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We explore the impact of awareness on epidemic spreading through a population represented by a

scale-free network. Using a network mean-field approach, a mathematical model for epidemic

spreading with awareness reactions is proposed and analyzed. We focus on the role of three forms

of awareness including local, global, and contact awareness. By theoretical analysis and simulation,

we show that the global awareness cannot decrease the likelihood of an epidemic outbreak while

both the local awareness and the contact awareness can. Also, the influence degree of the local

awareness on disease dynamics is closely related with the contact awareness. VC 2012 American

Institute of Physics. [doi:10.1063/1.3673573]

The interplay between awareness and epidemic dynamics
in networks has recently achieved much attention. The
human responses to disease outbreaks can result in the
reduction of susceptibility to infection, which in turn, can
affect epidemic dynamics. So an epidemic model should
include such factors. This issue has been studied from the
perspective of awareness reactions. However, the impact
of individual awareness is not entirely understood thus
far because of its variety and complexity. In this work,
we build a continuous mean-field (MF) model to study
the impact of the three forms of awareness on the epi-
demic spreading in a finite scale-free (SF) network: con-
tact awareness that increases with individual contact
number; local awareness that increases with the fraction
of infected contacts; and global awareness that increases
with the overall disease prevalence. Theoretical analysis
and simulation shows that the effect of these different
types of awareness can be clearly classified. Both the con-
tact awareness and the local awareness can raise the epi-
demic threshold, while the global awareness can only
decrease the epidemic prevalence. These results also tell
us that individual awareness contributes toward the inhi-
bition of epidemic transmission.

I. INTRODUCTION

During the outbreak of influenza A (H1N1) in 2009, the

effect on human behaviors (such as staying at home and

wearing surgical face masks) not only due to public meas-

ures but also due to individual responses was widely docu-

mented.1 When aware of an infectious disease outbreak,

people will sometimes change their behavior in order to

reduce the risk of infection.2 Interestingly, the change of

individual behaviors in the presence of an infectious patho-

gen also has an effect on the epidemic spreading.

Recently, there has been growing interest in investigat-

ing ways to model aspects of human responses to disease

outbreaks in epidemiological models including network

epidemic models3–5 and non-network epidemic models.6–8

In general, individual behaviors in the presence of an infec-

tious pathogen respond to the information obtained from the

general circumstances. Following Funk et al.,4 such infor-

mation may come from the social or spatial neighborhood,

which is called local (available) information. Another

source of information is from the media (e.g., the informa-

tion published by public health authorities), called global

(available) information.

In modeling the effect of human behavior on epidemic

transmission, apart from the sources of information described

above, the effect of behavioral changes is also important. In

light of the classification method proposed in Ref. 4, the

behavioral changes must affect either: (1) the disease state

(e.g., healthy state or vaccinated state) of the individual; (2)

the infection rate9–11 or the recovery rate (may including the

contact rate7); or (4) the contact network structure relevant

for the spread of disease.3,12–15 In this work, we only consider

the effect of individual responses on the infection rate. So,

we suppose that the network structure is considered not to

depend on the infection level.11 Although this restriction may

limit the realism of our model, it allows us to focus on the

information effect for a mild infectious disease, e.g., flu. It is

only under an extremely serious epidemic situation that the

measures of strong quarantine or isolation would be imple-

mented,16 which will induce changes in the social network.

For simplicity, we call the change of individual behavior

to infection individual awareness.6,9 Awareness causes indi-

viduals to keep social distance9 (by wearing protective

masks, vaccination, or more creative precautions), which

(potentially) results in the reduction of individual
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susceptibility. The study of this issue may be classified into

