, type of AI, cancer type, and, when available, the cost of
the proposed technology. The country of affiliation of the senior
author was classified as high income, low income, and middle
income following the most recent United Nations classification
[20]. Qualitatively, we analyzed articles for emerging themes
related to health equity in oncology, inherent assumptions, and
gaps in the literature. Thematic analysis followed the steps
outlined by Braun and Clarke, which have been widely applied
in scoping reviews of qualitative research, including in health

care [21], to generate a comprehensive thematic representation
of a given area of research [22]. This process involved
familiarization with the data set of included articles, generation
of initial codes, collation of codes into provisional themes,
review of themes in relation to initial codes, and the entire data
set, followed by definition and naming of each theme to generate
a comprehensive representation of the data. Steps of data
familiarization and initial coding were performed independently
by 3 reviewers (PI, WSL, and BCY); steps of collation, review
of themes, and definition and naming were performed through
discussion between study coauthors. Articles that had
insufficient engagement with 3 key concepts, that is, those that
mentioned the issues of bias or equity but did not elaborate on
specific issues arising from AI, or made insufficient links
between the core concepts, that is, those that mentioned all 3
core concepts but had no further exploration of their
relationships, were excluded.

Results

Selection and Characteristics of Sources of Evidence
Our search yielded 14,011 records. After removing duplicates,
10,468 records were screened, and 133 articles met the inclusion
criteria [4,23-154] (Figure 1). All the records included in our
review were published between 2010 and 2021, with the
majority (124/133, 93.2%) published after 2018 (Table 1).
Although a range of countries, based on the affiliation of the
senior author, were represented in our review (Figure 2), most
were from the United States (90/133, 67.7%). The majority
were from academic centers (121/133, 90.9%), with a minority
from the government, nonprofit organizations, and industry
(Table 1). Approximately half of the records involved clinical
studies (68/133, 51.1%), whereas the rest were epidemiological
studies, commentaries, surveys, and interviews. Most of the
records drew on ML techniques to address their research
question: 12.8% (17/133) records discussed AI in general; 30.8%
(41/133) records did not specify the type of ML used or used
multiple ML algorithms; 47.4% (63/133) used supervised ML
algorithms; and a smaller subset (4/133, 3%; 6/133, 4.5%; and
2/133, 1.5%) used unsupervised ML, natural language
processing, and reinforcement ML, respectively. AI was used
for a wide range of applications and often a combination of
applications, including epidemiological (28/133, 21.1%),
diagnostic (25/133, 18.8%), prognostic (25/133, 18.8%), and
screening (25/133, 18.8%; Table 1).
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Figure 1. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flow diagram for the
identification of studies via databases and registers. AI: artificial intelligence.
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Table 1. Characteristics of studies included in the scoping review (n=133).

Studies, n (%)Study characteristics

Year of publicationa

9 (7.5)2000-2017

13 (9.8)2018

21 (15.8)2019

48 (36.1)2020

42 (31.6)2021

Type of study

62 (46.6)Clinical

40 (30)Epidemiological

15 (11.3)Review

11 (8.3)Commentary

5 (3.8)Survey and interviews

Institution typeb

121 (91)Academic

12 (9)Governmental and nongovernmental organizations

Type of artificial intelligence applicationc

41 (30.8)Screening

41 (30.8)Diagnostic

15 (11.3)Therapeutic

45 (33.8)Prognostic

45 (33.8)Epidemiological

Type of cancer

28 (21.1)General

19 (14.3)Gynecologic

16 (12)Breast

12 (9)Oral

12 (9)Prostate

12 (9)Skin

8 (6)Lung

6 (4.5)Hematologic

4 (3)Brain

4 (3)Liver

3 (2.3)Colorectal

3 (2.3)Esophageal

2 (1.5)Head and neck

2 (1.5)Pancreatic

1 (0.8)Gastrointestinal

1 (0.8)Thyroid

aInclusive.
bOn the basis of affiliation of the senior author.
cTotal numbers exceed 133 due to 26 articles falling into multiple categories.
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Figure 2. Country of affiliation of senior author (map created with MapChart).

