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Abstract. The Po Valley (Italy) is a well-known air qual-
ity hotspot characterized by particulate matter (PM) levels
well above the limit set by the European Air Quality Direc-
tive and by the World Health Organization, especially during
the colder season. In the framework of Emilia-Romagna re-
gional project “Supersito”, the southern Po Valley submicron
aerosol chemical composition was characterized by means of
high-resolution aerosol mass spectroscopy (HR-AMS) with
the specific aim of organic aerosol (OA) characterization and
source apportionment. Eight intensive observation periods
(IOPs) were carried out over 4 years (from 2011 to 2014)
at two different sites (Bologna, BO, urban background, and
San Pietro Capofiume, SPC, rural background), to character-
ize the spatial variability and seasonality of the OA sources,
with a special focus on the cold season.

On the multi-year basis of the study, the AMS observa-
tions show that OA accounts for averages of 45 ± 8 % (rang-
ing from 33 % to 58 %) and 46 ± 7 % (ranging from 36 %
to 50 %) of the total non-refractory submicron particle mass
(PM1-NR) at the urban and rural sites, respectively. Primary

organic aerosol (POA) comprises biomass burning (23±13 %
of OA) and fossil fuel (12±7 %) contributions with a marked
seasonality in concentration. As expected, the biomass burn-
ing contribution to POA is more significant at the rural site
(urban / rural concentration ratio of 0.67), but it is also an
important source of POA at the urban site during the cold
season, with contributions ranging from 14 % to 38 % of the
total OA mass.

Secondary organic aerosol (SOA) contributes to OA mass
to a much larger extent than POA at both sites throughout
the year (69 ± 16 % and 83 ± 16 % at the urban and rural
sites, respectively), with important implications for public
health. Within the secondary fraction of OA, the measure-
ments highlight the importance of biomass burning aging
products during the cold season, even at the urban back-
ground site. This biomass burning SOA fraction represents
14 %–44 % of the total OA mass in the cold season, indi-
cating that in this region a major contribution of combustion
sources to PM mass is mediated by environmental conditions
and atmospheric reactivity.
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Among the environmental factors controlling the forma-
tion of SOA in the Po Valley, the availability of liquid water
in the aerosol was shown to play a key role in the cold season.
We estimate that the organic fraction originating from aque-
ous reactions of biomass burning products (“bb-aqSOA”)
represents 21 % (14 %–28 %) and 25 % (14 %–35 %) of the
total OA mass and 44 % (32 %–56 %) and 61 % (21 %–
100 %) of the SOA mass at the urban and rural sites, respec-
tively.

1 Introduction

Ambient air pollution represents the highest environmental
risks for human health, leading to about 3 million premature
deaths every year (WHO, 2016) due to the exacerbation of
respiratory and cardio-vascular diseases, especially in young
children and elderly people. In Europe atmospheric pollu-
tion is responsible for more than 400 000 premature deaths a
year (EEA, 2016), with the largest share due to fine particu-
late matter (PM2.5 and PM1) exposure. Organic aerosol (OA)
accounts for 20 % to 90 % of fine particle mass worldwide
(Zhang et al., 2007) and for up to 50 % (20 %–90 %) of fine
particle mass in Europe (Putaud et al., 2010). The OA global
budget and atmospheric processing are still characterized by
large uncertainties (Hallquist et al., 2009). Better knowledge
of OA is essential to support effective air quality control and
remediation measures.

OA is directly emitted by various sources, including traf-
fic, other combustion sources and biogenic emissions, and
can also be produced via secondary formation pathways in
the atmosphere (Hallquist et al., 2009). In particular, our un-
derstanding of the formation mechanisms and evolution pro-
cesses of secondary OA (SOA) is still largely uncertain.

Direct quantification of SOA in the ambient aerosol is
challenging, but many recent studies have established that
oxygenated OA (OOA) determined by multivariate statisti-
cal analysis (e.g., positive matrix factorization, PMF) of OA
fragmentation mass spectra is a good proxy of SOA (Zhang
et al., 2007; Ulbrich et al., 2009). Therefore, OOA is widely
used to study the abundance and formation mechanisms of
SOA. Although several types of these OOAs were isolated in
ambient aerosol everywhere (often representing more than
half of the total OA, Zhang et al., 2007; Ng et al., 2010;
Crippa et al., 2014), their link to a specific source or mecha-
nism remains largely undetermined. This is a consequence of
their complexity in terms of chemical and physical properties
and the difficulty in reproducing the real conditions in which
SOAs are formed/transformed. As a result, traditional mod-
els often show substantial discrepancies in simulating SOA
mass concentrations (Kleinman et al., 2008; Matsui et al.,
2009) and oxidation states (Chen et al., 2011), especially in
wintertime.

The Po Valley, located in northern Italy, is amongst the
most polluted areas in Europe (EEA, 2016). It is surrounded
by the Alps to the north and northwest and by the Apennines
to the south. The occurrence of frequent and prolonged low-
wind periods and atmospheric stability conditions favor the
accumulation of particulate and gaseous pollutants locally
emitted, especially during the cold months. The distinctive
features of the Po Valley make it an interesting “laboratory”
to study the development of POA and SOA concentrations in
the ambient atmosphere.

The Supersito project (https://www.arpae.it/supersito, last
access: 14 December 2019) is a comprehensive study of
atmospheric particulate matter pollution in the Emilia-
Romagna Region, encompassing the southern part of the
Po Valley from the Po River to the Apennines. Overall, the
project deals with chemical, physical and toxicological pa-
rameters of the aerosol and integrates them with epidemio-
logical and medical assessments through interpretative mod-
els. Results about aerosol chemical characterization using of-
fline techniques were presented by Ricciardelli et al. (2017).