the two kinds of perspectives

(1) The spread of awareness (or the information transmission),

which assumes that the information (generally from an in-

fectious node) undergoes a generation process and a trans-

mission process from individual to individual. In order to

study the effect of information transmission, two separate

networks can be used for modeling the epidemic spreading

and the information spreading, respectively.9 Another

approach is to classify a population with respect to informa-

tion.5,6,8 In general, the local spread of awareness can stop

a disease from spreading,5,9 while the global transmission

of information can only decrease the prevalence.5

(2) The reaction of awareness (or the risk perception), which

means that an individual promptly obtains relatively

accurate information from the current circumstances and

responses to the epidemics. In the study of this, the effect

of risk perception can be expressed by a function of

information. In Refs. 10 and 11, an exponential function

of local information is used to study the transition of the

level of precautionary measures, where the network

structure has important impact on the existence of a

value of perception that stops the epidemics.10

In the present work, we investigate this issue from the

second perspective in the heterogenous SF network, which

exhibits a broad degree distribution.17 Different from the

previous work (see Refs. 10 and 11), we consider many types

of information, which include both local information and

global information. One advantage of this approach is that it

allows us to study the difference between local information

and global information.4 Besides these prevalence-based

information, we also consider one kind of belief-based infor-

mation4 which is related to individual nodes’ contact num-

bers called contact information. This accounts for awareness

of a higher risk when a node possesses a larger contact num-

ber. The study of multiple information complies with the

variety and complexity of information in reality.5 The

assumption of the static network allows us to focus on the

impact of such multiple information=awareness on the epi-

demic spreading.

The rest of this paper is organized as follows: In Sec. II,

we propose an SIS (susceptible-infected-susceptible) model

with awareness reactions; then in Sec. III, we analyze the

conditions for epidemic spreading and determine the epi-

demic threshold; in Sec. IV, we present numerical simula-

tions and compare these to the theoretical model and

investigate the impact of both the local awareness and the

global awareness on the epidemic prevalence (i.e., the final

epidemic size); and finally, in Sec. V, we conclude the paper

and give some discussion.

II. THE MODEL

The epidemics we study spread on scale-free networks

of N nodes17–19 with degree k distributed according to P(k),

where P(k) is the fraction of nodes with connectivity k. Since

we restrict our attention to the impact of multiple awareness

(or information) on the epidemic spreading, it is assumed

that the connectivity of nodes in networks is uncorrelated,

which make the following discussion simpler. The infection

rate, the rate that susceptible individuals are infected by an

infectious neighbor, is always related to susceptibility and

infectivity of individuals.20–22 To characterize this, we use

the two concepts proposed by Olinky and Stone,23 the admis-

sion rate (characterizing susceptibility) and the transmission

rate (characterizing infectivity). The admission rate Ai is the

rate that susceptible node i would actually admit an infection

through an edge connected to an infected node. The trans-

mission rate Ti is the rate that infected node i would actually

transmit an infection through an edge connected to a suscep-

tible node.

If we denote by qij, the infection rate along the edge

between i and j, then, we have23,24

qij ¼
AiTj; i is susceptible and j is infectious;

TiAj; i is infectious and j is susceptible;

0; otherwise:

8

<

:

(1)

In cases of no awareness, it is usually assumed Ti¼ k and

Ai¼ 1. Here, we still assume that Ti¼ k, but the admission

rate Ai is coupled with individual awareness or information.

Considering the complexity of individual awareness or

information,5 we introduce three forms of awareness. The

first is dependent of individual contact number (i.e., contact

information). In social networks, the contact number can be

denoted by the node degree. Intuitively, the larger the con-

tact number, the higher the risk of being infected. So the

reaction to contact information (this should be belief-based

information4) is called the contact awareness. The contact

awareness, therefore, can reduce individual susceptibility

and affect the admission rate, represented by w(ki) as a multi-

plicative factor9 in the expression for Ai. Obviously, w(x) is a

decreasing function of x.

On the other hand, the conscious behavior of individuals

will also change in reaction to epidemic information and

affect the epidemic spreading in turn. Such information

includes both the local infection density .i in node i’s

vicinity=neighborhood (i.e., the local information10,11) and

the global infection density q in a whole community2 (i.e.,

the global information). Hence, the other two kinds of aware-

ness are called local awareness and global awareness corre-

sponding to the local information and the global information,

respectively.

Similar to the contact awareness, both the local aware-

ness and the global awareness may impact the admission rate

with two multiplicative factors. Herein, we first consider a

general scenario. If we denote the epidemic information by

x, then x ¼ .i for the local information and x¼ q for the

global information. We introduce a function of x, /(x), as a

multiplicative factor of Ai to characterize the impact of infor-

mation on the admission rate of node i, which satisfies

0�/(x)� 1, /(0)¼ 1, and /0(x)< 0.