AI Applications in Specific Cancer Types
Studies from our review investigated a wide range of cancers,
with general oncological applications being the dominant
category (28/133, 21.1%), followed by gynecologic (19/133,
14.3%), breast (16/133, 12%), oral (12/133, 9%), prostate
(12/133, 9%), and dermatologic cancers (12/133, 9%). Among
the articles on gynecologic cancers, 84% (16/19) were
categorized under theme 1, discussing the use of AI technologies
to address disparities in gynecologic cancer screening (11/16,
70%) [23,84-93], diagnosis (4/16, 25%) [94-97], and treatment
(1/16, 6%) [98]. Of the 16 articles, 15 (94%) developed AI
technologies to target gynecologic cancer disparities in low-
and middle-income countries (LMICs) [84-98], while 1 (6%)
did so for implementation in high-income countries (HICs) [23].
The other 3 (n=19, 16%) articles fell under theme 3, discussing
the use of AI to explore the genetic (1/3, 33%) [99] and social
(2/3, 67%) determinants of health outcomes in gynecologic
cancers [100,101]. Moreover, most of these articles were clinical
studies (14/19, 74%) [84-89,93-95,97-101], 16% (3/19) were
commentaries [23,90,91], 5% (1/19) was an epidemiological
study [96], and 5% (1/19) was a review [92].

Articles examining breast cancer have discussed a broader range
of themes relating to health equity. Of the 16 articles, 6 (38%)
focused on theme 1 [24,102-106], with all 6 looking at the
applications of AI in LMICs. Of the 16 articles, 2 (13%) fell
under theme 2: one discussed the use of AI to mitigate bias
[107], whereas the other raised the issue of how AI might
exacerbate and mitigate biases in breast cancer diagnoses [108].
Of the 16 articles, 7 (44%) fell under theme 3, with 6 (86%)
examining the link between social determinants [109-114] and
1 (14%) examining the link between genetic determinants of
health and breast cancer [115]. Of the 16 articles, 1 (6%) fell
under multiple themes [116]. In addition to touching on a wider
variety of themes than gynecologic cancers, articles examining
breast cancer were also more varied: 44% (7/16) were clinical

studies [24,102,103,110,112-114], 25% (4/16) were
epidemiological studies [104,109,111,115], 25% (4/16) were
reviews [106-108,116], and 6% (1/16) was a commentary [105].

Critical Appraisal Within Sources of Evidence
We identified three main themes related to the impact of AI on
health equity in oncology: (1) the development of AI
technologies to reduce health disparities faced by populations
in both LMICs and HICs; (2) the concern that biased AI
algorithms might exacerbate health inequities counterposed by
the hope that AI technologies might help overcome human
biases; and (3) the power of AI to uncover biological and social
determinants of health in oncology. Themes were further broken
down into subthemes, where applicable. A full list of the articles
categorized by theme can be found in Multimedia Appendices
2-5.

AI and Health Disparities

Overview
The most prominent theme in our analysis, based on the number
of records, was the development of AI technologies to address
health disparities in oncology (58/133, 43.6%). This included
the use of AI to address disparities in access to screening,
diagnostic, and therapeutic technologies for underserved
populations in LMICs (53/133, 39.8%) and minority populations
in HICs (3/133, 2.3%). Of 133 studies, 2 (1.5%) used AI to
address disparities in both LMICs and HICs. A total of 16
articles on this theme were commentaries or reviews discussing
multiple applications in cancer care. Of the 58 articles, 17 (29%)
were described as pilot studies. We further divided this theme
into several subthemes based on the type of AI technology,
including AI applications, to analyze the genomic, histological,
radiographic, image, and demographic data.
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Using AI to Address Disparities in Cancer Screening
and Diagnosis
The literature under this theme highlighted how technologies
could improve the delivery of health care to disadvantaged
populations in both LMICs and HICs. In LMICs, these
technologies were aimed at rectifying 2 main problems:
addressing health care personnel shortages, thereby reducing
the bottleneck effect created by a low ratio of health care
professionals to the populations they serve and overcoming
constraints resulting from limited medical equipment [117]. For
example, point-of-care and smartphone-based technologies for
oral cancer screening in low-resource settings aim to address
the bottleneck effect created by a low number of health care
professionals [118]. One example of AI technology aimed at
addressing constraints from limited medical equipment is a
mobile-based oral cancer image analysis software for use in
rural India [119]. In the absence of a stable internet connection,
the AI algorithm can analyze images directly on a smartphone,
which are then uploaded to a cloud server and assessed by a
remote specialist when internet is available. AI applications to
address health disparities in oncology in HICs was a less
explored topic, with some articles discussing algorithms to
selectively target disadvantaged populations [120,121]. For
instance, given the high prevalence of oral cancer in South Asian
populations [155], 1 study used ML to develop a quantitative
cytology program to selectively improve oral cancer screening
among South Asians living in British Columbia, Canada [120].