Here we describe the results of HR-AMS PM1 measure-
ments carried out during eight intensive measurement cam-
paigns with a focus on OA source apportionment. Previous
projects have investigated the properties of fine aerosols at
urban, rural and regional sites of the Po Valley, including
their chemical features (Carbone et al., 2014; Putaud et al.,
2002, 2010; Saarikoski et al., 2012) and main sources (Belis
et al., 2013; Gilardoni et al., 2011; Larsen et al., 2012; Per-
rone et al., 2012). Further studies based on Aerosol Mass
Spectrometer (AMS) measurements have been conducted in
the same area during specific field experiments with the aim
of characterizing specific phenomena and seasonal features
(fog events, cooking aerosols, biomass burning emissions,
etc.) (Gilardoni et al., 2014; Decesari et al., 2014; Paglione
et al., 2014; Dall’Osto et al., 2015). Nevertheless, system-
atic AMS observations in the valley are available from very
few studies. Bressi et al. (2016), using a 1-year long dataset
of measurements by an Aerosol Chemical Speciation Moni-
tor (ACSM), described the chemical composition and the or-
ganic PM1 sources of the northwestern edge of the Po Valley
at the rural background site of Ispra, 60 km northwest of Mi-
lan.

In this study, we analyze a multi-year dataset of high-
resolution measurements carried out at two different sites
(Bologna and San Pietro Capofiume), exploring for the first
time the spatial–temporal variability of OA sources, chem-
ical features and formation/transformation processes in the
southern part of the Po Valley. A special focus is dedi-
cated to the interpretation of the main sources and forma-
tion/transformation processes of the SOA in the region active
during the cold period.
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Figure 1. Supersito field campaigns: map of the sites and measurement periods considered in this study.

2 Material and methods

2.1 Measurement field campaigns

Eight intensive observation periods (IOPs) were carried out
over 4 years (from November 2011 to June 2014) at two dif-
ferent sites of the southern part of the Po Valley (Bologna,
BO, urban background, and San Pietro Capofiume, SPC,
rural background). Figure 1 shows a map of the measure-
ment sites and a timeline of the field campaigns carried
out during the Supersito project. Bologna is located at the
foot of the Apennines and is an important population basin
for the region (400 000 inhabitants), impacted by signif-
icant industrial and agricultural activities and crossed by
several major highways. The BO measurement site is lo-
cated in the National Research Council (CNR) Research
Area (44◦31′29′′ N, 11◦20′27′′ E). The rural background sta-
tion of San Pietro Capofiume (SPC) is located in a sparsely
populated flat countryside (44◦39′15′′ N, 11◦37′29′′ E) sur-
rounded by kilometers of flat lands in the southeastern part
of the Po Valley, 30 km northeast of Bologna, and is repre-
sentative of the regional background. This site has been used
for many atmospheric characterization studies and research
projects (Saarikoski et al., 2012; Paglione et al., 2014; Dece-
sari et al., 2014; Sandrini et al., 2016).

During the 4-year project, the intensive campaigns were
programmed to account for the marked seasonality in both
sources and weather conditions of this region. Nevertheless,
most of the Supersito campaigns took place in the cold sea-
son (three campaigns in fall and two in winter, out of eight
in total), when the highest PM levels are found. Similarly to
other continental sites, during fall–winter the reduced height
of the planetary boundary layer (PBL) and calm wind condi-
tions favor the accumulation of pollutants and are respon-
sible for the rise in the PM concentration (Perrone et al.,
2012; Stanier et al., 2012; Bressi et al., 2013). Another fea-
ture of the cold months in this area is the high relative humid-
ity, which leads to fogs and hazes (i.e., conditions of high
aerosol liquid water content, ALWC). The consequence of
these meteorological conditions for PM concentrations is 2-
fold: it promotes both wet removal (Gilardoni et al., 2014;
Giulianelli et al., 2014; Montero-Martìnez et al., 2014) and
aqueous-phase processing with SOA formation (Gilardoni et
al., 2016).

2.2 Aerosol mass spectrometer measurements and

apportionment of organic fraction

During all of the Supersito campaigns, the mass loading
and the size-resolved chemical composition of submicron
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Table 1. Average organic aerosol (OA) concentrations and their relative contributions to the NR-PM1 mass measured by the HR-ToF-AMS
within each campaign.

BO SPC

OA (µg m−3) OA / NR-PM1 OA (µg m−3) OA / NR-PM1

2011 fall 15.85 46 % 9.30 50 %
2012 summer 7.16 58 % 5.27 49 %
2012 fall 4.61 46 %
2013 winter 8.37 42 %
2013 spring 2.04 44 % 1.74 36 %
2013 fall 3.81 33 % 3.37 40 %
2014 winter 3.60 39 %
2014 spring 3.31 54 %

aerosol particles were obtained online by the Aerodyne
High-Resolution Time-of-Flight Aerosol Mass Spectrome-
ter (HR-ToF-AMS, Aerodyne Research, Canagaratna et al.,
2007). The HR-ToF-AMS provides measurements of the
non-refractory sulfate, nitrate, ammonium, chloride, and or-
ganic mass of the submicron particles (NR-PM1). The av-
erage concentrations of NR-PM1 chemical components and
their relative contributions as measured by the AMS in each
campaign are reported in the Supplement (Table S1 and
Fig. S1). For some of the Supersito campaigns, specific stud-
ies have already been published. We refer to Gilardoni et
al. (2014, 2016) for the SPC fall 2011 and BO winter 2013
campaigns, respectively, and to Sullivan et al. (2016) for the
SPC summer 2012 campaign. In this paper we focus on the
organic aerosol (OA) component that represents the most
abundant fraction of submicron particle mass for most of
the campaigns, ranging from 33 % to 58 % of NR-PM1 (con-
centration range: 1.8–18.4 µg m−3), consistent with the value
found by Jimenez et al. (2009), Ng et al. (2010) and Crippa et
al. (2014). Table 1 summarizes the average OA concentration
for each site and season and the relative organic contribution
to the NR-PM1 as measured by the HR-ToF-AMS.

The working principle of the HR-ToF-AMS is described
in detail in Canagaratna et al. (2007), Jayne et al. (2000),
and Jimenez et al. (2003). Briefly, during all the campaigns,
the HR-ToF-AMS operated by alternating between “V” and
“W” ion path modes every 5 min. The concentrations re-
ported here correspond to the data collected in V mode. The
resolving power (DeCarlo et al., 2006) of the V-ion mode
was about 2000–2200 during all the campaigns.