In Bagnoli et al.,10 /ðxÞ ¼ e�Jxh . Here, J stands for the

level of precaution measures adopted and 0� h� 1 denotes

the use of special prophylaxis. And x cannot only represent

the local information (denoted by x1) but also the global

information (denoted by x2). So, in the literature,10
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Ai ¼ /ðx1Þ/ðx2Þ ¼ exp½�ðJxa1 þ x2Þ�. Although this form is

interesting and frequently used,7 the authors obtained the

epidemic threshold only for a special case: x2¼ constant.10

In this work, we take another frequently used form

/(x)¼ 1� cx where constant c is referred as the impact

strength of the epidemic information on the admission rate

and 0� c� 1.

Based on the above analysis, we have a specific expres-

sion of Ai for node i (here, Ai has been regarded as a function

of the entire network) as follows:

Ai ¼ wðkiÞ/ðx1Þ/ðx2Þ ¼ wðkiÞð1� a.iÞð1� bqÞ: (2)

where c¼ a for the local awareness and c¼b for the global

awareness, respectively. In other words,

Ti ¼ k; Ai ¼ wðkiÞ 1� a
kiinf

ki

 !

½1� bqðtÞ�;

where kiinf is the total number of node i’s infected neighbors.

We further suppose that the definition of (Ti, Ai) (2) holds for

all nodes in the network. That is, all nodes can uniformly

change their behavior in response to infection, which may be

regarded as a kind of statistically synchronized behavior25

and can be easily revised for more realistic cases. For exam-

ple, we can assume that Eq. (2) holds for a portion (but not

all) of the nodes in the network, which has been investigated

from the perceptive of information transmission.5,6

It is worth noting that Olinky and Stone23 analyzed the

case Ti¼ T(ki) and Ai¼A(ki) and found that such degree-

correlated infection rates can decrease the potential of an epi-

demic outbreak. In our work, Ai is dynamical, not only de-

pendent of connectivity structures (this point is not included

in the work10,11) but also coupled with epidemic information.

In this context, we use SIS dynamics to investigate the

effect of awareness. In our model, each individual exists

only in two discrete states: S-susceptible and I-infected. At

each time step, each susceptible (healthy) node i is infected

with rate qij if it is contacted by one infected individual j;

and an infected node is cured and becomes susceptible again

with rate c (i.e., the recovery rate).

Let H(t) be the probability of a randomly selected link

pointing to an infected individual and qk(t) be the infection

density among nodes with degree k at time step t, then, we

have26

HðtÞ ¼

P

k kPðkÞqkðtÞ
P

k kPðkÞ
¼

P

k kPðkÞqkðtÞ

hki
: (3)

The probability that a node with degree k has exactly s

infected neighbors is given by the binomial distribution27

Bðk; sÞ ¼
k

s

� �

½HðtÞ�s½1�HðtÞ�k�s: (4)

If a susceptible node with degree k has exactly s (s� k)

infected neighbors, then the probability of infection is

wðsÞ :¼ 1� f1� kwðkÞð1� a s
k
Þ½1� bqðtÞ�gs, where we

adopt the nonlinear contagion scheme.27 Taking the expecta-

tion of w(s) with respect to the above defined binomial distri-

bution indicates that a susceptible node with degree k is

infected with probability

ProbðS ! IÞ ffi E½wðsÞ� ¼ 1�
X

s

Bðk; sÞ

�

�

1� kwðkÞ

�

1�
as

k

�

½1� bqðtÞ�

�s

: (5)

Then, the discrete-time epidemic process can be described as

follows:

qkðtþ 1Þ ¼ ð1� cÞqkðtÞ þ ½1� qkðtÞ�E½wðsÞ�: (6)

Let us consider the epidemic spreading as a continuous-time

process28 and assume that in the infinitesimal interval

(t, tþ h] (Ref. 29), a susceptible individual is infected by an

infectious one with probability khwðkÞð1� a s
k
Þ½1� bqðtÞ�

þoðhÞ, and an infected individual can recover to be healthy

with probability chþ o(h). Then, we have

qkðtþ hÞ � qkðtÞ ¼ �chqk þ oðhÞ þ ð1� qkÞ

1�
X

s

Bðk; sÞ½1� khwðkÞ 1�
as

k

� �

ð1� bqÞ þ oðhÞ�s
( )

:

(7)