The development of AI aimed at reducing health disparities
drew on a range of data, from genomics and imaging to
demographic data, all aimed at reducing demands on
underresourced health care systems and improving the available
medical equipment. One example is an AI image analysis
algorithm for breast cancer detection that improves screening
in underserved and low-resource settings by applying deep
learning to novel ultrasound techniques [105,106,114]. Finally,
AI has also been applied to address disparities in access to
diagnostic pathology; these included examples such as decision
support systems to assist with histopathological diagnosis of
brain tumors in resource-poor settings [122] and image analysis
of cervical lesions [97].

Studies have reported a range of outcomes, with screening and
diagnostic technologies showing a wide variation in sensitivity
(75%-100%), specificity (71%-100%), and accuracy
(61%-100%). Most studies on this topic (43/58, 74%) offered
no comparison between the performance of the proposed
technology and the existing standard of care. When the AI
algorithms were directly compared with the standard of care,
the results varied. Most of the articles noted no difference
between AI algorithms and the standard of care [93,97,123-125],
whereas others observed that the accuracy of AI algorithms was
lower than that of human physicians [85,126]. One study noted
that AI outperformed its human counterpart when detecting and
staging prostate cancer in a higher number of patients [117].

Gaps and Challenges With Using AI to Address Health
Disparities
Although several articles have highlighted how AI might help
address health care shortages in LMICs, a recurrent problem

noted in the literature is the lack of consideration for the
infrastructure and human resources necessary to implement
these AI technologies. To support the use of digital technologies,
and specifically AI, LMICs require both health care providers
trained to use specific technologies and sufficient technological
infrastructure, including buildings where the hardware can be
housed and cables to carry digital signals leading to widespread
and stable internet access; in other words, the performance of
AI algorithms is intertwined with sociotechnical factors
[156,157]. Although HICs may have existing technological
infrastructure to implement AI technologies more readily,
LMICs often lack such infrastructure [158]. Considerations
such as the cost of implementation and the need for maintenance
and ongoing support once implemented, the need for trained
personnel to use AI technologies, and the need for technological
support to allow for the integration of the developed AI
technologies were rarely discussed by articles in our review.
Only select articles mentioned the lack of infrastructural
considerations in the development of AI technologies
[87,117,119,127,128]. For example, Anirvan et al [129] noted
that, “while in developed countries with a well-equipped health
care model in place this may not be a problem, in poor, rural,
and resource-constrained settings, it may aggravate the burdened
health care system in place.”

In addition, our review identified equity issues related to the
cost of AI technologies; such technologies can be costly and
may not be affordable in many LMICs under existing economic
circumstances. Love et al [102] developed an AI device to triage
breast lumps in low-resource settings but noted that “the device
used in this study is more expensive than most LMICs settings
can afford, lower cost devices are becoming more available.”
However, others were able to create technologies that may be
more affordable for LMICs: a gene expression assay costing
US $450 capable of assessing samples for only US $10 [130].

To ensure that AI technologies designed for HICs can be
effectively applied in LMICs, collaboration between these 2
settings is invaluable. Of the 42 studies that were conducted in
LMICs, 11 (26%) were led by research groups from LMICs in
question, and from the remaining 31 records, 27 involved
collaboration with coauthors from the specific LMIC. When
such a collaboration occurred, AI technologies were primarily
designed in HICs and implemented in LMICs. This divide
between the location of development and location of the
implementation of AI in global oncology can pose a barrier to
integration in LMICs due to costs [102] and infrastructural
considerations [88], thereby suggesting a need for greater
attention to co-design, which refers to the involvement of end
users in the design process of AI technologies [159]. Moreover,
it is important to recognize that the inclusion of researchers
from LMICs in the design of AI technologies alone does not
guarantee widespread improvements in health for patients in
these countries. Rather, benefits are often limited to select
partner sites of HICs; therefore, while these technologies may
help address global disparities, they may exacerbate inequities
within LMICs [130]. To ensure a more equitable distribution
of benefits within LMICs, research should extend beyond
specific partner institutions, engaging additional stakeholders
from relevant government and nongovernmental organizations
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to evaluate and implement technologies. However, as noted in
our review, there was only limited involvement of nonacademic
institutions in the articles included in our review.