Ionization efficiency (IE) calibrations were performed
before and after every campaign and approximately once a
week during the campaigns. Data from IE calibrations were
also used to quantify the interference of ammonium nitrate in
the CO+

2 signal for the different instruments and campaigns
following the criteria suggested by Pieber et al. (2016).
The relationship “b” (the slope of the orthogonal distance
linear fit of the CO+

2 and NO−

3 signals expressed in nitrate
equivalent mass, i.e., RIE = 1) in our estimations resulted in

spanning between +0.2 % and +1.4 % (+0.65 ± 0.35 % on
average), well below the limit considered acceptable even
for periods of high inorganic mass fractions set to +3.4 %
(Pieber et al., 2016). Filter blank acquisitions during the cam-
paign were performed once a day to evaluate the background
and correct for the gas-phase contribution. All data were ana-
lyzed using the standard SQUIRREL v1.51 and PIKA v1.10
ToF-AMS analysis software (Donna Sueper, Aerodyne
Research Inc., CIRES, University of Colorado, Boul-
der, available at http://cires.colorado.edu/jimenez-group/
ToFAMSResources/ToFSoftware/index.html, last access:
14 December 2019) within Igor Pro 6.2.1 (WaveMetrics,
Lake Oswego, OR). The HR-ToF-AMS collection effi-
ciency (CE) was calculated based on aerosol composition,
according to Middlebrook et al. (2012), and evaluated
against parallel offline measurements (see Sect. 2.3 and
Table S2 in the Supplement). The aerosol was dried to about
35 %–40 % by means of a Nafion drier before sampling with
the HR-ToF-AMS.

The organic fraction (OA) measured by HR-ToF-AMS
was apportioned using the PMF approach (Paatero and Tap-
per, 1994; Lanz et al., 2007; Ulbrich et al., 2009; Zhang et al.,
2011) by applying the Multilinear Engine 2 solver (ME-2,
Paatero, 2000) controlled within the Source Finder software
(SoFi v4.8, Canonaco et al., 2013; Crippa et al., 2014).

Similarly to the classical PMF solvers (e.g., PMF2, PMF3,
Paatero and Tapper, 1994), the ME-2 solver (Paatero, 1999)
executes the positive matrix factorization algorithm. How-
ever, the user has the advantage of supporting the analysis
by introducing a priori information such as known factor
profiles (FPs), for example within the so-called a-value ap-
proach. The a-value is a scalar (defined between 0 and 1) that
determines how much the resolved factor profiles are allowed
to vary from the reference ones (Canonaco et al., 2013). For
instance, applying an a-value of 0.05 lets ±5 % variability
into our FP solution with respect to the reference FP during
the PMF iteration.

The standardized source apportionment strategy intro-
duced in Crippa et al. (2014) was applied to the 12 individ-
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Figure 2. Schematic step-by-step procedure of the adopted source apportionment approach.

ual HR-ToF-AMS datasets (8 from BO and 4 from SPC).
The PMF analysis followed the iterative, step-by-step proto-
col shown in Fig. 2. A comprehensive description of the PMF
protocol and of the criteria for identifying the best solutions
followed in each campaign, together with specific metrics for
every single factor analysis (number of iterations, number of
factors chosen, Q, and residual diagnostic plots, constrained
factor profiles and a-values if applied, etc.), are reported in
Supplement Sect. S2.

The interpretation of the retrieved source apportionment
factors as organic aerosol sources is based on the compari-
son of their mass spectral profiles with reference ones (Ta-
bles S5, S6 and S7), on the correlations with external data
(see Table S8) and on the investigation of their diurnal trends
(Ulbrich et al., 2015).

2.3 Additional measurements and analytical

techniques

Additional measurements from the routine daily program of
the Supersito project are used in this study as ancillary data.
PM2.5 daily samples were collected by a low-volume sam-
pler (Skypost PM, TCR TECORA Instruments, operating at

the standard flow rate of 38.3 L min−1) on quartz-fiber fil-
ters (PALL Tissu Quartz 2500 QAO-UP 2500 filters, 47 mm)
during all of the project periods for the analysis of the car-
bonaceous fractions (total carbon, TC; organic carbon, OC;
and elemental carbon, EC) by thermo-optical transmittance
(Sunset, Laboratory Inc., Oregon, USA, using the EUSAAR2
thermal protocol, Cavalli et al., 2010; Ricciardelli et al.,
2017) and of polar organic compounds (anhydrosugars and
acids) by GC/MS analysis (Pietrogrande et al., 2014). Due
to the elevated PM loading during the first experiment in fall
2011, the discrimination between OC and EC was not pos-
sible for the filters collected, and only TC data are available
for that specific campaign.

Black carbon (BC) was calculated from aerosol absorp-
tion coefficient measurements (when available) by single-
wavelength (573 nm) and multi-wavelength (467, 530, and
660 nm) Particle Soot Absorption Photometers, PSAPs
(Bond et al., 1999), as previously described (Gilardoni et al.,
2011, 2016; Costabile et al., 2017).

Size-segregated aerosol particles were also sampled by a
Berner impactor (flow rate 80 L min−1) (Matta et al., 2003).
The Berner impactor collects particles in five stages, cor-
responding to the following particle aerodynamic diameter

www.atmos-chem-phys.net/20/1233/2020/ Atmos. Chem. Phys., 20, 1233–1254, 2020
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cutoffs: 0.14, 0.42, 1.2, 3.5, and 10 µm. Sampling was per-
formed continuously during the intensive campaigns. Each
day we collected two samples: a daytime sample (from
≈ 09:00 to 17:00 LT during fall–winter and from ≈ 09:00 to
21:00 LT during spring–summer) and a night-time one (from
17:00 to 09:00 LT during fall–winter and from 21:00 to 09:00
during spring–summer). Particles collected were extracted in
water and analyzed by means of evolved gas analysis and ion
chromatography for quantification of the water-soluble to-
tal carbon (TC) and the inorganic ions. Elemental and chro-
matographic analyses of the filter samples are used to vali-
date the AMS data for the main aerosol components (Org,
NO−

3 , SO2−

4 , NH+

4 and Cl−) and PMF factors, as reported in
the Supplement (Tables S2 and S8).