Furthermore, we have

qkðtþ hÞ � qkðtÞ ¼ �chqk þ f1�
X

s

Bðk; sÞHsðs; kÞg

� ð1� qkÞ þ oðhÞ; (8)

where H(s,k)¼ 1� khw(k)(1� as=k)(1� bq). The detailed

proof for Eq. (8) can be found in Appendix. Notice that

lim
h!0

1�
P

s Bðk; sÞH
sðs; kÞ

h

¼ lim
h!0

X

s

Bðk; sÞsHs�1ðs; kÞkwðkÞð1� as=kÞð1� bqÞ

¼kwðkÞð1� bqÞ
X

s

Bðk; sÞsð1� as=kÞ

¼kwðkÞð1� bqÞfE½s� �
a

k
E½s2�g

¼kkwðkÞð1� aHÞð1� bqÞH� kawðkÞð1� bqÞHð1�HÞ:

Thus, dividing by h and letting h ! 0 in Eq. (8), one can get

the following mean-field rate equations:26

d

dt
qkðtÞ ¼ � cqk þ kkwðkÞð1� qkÞHð1� aHÞð1� bqÞ

� kawðkÞð1� qkÞð1� bqÞHð1�HÞ: (9)

In the derivation of Eq. (9), the first=second moment of the

binomial distribution Eq. (4) E½s� ¼ kH and E½s2� ¼ k2H2

þ kH� kH2 is used. The fraction of infected nodes over the

entire network is such that26

qðtÞ ¼
X

k

PðkÞqkðtÞ: (10)

It is noticed that without loss of generality, we can set c¼ 1

in model (9). Hence, unless otherwise specified, we assume

the recovery rate c¼ 1.
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It is interesting to consider a special form in model (9).

When a¼ b¼ 0 and w(k)¼ 1, the model is

d

dt
qkðtÞ ¼ �qk þ kkð1� qkÞH:

This model is just the networked SIS model proposed by

Pastor-Satorrás and Vespignani.26

III. EPIDEMIC THRESHOLD

A main feature of the infection which we want to esti-

mate is the epidemic threshold for transmission rate kc. If

k� kc, the modeled disease dies out, otherwise, the disease

spreads. The epidemic threshold is actually equivalent to a

critical point in a disequilibrium phase transition.26 A widely

used method to analyze the epidemic threshold is to establish

the existence of the positive stationary state: as was intro-

duced by Pastor-Satorras and Vespignani.26,30 However, this

approach seems to be not suitable for our model. Herein, we

make use of another approach, i.e., to determine the local

stability of the infection-free equilibrium, which is similar to

deriving the basic reproduction number in mixed popula-

tions.31,32 For the sake of the following analysis, we first

present a lemma.

Lemma 1: For the real matrix A¼ [aij] [ Rn�n where

aij¼ dijtiþrilj and dij is the Kronecker symbol, we have that

the determinant of A is such that

det½A� ¼ t1t2 � � � tn þ r1l1t2 � � � tn þ t1r2l2t3 � � � tn

þ � � � þ t1t2 � � � tn�1rnln:

This lemma is easily proved by the basic determinant trans-

formations and can be justified by some special cases. For

example, we consider the case ri¼ 0, i¼ 1,…,n. It is noticed

that at this time, matrix A is a diagonal matrix, then we have

that det[A]¼ t1t2,…,tn, which accords with the conclusion

obtained from Lemma 1. Also, it can be seen that det[A�lI]

can be directly computed by Lemma 1 (where I is a unit

matrix). Hence, the eigenvalues of matrix A can be solved by

this Lemma.

In model (9), we may assume that k¼ 1,2,…,n since we

consider a finite population.18 Upon omitting higher powers

of qk, we can get the linear differential equations

d

dt
qkðtÞ ¼ �qk þ kðk � aÞwðkÞH;

which implies that the Jacobian matrix of Eq. (9) is

J0 ¼

r1l1 � 1 r1l2 r1l3 � � � r1ln
r2l1 r2l2 � 1 r2l3 � � � r2ln
r3l1 r3l2 r3l3 � 1 � � � r3ln
� � � � � � � � � � � �
rnp1 rnl2 rnl3 � � � rnln � 1

2

6

6

6

6

4

3

7

7

7

7

5

;

where rk:¼ k (k� a)w(k) and lk:¼ kP(k)=hki.
Obviously, the local stability of the infection-free equi-

librium is determined by the stability of matrix J0. We now

compute the eigenvalues of matrix J0 by Lemma 1. Let,

J0� lI¼M¼ (mij). If we define rk,lk as stated above and

vk¼�1� l, then mij¼ dijtiþ rilj. According to Lemma 1,

we have

det½J0 � lI� ¼ ð�1� lÞn�1 �1� lþ
X

n

k¼1

rklk

 !