One additional problem that has been raised surrounding the
use of AI in LMICs is the issue of data colonialism [160], a
practice in which data are extracted from LMICs by institutions
in HICs for the purposes of building algorithms whose benefits
accrue primarily to stakeholders in HICs [161]. Although articles
from our review did not engage directly with these issues, some
did discuss important considerations for what collaboration
means between HICs and LMICs [85,97,130,131]. However,
there was limited acknowledgment of ethical issues arising from
the involvement of LMICs as mere resources for data extraction
and algorithmic training or as an exploratory ground for novel
applications of AI technologies for global health.

AI and Bias

Overview
The second theme identified in our review relates to the issue
of bias. Bias in AI is a widely discussed topic and has the
potential to exacerbate health disparities across different
populations; while bias is an inherent feature of all AI systems,
the main types of bias of ethical concern are those biases arising
in algorithmic development or data sets [162] that can result in
individuals being treated unfairly based on particular
characteristics [163]. In a similar vein, 1 article in our review
distinguished between concepts of desirable and undesirable
biases, whereas desirable biases are those that take group data
into consideration to account for base-rate differences and
undesirable biases are those that are developed based on
inaccurate or incomplete data, which in turn leads to group
discrimination [132]. For instance, total melanoma rates are
higher in men than in women [164]; thus, a desirable bias would
include a training sample for an AI algorithm used to detect
melanoma purposefully biased (desirably) to contain more men
than women, representing the base rates of melanoma incidence.
The authors suggest the use and integration of desirable biases
to promote gender equity in health care while decreasing
undesirable biases.

With rising concerns surrounding bias in AI [9-11], and
conversely, the hope that AI algorithms may be able to help
mitigate bias in human judgment [12,13,15], we expected to
see a much larger number of articles discussing this issue;
however, only 12% (16/133) articles directly engaged with the
theme of bias. These articles fell into 2 main categories: those
that explored how AI algorithms might help mitigate biased
judgments in physicians’clinical practice (5/133, 5%) and those
that argued that AI trained on biased data sets can exacerbate
existing inequities (10/133, 7.5%), while 1 article (1/133, 0.8%)
focused on both subthemes.

The Use of AI to Uncover Bias in Clinical Practice
The use of AI technologies in health care can uncover biases in
both data sets and physicians’ actions. For instance, head and
neck cancers may develop spontaneously or in association with
human papillomavirus (HPV), and characterization of such
cancers as HPV-associated can affect treatment decisions [165].
Patients diagnosed with HPV-positive versus HPV-negative

head and neck cancers have different demographic features,
with younger individuals and individuals with more sexual
partners being overrepresented in the HPV-positive group [166].
D’Souza et al [133] thus used AI to assess the use of clinical
and demographic characteristics as diagnostic predictors of
HPV-positive and HPV-negative head and neck cancers.
However, these authors noted that clinical and demographic
characteristics had only moderate accuracy in predicting HPV
status, leading to a potential bias in treatment if these variables
were used to predict HPV status without further investigation.
In addition, AI can be used to uncover the biases found in data
sets. Howard et al [134] deployed a deep learning model to
assess institutional biases in data submitted to The Cancer
Genome Atlas. They noted that biased digital histological
signatures can stem from specific features of the institutions
from which the data originate. AI algorithms may then provide
prognostic information based on these institution-specific
signatures rather than on the intrinsic histology of the sample.

The Use of AI to Mitigate Bias in Clinical Practice
We also identified articles that discussed the use of AI to
mitigate bias in clinician decision-making. In criticizing the
Fitzpatrick scale in dermatology, Okoji et al [135] argued that
AI-based approaches might lead to a more objective
classification system for skin typing. AI systems can identify
subtle variations that are not visible to the human eye, thereby
leading to more equitable dermatological assessments. However,
a major caveat was the lack of discussion surrounding the
populations used to train these AI algorithms in dermatology.
For instance, several studies included predominantly White
populations or did not specify the racial and ethnic makeup of
the population used to develop their algorithms [124,136,167].
Only 1 article in our review specifically addressed this problem:
to counterbalance the skewed nature of dermatologic data
available for AI training, Pangti et al [137] sought selective
patient populations to train an AI algorithm to detect skin
diseases using locally generated data from India. As medical
AI systems are prone to generating biased results that lead to
disparities between ethnic groups, some authors proposed that
stratification for minority communities that suffer from
underrepresentation in training data sets could help rectify this
bias [108]. Instead of a one-size-fits-all model, AI programs
can be developed to target specific subpopulations. For instance,
Gao and Cui [138] suggested the use of transfer learning, an AI
training technique whereby knowledge gained from training an
AI system on a larger data set, for example, a majority ethnic
group, is transferred to be applied to a smaller data set, such as
a minority ethnic group [138]. This technique attempts to
compensate for missing data from “data-disadvantaged ethnic
groups by leveraging knowledge learned from other groups with
more abundant data” [138]. Yet, as the authors note, data
inequality remains a central issue in training ML algorithms in
multiethnic populations, and differential accuracy in
performance between ethnic groups is an ongoing challenge.