Submicron particles were also sampled on prewashed and
prebaked quartz-fiber filters (PALL, 9 cm size) using HiVol
samplers (a dichotomous sampler Universal Air Sampler,
model 310, MSP Corporation, at a constant nominal flow
of 300 L min−1 or, alternatively, a TECORA eco-highvol
equipped with a Digitel PM1 sampling inlet, nominal flow
500 L min−1) located at ground level. Typically, two filters
were collected every day in parallel with the Berner im-
pactor sampling time. The HiVol quartz-fiber samples were
analyzed to identify organic molecular tracers (e.g., levoglu-
cosan, hydroxymethansulfonate (HMSA) and low-molecular
weight amines) using proton nuclear magnetic resonance
(1H-NMR) spectroscopy according to Decesari et al. (2006).
The concentrations of the organic tracers identified by NMR
are correlated with the PMF factors identified by the AMS,
trying to detail their chemical features and infer their sources
and atmospheric processing (especially for the OOAs).

Meteorological data are provided by the Hydro-Meteo-
Climate Service of the Regional Environmental Protection
Agency of Emilia Romagna (ARPAE). In addition, aerosol
liquid water content that is associated with the aerosol in-
organic species (K+, Ca+

2 , Mg+

2 , NH+

4 , Na+, SO2−

4 , NO−

3 ,
Cl−) was predicted by the ISORROPIA-II model used in re-
verse mode (Fountoukis and Nenes, 2007).

3 Results and discussion

3.1 Organic aerosol source apportionment

The source apportionment procedure allowed the identifica-
tion of various components tracing the contributions of pri-
mary and secondary organic aerosol sources: hydrocarbon-
like organic aerosol (HOA) resulting from the combustion of
fossil fuels (e.g., vehicular traffic); BBOA (biomass burning
organic aerosol) resulting from biomass combustion, mainly
associated with wood combustion for domestic heating; and
COA (cooking organic aerosol) associated with specific food
cooking practices. The latter is found just as a minor compo-
nent of OM and only in one campaign at BO (spring 2014).
The rest of the mass of sub-micrometer organic aerosol con-

sists of OOAs, representative of secondary formation and/or
aging processes in the atmosphere. Factor analysis extracted
different types of OOAs with distinct time trends and/or
spectral features. In this section, we will consider the OOA
factors as a whole, while in Sect. 4 we will discuss a source
attribution for the individual factors.

Figure 3 shows the average mass spectra of all the iden-
tified HOA (n = 12), BBOA (n = 10) and OOA (n = 12)
(reduced from high resolution, HR, to unit mass resolution,
UMR, for better readability) together with their standard de-
viation. The comparison between our profiles from the Po
Valley and reference profiles is reported in Sect. S2.1 in terms
of the theta angle (θ ) between the spectra (Kostenidou et al.,
2009). The theta angle is a metric for the similarity between
two spectra (θ < 15◦ good; 15◦ < θ < 30◦ partial; θ > 30◦

bad similarity).
The HOA profile is characterized by peaks corresponding

to aliphatic hydrocarbons including m/z 27, 41, 43, 55, 57,
69, 71, etc. (Canagaratna et al., 2004). The median HOA pro-
file in our study shows a good overlap (mostly θ < 15◦) with
almost all the reference spectra compared, as expected for
this type of source, which is quite reproducible in terms of
AMS spectral characteristics (Crippa et al., 2014). Among
the HOA profiles found for the individual campaigns, only
one (SPC fall 2011) shows low correlations with the others
from this study and with the references. Such a discrepancy
must be due to the peculiar conditions during the campaign,
as the numerous fog events strongly impacted the OA time
trends and, in turn, also the ability of PMF to resolve source
profiles. The aerosol observations during the SPC fall 2011
campaign have already been thoroughly described by Gilar-
doni et al. (2014) and will be summarized later in the discus-
sion.

Unlike the HOA, the BBOA profiles are more variable,
in agreement with earlier findings (Grieshop et al., 2009;
Heringa et al., 2011) showing that the biomass burning
aerosol mass spectrum is strongly affected by burning con-
ditions and types of wood/biomass. Nonetheless, the decon-
volved BBOA profiles show good similarities to many refer-
ence spectra from previous studies, with their characteristic
peaks at m/z 29 (CHO+), 60 (C2H4O+

2 ) and 73 (C3H5O+

2 ),
which are associated with fragmentation of anhydrosugars
such as levoglucosan (Alfarra et al., 2007; Aiken et al.,
2009).

The COA factor was identified without any constraint only
during the BO spring 2014 campaign. Its spectral profile ex-
hibits good similarities to the correspondent reference spec-
tra (Mohr et al., 2012; Crippa et al., 2013a). The presence of
this COA factor reduced sensibly the model residuals in the
central part of the day, and it is therefore considered in the
final solution.

The more oxidized factors (OOAs) differ from each other
for the fractional abundance of m/z 43 and 44 and for the
intensity of other fragments such as 29, 60 and 73. The spec-
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Figure 3. Mass spectral variability for the main retrieved OA sources. Mean values are represented with circles and the ± standard deviation
with error bars. COA from the BO spring 2014 campaign is represented in red color over-imposed on the COA reference spectrum from
Crippa et al. (2013a).

tral characteristics of the specific OOA factors are discussed
in Sect. 4.