:

Upon solving equation det[J0� lI]¼ 0, one can obtain n

eigenvalues: n� 1 eigenvalues equal to �1 (that is,

l1¼ ��� ¼ln� 1¼�1) and the nth eigenvalue

ln ¼
X

n

k¼1

rklk � 1:

Apparently, ln is the maximal eigenvalue. So the infection-

free equilibrium is locally stable if and only if ln< 0 which

leads to

k > kc ¼
hki

hk2wðkÞi � ahkwðkÞi
: (11)

This shows that the dependence of an epidemic outbreak on

both contact awareness and local awareness, while global

awareness has no influence whatsoever.

IV. SIMULATIONS

In Sec. III, we obtained the condition for an epidemic

outbreak under the three forms of awareness. We know that

both the contact awareness and the local awareness play an

important role in determining whether an infectious disease

prevails in a population. On the other hand, the epidemic

threshold is independent of the global awareness. In this sec-

tion, we demonstrate these theoretical results using Monte-

Carlo stochastic simulations (SS).

Simulations of SIS dynamics are performed using a

Barabási-Albert (BA) scale-free network17 with the degree

distribution P(k)� k�3 (see Fig. 1) and the network size

N¼ 10 000. All simulations begin with the initial state where

1% of the nodes are infected and iterate the rules of the SIS

model with parallel updating until convergence to a steady

state, either absorbing or active. The SIS dynamics are

totally evolved for 1000 time steps. As the steady state is a

dynamical equilibrium, we make time average to reduce the

fluctuation of q(t). So, we let q ¼ 1
T

Pt0�1þT
t¼t0

qðtÞ and take

T¼ 50 (that is, t0¼ 951). To minimise random fluctuation

caused by the initial conditions, we make average of q over

50 realizations of different initial infectious nodes.

In addition, since w(k) is a decreasing function of k, we

consider the contact awareness with a form w(k)¼ k�b,

where b	 0. Upon substituting it into Eq. (11), we have

kc ¼
hki

hk2�bi � ahk1�bi
: (12)

We mainly examine the dependence of kc on the parameters

a and b. In the network with a broad distribution, the ratio

hk2i=hki is very large.26 Hence, when b¼ 0, the effect

induced by the local awareness is very small. In order to

observe the relation between the epidemic threshold kc and
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parameters a, b clearly, we consider the two scaling

schemes: b¼ 0.3 and b¼ 0.8.

We first consider the case b¼ 0.3. In this case,

hk2�bi=hki is still very large and the impact of the fluctuation

of the degree distribution on the epidemic threshold is

strong. The epidemic threshold kc in stochastic simulations

is measured by the following way. Let, k increase systemati-

cally by 0.01 in the interval [0, 1] and we compute q for

each k. When q> 0.0005 at k1, we set kc¼ k1� 0.01.

In Fig. 2, we illustrate the change of kc with respect to a

and b both for stochastic simulations (for short, SS denoted

by solid symbol) and also for mean-field (MF, denoted

by open symbol) predictions Eq. (12). It is clear that the

epidemic threshold kc is unchanged for different b; while, it

increases with a. These results are in accordance with the

mean-field prediction Eq. (12). The discrepancy between

these can also be shown in our simulations. We can see that

the simulation results are slightly larger than the expected

values obtained from Eq. (12), which is likely to be due to a

distribution cutoff effect on a finite size network.23

Next, we consider the case b¼ 0.8. This is also a typical

case, which represents for the weak impact of the fluctuation

of the degree distribution. According to our simulations in

Fig. 3, we also find that kc is almost unchanged for different

b; while, it still increases with a. The difference with the

case b¼ 0.3 is that the epidemic threshold has a broad range.

This phenomenon indicates the influence degree of local

awareness on the epidemic threshold is related with the con-

tact awareness. The contact awareness seems to facilitate the

effect of local awareness on the epidemic threshold.