Biased Data Sets and Biased AI
The final category in this theme was articles discussing the use
of biased data sets to train AI algorithms; surprisingly, few
articles discussed this topic. For instance, Khor et al [139] used
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a data set with racial demographics of 53% non-Hispanic White,
22% Hispanic, and 13% Black or African American to develop
a recurrence risk prediction model for adults with prostate
cancer. Even with the explicit inclusion of race, they noted that
the model had “worse performance in minority subgroups
compared to NHW [non-Hispanic White].” Conversely, others
argued that bias in training data sets of AI algorithms may not
always result in decreased generalizability; for example, Gilson
et al [140] suggested that biased gender representation in training
data sets did not lead to decreased generalizability in an
algorithm to predict survival in non–small cell lung cancer.

Gaps in the Discussion of AI and Bias
Overall, engagement with issues of bias resulting from the use
of AI in oncology was limited, an unexpected finding, given
that this concern is widely discussed elsewhere in the literature
on AI ethics and may act as a mechanism through which AI
systems exacerbate health inequities. Our findings suggest that
bias remains an underexplored topic in the literature on AI in
oncology. It is also worth noting that the few articles that
mentioned bias often did so briefly in their limitations section,
usually in reference to how biased data sets might impact the
validity and generalizability of AI algorithms but without further
engagement with how these issues might be mitigated or
addressed by future research.

AI and Determinants of Health Outcomes

Overview
The final theme identified in our review was the use of AI to
investigate the determinants of health outcomes in oncology.
A total of 41.4% (55/133) articles fell under this theme and
were divided into subthemes based on the determinants of health
examined, ranging from biological variables (9/133, 6.8%) to
social determinants of health (43/133, 32.3%), whereas 2.3%
(3/133) articles focused on both themes. This category can be
understood as the use of AI as an extension of traditional
statistical models in clinical and epidemiological research in
oncology.

AI and Biological Determinants of Health
Several articles under this theme applied AI to genomic data to
predict outcomes in patients with cancer. For instance, Li et al
[141] applied AI to genomic analysis across 3 racial groups to
identify the impact of differential gene expression on racial
disparities in cancer prevalence. They found differential gene
expression in several cancers between racial groups, which they
interpreted as supporting a genetic basis for racial differences
in cancer prevalence.

AI and Social Determinants of Health
Although several studies have similarly applied AI in a
reductionist manner, for example, to look for a genetic basis of
health disparities [115,142], others have used AI to examine
additional individual, environmental, and societal factors
contributing to differential health outcomes between populations.
Several articles in our review applied AI to shed light on the
influence of race and socioeconomic status on health outcomes
in oncology. For example, An et al [143] used an ML algorithm
to examine the risk factors for the development of hepatocellular

carcinoma in a Korean cohort, noting that higher income is
associated with a lower risk of developing hepatocellular
carcinoma. Bibault et al [144] applied AI to satellite imagery
to investigate the relationship between socioeconomic status
and cancer prevalence, observing that “satellite features are
highly correlated with individual socioeconomic and health
measures that are linked to cancer prevalence.” Several studies
have suggested that applying AI to demographic data could help
provide more comprehensive risk stratification models in
oncology [112,168,169].

AI has also been used to identify racial disparities in cancer
outcome. Tossas et al [101] used AI to predict populations at
risk of delayed diagnosis of cervical cancer. They noted that
more than half of the patients with a late cancer diagnosis were
African American, findings that they argue can be used to target
cervical cancer screening. Others have also used AI to examine
outcomes following neurosurgery for brain tumors, noting that
minority race is an independent risk factor for an extended
length of stay and increased cost [145,146].