The correlation parameters between the time trends of
AMS organic factors and of atmospheric tracer compounds
are shown in Table S8. The time series of HOA corre-
lates with that of elemental carbon (EC) or black carbon
(BC) and with that of NOx . The correlation with NOx

points to major sources of HOA from traffic. The trend of
BBOA concentrations instead correlates with the trend for
levoglucosan (measured by offline techniques: GC/MS or
1H-NMR) and with the organic fragments at m/z 60 and
73, which have been previously shown to be good mark-
ers for biomass burning (Alfarra et al., 2007; De Carlo
et al., 2008; Aiken et al., 2009). The concentration ratios
between POA factors and tracer compounds (HOA / BC,
HOA / NOx , BBOA / levoglucosan, etc.) are shown in Ta-
ble S9 and compared with literature ranges. The overall good
agreement between these source-specific ratios and the lit-
erature ranges confirms our apportionment of POA compo-
nents. The time trends of the OOA concentrations are con-
trasted with those of secondary inorganic species (i.e., NO−

3 ,

SO2−

4 and NH+

4 ) and with the organic fragments at m/z 43
(Org_43 = C2H3O+) and 44 (Org_44 = CO+

2 ) generally ex-
hibiting good correlations.

The identified factors’ daily trends (HOA, BBOA, COA
and OOA) are shown in Fig. 4. Median diurnal patterns are
shown together with the 10th, 25th, 75th and 90th percentiles
for each factor, for the lumped datasets from all Supersito
campaigns and separately for Bologna (BO) and San Pietro
Capofiume (SPC).

The daily trends of each organic component exhibit
consistent characteristics during all the campaigns. HOA
presents a diurnal cycle characterized by two maxima cor-
responding to the rush hours (impacted by the greatest ve-
hicular traffic) between 8–9 and 18–20, in agreement with
the attribution of this fraction to traffic sources. This is espe-
cially evident at the urban site of Bologna compared to the
rural one, at which the concentrations of HOA are lower and
rush hour signatures are weak, as expected for a rural back-
ground site. BBOA is characterized by a daily cycle with a
midday minimum and a night-time maximum. This behav-
ior reflects the combination of two factors: the influence of
the mixing-layer height – which favors pollutant accumu-
lation near the ground at nighttime – and the daily pattern
of the emissions from domestic heating, increasing in the
evening/night hours. The concentrations of COA exhibit a
characteristic daily trend with two maxima corresponding
to the hours of main meals, one in the central hours of the
day (12–14) and the other in the evening (20–21, more pro-
nounced due to the shallow boundary layer after the sunset).
Finally, OOA exhibits an almost flat daily trend, reflecting its
regional nature or the influence of multiple secondary forma-
tion processes. Therefore, the weak diurnal trends of OOA
were not informative of potential sources of SOA in this re-
gion.

3.2 POA and SOA contributions, seasonality and

spatial variability

Table 2 summarizes the site-specific and campaign-specific
contributions of OA components determined by AMS factor
analysis (see also Fig. 5). A few clear seasonal patterns can
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Figure 4. Daily trends of the factors identified (HOA, BBOA, COA and SOA). Median diurnal patterns are shown together with the 10th,
25th, 75th and 90th percentiles for each source, for all the Supersito campaigns together and separately for Bologna (BO) and San Pietro
Capofiume (SPC).

Table 2. Relative (%) and absolute mass contributions (µg m−3) of the main organic aerosol components HOA, BBOA, COA and OOA for
all the considered campaigns. BO: Bologna; SPC: San Pietro Capofiume.

HOA BBOA COA OOA

BO Spring 2013 12 % (0.25) 14 % (0.29) – 73 % (1.49)
2014 6 % (0.18) 2 % (0.06) 8 % (0.28) 84 % (2.71)

Summer 2012 8 % (0.58) – – 92 % (6.58)
Fall 2011 18 % (2.80) 38 % (6.05) – 44 % (7.00)

2012 16 % (0.74) 30 % (1.37) – 54 % (2.50)
2013 11 % (0.43) 17 % (0.64) – 72 % (2.74)

Winter 2013 11 % (0.88) 28 % (2.35) – 61 % (5.14)
2014 12 % (0.43) 38 % (1.37) – 50 % (1.80)

SPC Spring 2013 9 % (0.15) 3 % (0.05) – 88 % (1.54)
Summer 2012 4 % (0.20) – – 96 % (5.06)
Fall 2011 32 % (2.93) 33 % (3.07) – 35 % (3.29)

2013 7 % (0.23) 28 % (0.95) – 65 % (2.20)

be identified, especially for the Bologna urban site, for which
a higher number of measurements are available (Fig. 5).

In Bologna, HOA contributes 11 %–18 % of the mass of
sub-micrometric OA in fall–winter and 6 %–12 % in spring–
summer. The slightly lower average HOA contribution dur-
ing the warmer season likely reflects the combination of two

aspects: the reduction of work and school activities in sum-
mertime nearby the sampling areas, leading to a reduction of
traffic emissions, and a possible meteorological effect due to
the higher mixing layer, resulting in an enhanced dilution of
the primary pollutants locally emitted.
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Figure 5. Organic aerosol source contributions for each site and each Supersito campaign. Relative contributions are shown as shaded
histograms (referring to the left axis) in the background of the absolute ones (referring to the right axis).

The contribution of BBOA varies instead from 17 % to
38 % in the fall–winter campaigns to 0 %–14 % in summer–
spring. In particular, the contribution of BBOA has not been
detected in the summer period. Biomass burning therefore
dominates over fossil fuel combustion as a source of primary
organic aerosols at the urban site during the cold season. At
the same site, OOA contributes 44 %–68 % of the mass of
sub-micrometric OA in fall and winter, while its contribution
in the spring and summer period increases to 74 %–92 %. The
higher relative contribution of OOA in the warm period is ex-
pected given the reduction in residential combustion and the
increased photochemistry. However, the OOA fraction in the
cold season is still quite high, considering the latitude and
climate of Bologna, where sunshine duration in winter is less
than 3 h per day (in contrast to the almost 9 h in the summer).
A discussion about SOA formation mechanisms alternative
to gas-phase photochemistry is presented later in Sect. 4.2.