From Figs. 2 and 3, one can see that the scaling scheme

b has significant effect on the value of kc. We also investi-

gate the change of kc with b in Fig. 4 under a¼ 0.6 and

FIG. 1. (Color online) The degree distribution of a BA scale-free network

used in our simulations. This plot shows that P(k)� k�3.

FIG. 2. (Color online) Plot of kc versus a and b with w(k)¼ k�0.3. When

considering kc versus a, we set b¼ 0.3; when considering kc versus b, we

set a¼ 0.6. “SS” means stochastic simulations and “MF” means mean-field

predictions. All stochastic simulations are performed on the same BA scale-

free networks and mean-field predictions are obtained by numerically inte-

grating the ordinary differential Eq. (9), where the degree distribution P(k)

is obtained from the stochastic simulation.

FIG. 3. (Color online) Plot of kc versus a and b with w(k)¼ k�0.8. When

considering kc versus a, we set b¼ 0.3; when considering kc versus b, we

set a¼ 0.6. All the simulations are performed on the same BA scale-free

networks as illustrated in Fig. 2.

FIG. 4. (Color online) Plot of kc versus b. We use parameters a¼ 0.6 and

b¼ 0.3. All the simulations are performed on the same BA scale-free net-

works as illustrated in Fig. 2.
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b¼ 0.3. In this plot, we do not find the epidemic threshold kc
corresponding to the case b¼ 1. This is the reason that

kc¼hki=(hki� 0.6)> 1, which exceeds the range of k. All

these results show that simulations agree well with theoreti-

cal predictions.

The threshold formula Eq. (11) clearly shows us that the

local awareness has stronger impact on disease dynamics

than the global awareness. Although the global awareness

has no effect on the epidemic threshold and one cannot

decrease the likelihood of an epidemic outbreak through

increasing the global awareness (or b), it can decrease the

epidemic prevalence. This is in accordance with the previous

result9 and can be verified by simulations. Simulations in

Fig. 5 shows that the final epidemic size q decreases with b

regardless of k¼ 0.2 or k¼ 0.4. Fig. 5 also shows that q

decreases with a. In general, the rate of change of final epi-

demic size with respect to a, @q@a � 0 and the rate of change of

final epidemic size with respect to b, @q@b � 0.

We further find that the profiles in Fig. 5 are almost

straight lines and for the same k the slope of line q vs a is

smaller than one of line q vs b, which can be clearly

observed since the two lines go across the same point (at this

case, a¼b¼ 0). So, one can get that the impact of the local

awareness on the epidemic prevalence is more stronger in

our model. In order to completely investigate the discrep-

ancy between the local awareness and the global awareness

about their influence degrees on the epidemic prevalence, we

would like to propose a quantity to characterize this. Such

quantity is defined as follows:

DF :¼
@q

@a
�
@q

@b
; (13)

which is a simple subtraction of two rates of change of final

epidemic size. Since @q
@a � 0 and @q

@b � 0, the inequality

DF< 0 shows that the impact of local awareness=information

is greater; otherwise, DF> 0 indicates that the impact of

global awareness is greater. As an illustration, from Fig. 5,

we can find that DF< 0 when a¼ b¼ 0.

In order to estimate the value of DF in stochastic simula-

tions, we take an approximate calculation

DFða; bÞ ’
1

e
½qðaþ e; bÞ � qða; bþ eÞ�:

From Fig. 6, one can observe the range of variation of DF

with respect to two parameters (a, b) in the model. Through

this simulation, we confirm that DF< 0 and find its absolute

value jDFj> 0.01. These tell us that the local awareness has

a stronger impact on the epidemic prevalence than the global

awareness.

In the final part of this section, we examine the accuracy

of model (9) for prediction of the stationary prevalence. To

this end, we performed one thousands of stochastic simula-

tions, in which k is replaced with kh and c is replaced with ch.

Fig. 7 shows there is a small discrepancy between the

mean-field theory and stochastic simulations. Stochastic

FIG. 5. (Color online) The effect of parameter a and b on the final epidemic

size q for k¼ 0.2 and k¼ 0.4 under b¼ 0. All the simulations are performed

on the same BA scale-free networks.

FIG. 6. (Color online) The variation of DF with respect to a and b. Parame-

ters: e¼ 0.01, k¼ 0.2 and b¼ 0.