AI has also been applied to examine the influence of rural and
urban residences on cancer prevalence and outcomes. Rural
residences are known to influence access to cancer treatment,
with novel therapies often concentrated in academic centers
located in urban settings [170]. The impact of rural residence
on cancer outcomes was investigated by Zhong et al [112], who
used AI to create personalized prognostication models for early
invasive breast cancer in a Chinese cohort. By incorporating
residential status in their algorithm, the group found that despite
lower rates of breast cancer in rural populations, the associated
mortality risk was significantly higher. Aghdam et al [147] used
the AI algorithm to study access to stereotactic body radiation
therapy for prostate cancer and noted that travel distance did
not prevent access to stereotactic body radiation therapy for
rural patients, suggesting that income and race may be more
important determinants of access to treatment.

Gaps in Using AI to Investigate Determinants of Health
For most studies in our review, there was a lack of justification
for the use of AI and, more specifically, a lack of discussion as
to why particular AI algorithms were chosen and their
advantages over other statistical methods to address a given
research question. AI algorithms are undeniably powerful tools
for analyzing large amounts of data and selecting articles that
mention the benefits of AI over other statistical methods
[143,144,167,168]. However, others have argued that the use
of AI has not yielded better risk prediction models compared
with traditional statistical methods [169]. In their review on the
efficacy of AI as opposed to traditional statistics in medicine,
Rajula et al [145] noted that the latter seemed to be more useful
when the number of participants significantly outweighed the
number of variables in question, whereas the former is more
suitable in fields with a large quantity of data, such as omics or
radiodiagnostics. In light of this discussion, further justification
for the use of AI to address specific research questions in
oncology should be undertaken.
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Discussion

Principal Findings
In this review, we evaluate the literature on the impact of AI on
health equity in oncology. We identified 14,011 records in our
search, of which 133 (0.95%) were substantially engaged with
the core concepts of AI, health equity, and oncology. Our
literature review revealed three main themes related to how AI
technologies can (1) help address health disparities, (2) mitigate
or exacerbate biased decision-making, and (3) elucidate the
biological and social determinants of cancer outcomes. These
themes relate to several issues discussed in the literature on AI
and health equity in oncology and health care.

The first main theme noted in our review is how AI technologies
can help address health disparities, both in LMICs and HICs.
Previous scholarship examining the application of AI in global
oncology has shed light on numerous practical and ethical
challenges that have been discussed in the literature [171]. The
existence of a “digital divide,” often cited as a key barrier to
the implementation of AI technologies in global health, refers
to the inequitable distribution of digital technologies, such as
computational power, technical infrastructure, and data storage,
that is required to use AI technologies [171]. Without
prioritizing investment in the basic infrastructure, such as
appropriate hardware to run AI programs, buildings where such
hardware can be housed, and cables to carry digital signals, the
utility of these technologies in the global health context should
be questioned [172,173]. A number of articles identified in our
review engaged with these voiced concerns, with some
researchers creating technologies with the infrastructural
capacities of specific LMICs in mind and others highlighting
the need for additional infrastructure to support the technology
they developed [87,102,129,130,148].

Another barrier to the implementation of AI technologies in
LMICs discussed in the literature is the lack of generalizability
of algorithms primarily designed in HICs but applied in LMICs
[170]. As some researchers have observed, data used for training
AI algorithms in HICs are “notorious for their lack of diversity,
and concerns have been raised about their applicability even in
their home countries” [172]. These data are often skewed toward
the populations, diseases, and treatments available in countries
training and developing AI technologies, thereby decreasing
their generalizability to populations in LMICs. Articles from
our review addressed this issue, voicing concerns about the
applicability of AI algorithms developed in HICs to LMICs
[108,110,134,143,149-151].

Our review also focused on solutions to the challenges posed
by the integration of AI technologies in a global health context,
which have been proposed elsewhere in the literature, with the
predominant one being greater collaboration between HICs and
LMICs in the development of AI technologies [171-173]. AI
technologies created without appropriate consultation with the
populations they are intended to serve may be highly
inapplicable, impractical, and unethical. For example, treatment
patterns produced by Watson for Oncology, an AI decision
support system trained by data and experts from the Memorial
Sloan Kettering Cancer Center, may be inapplicable to many

LMICs [173]. In previous studies investigating this issue, some
researchers have argued for the co-design of AI technologies,
which requires the involvement of end users—and specifically
marginalized groups—in AI research and development to ensure
the equitable distribution of the benefits of these technologies
[159,174].