At the rural site of San Pietro Capofiume, as expected, the
dominant contribution to POA in the cold periods is provided
by BBOA (varying between 28 % and 33 % of the total OA
mass during the 2013 and 2011 fall campaigns, respectively),
and the contribution of OOA to total OA is larger than at the
urban site (35 %–65 % in fall, and reaching 96 % in summer).
Peculiar results were found for the SPC fall 2011 campaign,
during which very large contributions of POA were recorded:
the HOA fraction reached 32 % of the OA mass, somewhat
strange for a rural site. Gilardoni et al. (2014) specifically
studied this campaign, suggesting that these high HOA rela-
tive contributions are likely due to the occurrence of persis-
tent fogs, which scavenge the most water-soluble OA com-
ponents and leave the interstitial aerosol enriched in its most

Figure 6. Seasonal relative contribution of the main OA sources at
both the urban and rural sites. The pie-chart area is proportional to
the total average concentration of OA (shown on the upper-left side
of each box in terms of µg m−3) and the individual portions are the
averages between the different campaigns made at the sites in one
season.
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Table 3. Urban increment, calculated as the ratio between the cam-
paign average concentration at the urban and rural sites, for each
season and OA fraction considered.

Urban increment HOA BBOA OOA OA TOT

Spring 2013 1.67 5.87 0.97 1.17
Summer 2012 2.85 – 1.30 1.36
Fall 2013 1.91 0.67 1.25 1.13

hydrophobic organic components (i.e., HOA) (Gilardoni et
al., 2014).

A summary of the seasonality of OA fractions at the two
Po Valley sites is shown in Fig. 6. The COA fraction, which
was determined only at BO during one individual campaign
and in small amounts, was not considered here to simplify
the comparison between the other components. The SPC fall
2011 campaign was also not included in this statistic since
the aerosol composition and concentrations for this experi-
ment referred to a mixture of total OA and interstitial OA in
fog conditions, as mentioned above and better described in
Gilardoni et al. (2014).

Table S10 shows the correlation coefficients between the
PMF factors discussed so far and the main chemical species
constituting the sub-micrometric aerosol masses measured
by the HR-ToF-AMS. The highest correlations are observed
between OOA and secondary inorganic species, nitrate and
ammonium sulfate, confirming the secondary nature of this
fraction of OA. In particular, it can be noticed that OOA cor-
relates better with ammonium nitrate in winter and fall, and
with ammonium sulfate in summer and late spring, in agree-
ment with previous results (Zhang et al., 2011; Canonaco et
al., 2015). This behavior likely reflects the differences in tem-
perature and relative humidity between winter and summer,
which shift the partitioning of nitrate toward the gas phase
(due to its volatility) during the warm season. In addition,
the different correlation suggests the possibility of different
oxidation pathways in secondary species formation between
the cold and warm seasons: a pathway characterized by cold
temperature and high relative humidity (correlating with ni-
trate) and another one related to higher temperature and pho-
tochemical activity (correlating more with sulfate). The latter
hypothesis will be better developed in the following sections.

For the campaigns carried out in parallel at the urban and
rural sites (summer 2012, spring 2013 and fall 2013), we es-
timated an “urban increment”, i.e., the increase in OA-type
concentrations in urban areas with respect to the regional
background. We expressed the increment as the ratio between
the campaign average concentrations at the urban vs. rural
sites, according to the season and the specific OA fraction
considered (see Table 3). For total organic aerosol (OA) and
for its OOA fraction, the ratios are quite constant through-
out the seasons, varying between 1.13 and 1.36 and 0.97 and
1.30, respectively. By contrast, higher values were found for

HOA (1.67, 1.91 and 2.85 in spring, fall and summer, respec-
tively), in agreement with a major HOA source from urban
traffic. The urban increment of BBOA is less clear: it varies a
lot between spring (in which its value is very high, i.e., 5.87)
and fall (with 0.67). Nevertheless, the spring value is affected
by the low and intermittent high BBOA levels, likely indicat-
ing very local sources. The fall value seems more representa-
tive and suggests a higher contribution of BBOA in the rural
areas, probably due to the more spread use of fire places and
wood stoves for domestic heating and to additional possible
sources such as agricultural burning.

4 SOA sources and their evolution

In the previous section we presented OOA as one single com-
ponent; however, the HR-ToF-AMS statistical analysis iden-
tified various OOA types that may indicate different forma-
tion (sources) and transformation processes (aging) of SOA
in the aerosol. The number of OOA categories identified dur-
ing the Supersito campaigns ranged from one (for the SPC
fall 2011 campaign) to four (for the SPC summer 2012 cam-
paign). Most of the IOPs (7 out of 12) allowed the identifica-
tion of three OOA factors.

The spectral profiles of the individual OOAs are distin-
guishable based on minor mass fragments and other parame-
ters. Among the most common parameters used in the litera-
ture for the distinction and interpretation of the various OOA
factors are elemental ratios (OM : OC, O : C and H : C), the
carbon oxidation state (OSc) and the fractional abundance f

(where the f no. is the ratio between the abundance of a spe-
cific ion and the total organic spectrum) of specific fragments
in their spectral profiles (CO+

2 at m/z 44 (f 44); C2H3O+ at
m/z 43 (f 43); C2H4O+

2 at m/z 60 (f 60); etc.). The elemen-
tal ratios and the relative proportion between f 43 and f 44
generally indicate the degree of oxidation and therefore the
extent of aging of a single factor (normally the less oxidized
components exhibit higher H : C, lower O : C and less f 43
and f 44, while OOAs have O : C and f 44 increasing with
their degree of oxidation and aging in the atmosphere, largely
due to the formation of carboxylic acids during this process)
(Ng et al., 2010; Duplissy et al., 2011).