FIG. 7. (Color online) Comparison of a mean-field prediction Eq. (9) and

the average of 1000 runs of stochastic simulations for the SIS model on the

same BA scale-free network with a¼ 0.6, b¼ 0.3, k¼ 0.05, c¼ 0.1, b¼ 0,

N¼ 10 000, hki¼ 6. In stochastic simulations, we take h¼ 0.1, h¼ 0.5, and

h¼ 1, respectively. This plot displays different time ranges: (a) t [ [0,1000];

(b) t [ [0,50]; (c) t [ [950,1000].
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simulations are consistently lower than mean field calcula-

tions (see Figs. 7(a) and (b)). As we know, the smaller

(larger) the value of kc(q), the more serious the epidemic

disease. Hence, this is consistent to the results shown in

Figs. 2, 3, and 4. In addition, we also see that the mean-field

approach is still efficient, especially for small h (see

Fig. 7(c)).

V. CONCLUSIONS AND DISCUSSIONS

We have presented an analytical framework for studying

the impact of three forms of epidemiological awareness on

disease dynamics, i.e., contact awareness which increases

with individual contact number, local awareness which

increases with the fraction of infected contacts, and global

awareness which increases with the overall disease preva-

lence. All three forms of awareness can reduce susceptibility

to infection. Theoretical analysis and computational simula-

tions indicate that both the contact awareness and the local

awareness can raise the epidemic threshold to control

epidemic outbreak, while the global awareness only decrease

the epidemic prevalence. Hence, even in the absence of

immunization procedures or quarantine=isolation measures,

an epidemic disease can be controlled by human adaptive

reactions.7,9 These results accord with previous findings.5,9

It is interesting to explore one particular problem: how

can the local information have such a strong effect on

disease dynamics compared to the global information under

the same conditions?4 Why can the local awareness raise the

epidemic threshold but not the global awareness? We

attempt to give a possible illustration. We think this is

closely related with the heterogeneity of information for the

following reasons.

If we only consider the global information, it is easy to

see that these are identical to each other in our model since

x¼ q is not dependent of node in a population. However, it

is not the case for the local information. Let us make stochas-

tic simulations to show this. We consider the averaged infec-

tion fraction in the nearest neighborhood (NN) of node i with

degree k at the steady state, denoted by qnmk ð1Þ. In Fig. 8,

the relation between qnmk ð1Þ and k is numerically investi-

gated. This plot clearly illustrates the obvious difference

from qnmk ð1Þ with respect to k, and further tells us that .i as

a function of node i is not uniform. Consequently, for all

nodes in a population, the global information is homogenous

but the local information is heterogenous (this is similar to

the effect of contact awareness23). The heterogeneity of

information leads to the heterogeneity of individual aware-

ness. This further leads to the heterogeneity of the infection

rate owing to the definition (1). As we know,22,23 heteroge-

nous infection rates potentially stop an epidemic outbreak.

In the present paper, we adopted a prompt information

reaction mechanism, as an approximation to reality. Never-

theless, from real viewpoints, the information reaction

should be of slowness or retardation for an individual. In our

model, the epidemic model does not display oscillatory

behavior.14 However, if we consider the slow or retarded

reactions of awareness, the case would be different.33 Hence,

one may consider other information updating mechanisms,

e.g., periodic updating or delayed updating. Also, it is inter-

esting to study the impact of awareness on the epidemic

spreading in mobile populations.34,35
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APPENDIX: PROOF OF EQ. (8)

In this appendix, we give the detailed proof of Eq. (8) in

Sec. II.

Proof of Eq. (8): Let Hðs; kÞ ¼ 1� khwðkÞð1� as
k
Þ

ð1� bqÞ, then we have

X

s

Bðk; sÞ 1� khwðkÞ 1�
as

k
� bq

� �

þ oðhÞ
h is

¼
X

s

Bðk; sÞ½Hðs; kÞ þ oðhÞ�s

¼
X

s

Bðk; sÞ
s

0

� �

Hs þ
s

1

� �

Hs�1oðhÞ þ � � �
s

s

� �

osðhÞ

� 	

¼
X

s

Bðk; sÞHs þ oðhÞ:

Based on the above result, it is easy to get Eq. (8).
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