To improve collaboration in global health research, others have
proposed that journals publishing research conducted in LMICs
have the responsibility of ensuring that at least one author
involved in the study is from the countries in question [175].
We observed that this standard was met in most studies
conducted in LMICs included in our review (27/31, 87%).
However, further steps are required to ensure meaningful
collaboration with investigators and stakeholders in LMICs,
beyond simple inclusion in authorship, which risks fostering
tokenism. As discussed earlier, this is especially important in
AI research and development focused on addressing global
health inequities in oncology, which needs to engage additional
stakeholders beyond select partner sites to ensure fair
distribution of benefits throughout populations [130,175]. This
lacuna identified by our review reflects a broader lack of global
coordination in AI research to set priorities and ensure fair
distribution of research opportunities and resources, which is
essential to prevent AI research from perpetuating existing
global health inequities.

Finally, a balance must be struck between the global
dissemination of existing diagnostic and treatment technologies
and the development of new technologies for global health. Our
review revealed how pilot studies of AI in global oncology are
particularly common. Although pilot studies can provide an
important starting point, if not followed by a robust evaluation
to measure the clinical effectiveness of these technologies, which
occurs in only a minority of cases [176], these applications will
remain an ineffective means of addressing global health
disparities in cancer care. Moreover, it has been noted that most
cancer deaths occurring in LMICs are due to a lack of access
to already present and cost-effective diagnostic and treatment
strategies, as opposed to the latest cutting-edge technology
[177,178]. Exploratory research into novel technologies in global
oncology may detract from the need to develop cost-effective
ways to disseminate existing evidence-based technologies in
cancer care.

The second major theme noted in our review was the use of
biased AI algorithms in clinical decision-making, which may
impact the quality and accuracy of decisions and consequently
lead to adverse health outcomes for patients [179]. One theme
identified in our review was the use of AI algorithms to
standardize and reduce bias in clinical decision-making in
oncology. One high-profile example is Watson for Oncology,
an AI decision support system that has been proposed as a
method of standardizing clinical decisions. Watson for Oncology
uses natural language processing to provide treatment
recommendations in oncology based on the latest scientific
literature. Select studies have shown high concordance between
treatment plans produced by Watson for Oncology and
recommendations from multidisciplinary tumor boards
[180-182]. Previous criticisms of this technology have pointed
toward problems using concordance to assess the capability of
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AI technologies, such as Watson for Oncology, because it simply
assesses its ability to reproduce specific expert knowledge while
not evaluating the validity of applying this knowledge in
different contexts [183,184]. Treatment recommendations are
based on the current literature as opposed to novel findings
produced by the AI system, and preexisting biases found in data
sets will be exacerbated rather than mitigated in an automation
process. As Murphy et al [185] note, concerns regarding implicit
bias becoming embedded in AI algorithms have been widely
voiced. The authors noted that implicit biases often reflect
preexisting societal values that may exacerbate already-existing
health inequities for marginalized populations. Moreover,
concerns surrounding lack of transparency in how Watson for
Oncology integrates data from heterogeneous sources to arrive
at decisions, including the influence of implicit value judgments
found in different oncology guidelines, require further attention,
specifically focusing on how this might impact the application
of Watson for Oncology in different global contexts and its
effects on health equity.

Despite the pressing nature of these concerns, the paucity of
studies on biased AI algorithms in our search was surprising.
Many AI applications identified in our study were trained on
selecting data sets from single institutions, creating a high risk
of bias, which should be a pressing concern, given that
algorithmic bias can exacerbate health inequities [140,186]. A
prominent cause of bias is the lack of consideration of the
different contexts in which an algorithm is developed and
subsequently deployed. Academics weary of these concerns
have argued that a generalizable AI model should be developed
from data reflecting the diversity of patients on whom it will
be applied, yet “most health organizations lack the data
infrastructure required to collect the data needed to optimally
train these algorithms” [186,187]. Patterns detected when these
algorithms are trained on majority groups may result in
decreased accuracy when applied to minority groups [188]. For
instance, most AI algorithms for diagnosing melanoma are
trained on white-skinned individuals and thus may underperform
in diagnosing lesions on persons of color [189]. Panch et al
[186] note that solutions to these contextual problems involve
establishing the appropriate context for which the algorithms
will be used. Our literature review identified some proposed
solutions, such as the application of transfer learning to improve
outcomes for populations with data sparsity; stratification of
groups based on race and ethnicity to mitigate bias; and the
need for multidisciplinary collaboration between clinicians,
engineers, social scientists, and ethicists to aid in the contextual
design and development of AI algorithms to mitigate biases
[108,135,138,190].