Tables S12 and S13 show a summary of the parameters
for the analysis and interpretation of all the factors identi-
fied by the PMF statistical analysis (including the different
OOAs listed in order of their O : C ratios) during the cam-
paigns of the Supersito project. We focus on two aspects:
the influence of biomass burning emissions on OOA compo-
nents and the importance of the aqueous-phase processing in
their formation and evolution. A more comprehensive anal-
ysis of the OOA features of particular IOPs is the object of
specific publications (Gilardoni et al., 2014, 2016; Sullivan
et al., 2016).
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Figure 7. Influence of biomass burning emissions on SOA and their evolution processes. The plots in panels (a), (b) and (c) show f 44 (the
normalized mass spectrum at m/z 44), which is a proxy of the OA oxygenation degree, vs. f 60 (the normalized mass spectrum signal at m/z

60), which is a proxy of anhydrosugars. Different shapes of the markers identify different Supersito campaigns (a, b) or different reference
spectra (c). Different colors represent the different kinds of PMF factors: gold–green identifies BBOA primary factors, yellow, green and red
the OOAs numerically ordered based on their O : C ratios. Black dots in (c) represent the measurements taken as the background level of no
influence of biomass burning. Grey areas correspond to f 60 0.003±0.002 representing the Cubison et al. (2010) threshold of BB influence.
(d) shows a van Krevelen (VK) diagram of the BBOA and OOA-BB PMF factors obtained from the HR-ToF-AMS data analysis for both BO
fall 2011 (red markers) and winter 2013 (blue markers). The line connecting BBOA and OOA-BB has different slopes, indicating different
chemistry processing leading to different SOA types.

4.1 Biomass burning influence on SOA

The products of cellulose pyrolysis, such as levoglucosan
and similar species (mannosan, galactosan, etc., collectively
called hereinafter “anhydrosugars”), generate mass spectra
with an enhanced signal at m/z 60 and 73 due to the ions
C2H4O+

2 and C3H5O+

2 , which are therefore considered good
tracers of wood combustion (Schneider et al., 2006; Alfarra
et al., 2007). So, the parameter f 60 (the ratio of the inte-
grated signal at m/z 60 to the total signal of the OA mass
spectrum) is used as a marker to evaluate the influence of
biomass burning emissions on the OA components (Cubison
et al., 2011).

Fresh biomass burning emissions (BBOA factors) exhibit
the highest content of anhydrosugars (f 60). During atmo-
spheric aging, the relative intensity of the anhydrosugar sig-
nal decreases because of degradation and oxidation reactions.

At the same time, atmospheric aging leads to the oxidation
of the molecules, which corresponds to the increase in oxy-
genated fragments in the mass spectrum, the most intense of
which is at m/z 44 (CO+

2 , f 44).
The contribution of f 60 to the different OA components

of each campaign is represented in Fig. 7 by points in the
f 44 vs. f 60 space (Cubison et al., 2011) together with those
of some references from previous studies (Aiken et al., 2009;
Ng et al., 2011; Mohr et al., 2012; Saarikoski et al., 2012;
Crippa et al., 2014; Florou et al., 2017). The background
level indicating no influence of biomass burning is repre-
sented in Fig. 7a–c by a grey shaded area. As an additional
reference of OA not influenced by biomass combustion, we
also report the measurements carried out during the summer
2012 parallel campaign at the high-altitude background sta-
tion of Monte Cimone (Rinaldi et al., 2015).
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Figure 7a–c show that the spectral features of the OOA
factors from several campaigns are those typical of aged OA
(large f 44), but they also indicate the presence of anhydro-
sugars above the background level. This suggests a variable
influence of biomass combustion on the OOA factors.

Such OOA factors influenced by biomass burning
(OOAx_BB) represent a substantial mass fraction of the
total OA during the fall–winter period (17 %–61 % at the
Bologna site and 14 %–35 % at SPC). In the spring season,
the biomass burning impact on OOA composition is much
less evident (f 60 closer to the background levels), but still
represents 37 % of the total OA, more than twice the contri-
bution of POA at BO during the spring 2013 campaign.

Additional tests and details on the determination of the
biomass burning influence on OOA components are dis-
cussed in Sect. S2.2.3.

4.2 Biomass burning oxidation pathways

The vertical axis in Fig. 7 is controlled by the oxidation of
the bulk OA, and the horizontal axis by the anhydrosug-
ars loss. Thus, depending on the relative rates of these pro-
cesses, the slopes of the virtual lines connecting the primary
factors (BBOAs) and the corresponding aged PMF factors
(OOAx_BB) are expected to be different. We do see indeed
that the slopes vary in different campaigns. We also see that
two OOA_BB factors detected during the BO fall 2011 and
winter 2013 campaigns are connected to the primary BBOA
with different slopes in the f 60 vs. f 44 space (as shown by
the arrows in Fig. 7a). This variability could suggest that the
two OOA_BB components, observed during the same exper-
iment, are formed through different oxidation rates and path-
ways due to the variable environmental conditions.

In order to test this hypothesis, the evolution of the BBOA
into OOAs is further analyzed for BO fall 2011 and BO win-
ter 2013 in Fig. 7d using the O : C and hydrogen-to-carbon
(H : C) ratios of the BBOA and OOAx_BB factors in the van
Krevelen (VK) diagram. The VK diagram is typically used
to investigate the OA evolution during field and laboratory
experiments (Heald et al., 2010; Ng et al., 2011). The plot
allows us to remove the effect of physical mixing between
secondary and primary aerosols, providing a clearer inter-
pretation of the results. Aerosol aging has the overall effect
of increasing O : C ratios. In the VK plot the H : C vs. O : C
slope of 0 is equivalent to the replacement of a hydrogen
atom with an OH moiety, whereas a slope of −1 indicates
the formation of carboxylic acid groups (Ng et al., 2011).
O : C and H : C values are reported for BBOA (triangles) and
OOA_BB factors (squares and circles). The slope of the line
that links BBOA to the circles (i.e., OOAx_BB-aq) is close
to zero, while the line linking BBOA to the squares (i.e.,
OOAx_BB) is between −0.5 and −1, suggesting possible
different oxidation pathways. The negative slope indicates
that OOAx_BB likely formed from BBOA through forma-
tion of carboxylic acid moieties, suggesting photochemical

oxidation processes driven by OH radicals which might take
place both in the gas and aqueous phases (Ng et al., 2011; Ti-
monen et al., 2013; McNeill, 2015). Conversely, OOAx_BB-
aq formation (slope 0) is consistent with the hydroxyl group
formation possibly taking place in aerosol water (i.e., wet
aerosol) through dark chemistry (Lim et al., 2010; Gilardoni
et al., 2016; Ervens et al., 2011), a hypothesis better assessed
in the next paragraph.