The final theme identified in our review was the use of AI to
examine determinants of health outcomes in oncology. Social
determinants of health such as education, neighborhood, social
community, and socioeconomic status impact health outcomes
in oncology [191], and the complex interactions between these
variables suggest a potential area for AI applications. Several
studies in our review applied AI to analyze large volumes of
data to help elucidate the social determinants of cancer
outcomes. The identification of social determinants of health

can help support more comprehensive strategies to improve
health equity in underserved populations [192].

However, as noted by several researchers comparing the use of
AI with traditional statistical methods to analyze large amounts
of data, it is not always clear what benefits the former provides
over the latter to investigate the social determinants of health
[145]. A systematic review compared the performance of logistic
regression and ML in clinical prediction models and found no
evidence that ML performs better than logistic regression [193].
Moreover, traditional statistical models are often easier to
interpret than complex, multilayered ML models. Trade-offs
between accuracy and transparency have been widely discussed
in the literature on AI [194,195] and should be considered when
deciding the method of analysis for a given research question.
Appropriate and sufficient justification for the use of ML models
in clinical and epidemiological oncology research is imperative.

Ethical concerns regarding the use of AI to analyze large
amounts of health care data have also been raised in the
literature. In establishing a research ethics framework for health
care ML, McCraden et al [196,197] note how AI can influence
2 phases of health care research: hypothesis generation and
hypothesis testing. AI research focused on hypothesis generation
applies computational techniques to large data sets to explore
models with potential clinical applicability [197]. This type of
exploratory research raises important ethical issues, such as the
protection of data privacy and tensions between enabling ready
access to data and the requirements of informed consent [197].
Most articles from our review under this theme fit into the
hypothesis generation phase and used AI for exploratory
research on the determinants of health outcomes in oncology.
In our review, the discussion of ethical issues in data privacy
versus the need to enable ready access to data was sparse,
despite the importance of such considerations in exploratory
AI research on social determinants of health, which often
requires large amounts of personal health information and other
sensitive data. Moreover, as previously emphasized by advocates
for equity in AI, exploratory AI research also entails an ethical
commitment to ensure representative data sets, including
minorities and “data-impoverished” groups, to avoid biased and
misleading findings [198]. Few articles from our review
addressed these ethical concerns [91,128,199-201].

Finally, it is important to note that the use of AI in health care
research lends itself to the analysis of quantitative and
categorical data, limiting its ability to understand and explain
many social and health-related phenomena. The use of race and
other contested social categories in AI algorithms often relies
on third-party classification in a way that risks misrepresentation
[202]. Therefore, although AI may offer insights into the social
determinants of health in oncology, such tools do not obviate
the need for other methods, including qualitative methods, in
cancer research.

Limitations
Our study has several limitations. First, the application of AI
in oncology is a rapidly evolving field, and as such, the themes
and gaps identified in our scoping review are necessarily
provisional. To help mitigate this, we conducted a secondary
search 9 months after our initial search, which yielded an
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additional 949 abstracts, of which 21 (2.2%) met the inclusion
criteria. Despite this rapid evolution, our findings provide
insights into the current state of the literature on the impact of
AI on health equity in oncology and may also provide a lens
for the early integration of AI technologies in health care more
generally. Second, we focused our search strategy in the field
of oncology and contemporary cancer research; while the themes
and gaps highlighted may be illustrative of more general health
equity issues arising from the integration of novel technologies
in health care at large, there are likely additional themes
pertaining to other areas of health care not covered by our
review. Finally, our search was limited to records written in
English; we were unable to include articles published in other
languages, which may bias our findings toward research
conducted in and themes prevalent in the English-speaking
world; further work could involve a team of multilingual
researchers to shed light on themes from non–English-language
research literature.

Conclusions
In conclusion, we conducted a scoping review to characterize
and assess the literature on the impact of AI on health equity in
oncology. Our analysis identified 3 general themes related to
how AI can be used to address health disparities, how bias might
be mitigated or exacerbated by AI algorithms, and how AI can
help investigate the social determinants of health. Our review
also identified several gaps and areas in need of further research.
These include fostering greater collaboration between HICs and
LMICs in the design of AI technologies, ensuring representation
in training data sets, considering the context of algorithmic
development and application to mitigate bias, and recognizing
ethical and methodological issues arising from the use of AI to
investigate the determinants of cancer outcomes. As AI
applications in oncology continue to expand, attention to these
issues will be critical to prevent harm and ensure equitable
distribution of the potential benefits of these technologies.
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