4.3 Aqueous-phase chemistry in SOA formation

Figure 8 shows the variations in contributions of the two BB-
influenced OOA factors identified during the BO fall 2011
campaign as a function of RH, together with some other
meteorological and chemical parameters. The aerosol liquid
water content (ALWC), as calculated by the ISORROPIA-
II model, and the hydroxymethanesulfonate (HMSA) were
used to trace the effects of aqueous-phase SOA formation. In
fact, HMSA is formed by the reaction of sulfite and bisul-
fite with dissolved formaldehyde in droplets and deliquesced
aerosols and is oxidized by ozone at concentrations as low
as 10 ppb (Kok et al., 1986; Facchini et al., 1992; Whiteaker
and Prather, 2003). We suggest here that formaldehyde (as
well as a number of other gaseous compounds including
ketones, aldehydes, and small carboxylic acids in the BB
plumes, Schauer et al, 2001; Andreae, 2019) would preferen-
tially partition into particles at high ALWC and would react
to form HMSA (and/or other products). Then the products
of these aqueous-phase reactions (such as HMSA) remain
in the particle phase after water evaporation, changing the
chemical composition of the organic aerosol. For this reason,
considering also that HMSA formation is inhibited by pho-
tochemistry (due to its fast reaction with ozone) and that the
analyzed aerosol was dried before sampling, the correlation
of some factors with HMSA can be considered reliable evi-
dence of the aqueous-phase formation pathway of some OA
fractions. HMSA was detected by the HR-ToF-AMS (fol-
lowing the estimation method presented by Ge et al., 2012)
during all the campaigns, and its presence and concentration
were confirmed by offline H-NMR analysis of filter sam-
ples. ALWC and HMSA exhibit a strong increase as a func-
tion of RH during the campaign, confirming the influence of
aqueous-phase processing at high RH levels (Fig. 8a). At the
same time, temperature and solar radiation (Fig. 8b) decrease
as a function of RH, suggesting a reduction of photochemical
activity.

These ambient conditions result in a large increase in the
contribution of OOA2_BB-aq, whereas the OOA1_BB con-
centration remained relatively constant (Fig. 8c).

Extending this analysis to all the campaigns (see also
Fig. S5), we identified at least one OOA factor originat-
ing from biomass burning through aqueous-phase processing
(OOAx_BB-aq) in 8 out of the 12 datasets (all fall and win-
ter campaigns plus spring 2013). The correlations of all the
OOAs with the aerosol liquid water content (ALWC) and the
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Figure 8. Variations of meteorological and chemical parameters as a function of RH during the BO fall 2011 campaign. The data were
binned according to the RH (5 % increment), and mean values are shown for each bin. (a) Aerosol liquid water content (ALWC) and
hydroximethansulfonic acid (HMSA). (b) Air temperature together with solar radiation and wind speed (WS) measured at ground level.
(c) Variations in the contributions of the two BB-influenced OOA factors identified (OOA1_BB and OOA2_BB-aq) in both absolute (µg m−3)
and relative (% of OOA) terms.

hydroxymethanesulfonate (HMSA) are summarized in Ta-
ble 4 (and also shown in Fig. 9 for the OOAx_BB-aq factors).

The spectral profiles of these OOA_BB-aq factors orig-
inating from aqueous-phase processing (shown in Fig. 9)
are characterized by higher signals at m/z 29 (CHO+) and
m/z 58 (C2H2O+

2 ) in addition to the more common m/z 43
(C2H3O+), m/z 44 (CO+

2 ) and m/z 60 (C2H4O+

2 ) that also
characterized the other BB-influenced secondary compo-
nents. The OOAx_BB-aq factors’ spectra also have good
similarities (4 < θ angle < 29; see Table S15) between each
other and to the OOA spectra recorded after fog dissipation
at SPC during fall 2011 (Gilardoni et al., 2016).

The conclusion that these components are affected by
aqueous-phase processing is further supported by the cor-
relations between the OOAx_BB-aq factors and some spe-
cific fragment ions. As shown in Table S16 all the aq-
SOAs identified during Supersito campaigns are well cor-
related with C2H2O+

2 , C2O+

2 and CH2O+

2 , which are typ-

ical fragments of methylglyoxal and glyoxal that are pre-
cursors of SOA via cloud processing (Carlton et al., 2007;
Altieri et al., 2008). We further stress the link between
biomass burning and these aqSOAs by looking at the cor-
relations of these components with specific fragment ions
of aqueous-phase products of phenol and guaiacol emitted
during the biomass burning (namely PhOH-OH, C6H6O+

2 ,
m/z 110.037; PhOH-2OH, C6H6O+

3 at m/z 126.032; GUA-
OH, C7H8O+

3 at m/z 140.047; GUA-2OH, C7H8O+

4 at m/z

156.042) already identified in previous laboratory studies (Yu
et al., 2014). Moreover, considering the elemental composi-
tion of the OOAx_BB-aq (Tables S12–S13 and Fig. 9), we
notice that their O : C ratios, calculated following the ambient
improved (AI) method (Canagaratna et al., 2015), are similar
(on average 0.82±0.09) to the AI O : C ratios obtained from
laboratory oxidation of phenolic compounds (0.89 ± 0.10,
Sun et al., 2010; 1.03 ± 0.17, Yu et al., 2014) and from the
laboratory-generated SOA from the photo-oxidation of or-
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Figure 9. OOAx_BB-aq main features: the left column shows the mass spectral profile of each BB-aqSOA component identified during the
Supersito campaigns; the OOA factors are numerically ordered for each campaign based on their O : C ratios; the central column shows the
O : C elemental ratios of the same factors; the right column illustrates the correlation between their concentration time series and the HMSA
(in blue) and the ALWC (in red).

ganic precursors in the aqueous phase (0.89 ± 0.13, Lee et
al., 2011, 2012).

In conclusion, BB-influenced SOA formed by aqueous-
phase processing (bb-aqSOA) identified during the Super-
sito campaigns represents a substantial mass fraction of the
total OA during the fall–winter months (14 %–28 % at the
Bologna site and 14 %–35 % at SPC). This component is of-

ten more than half of the total SOA influenced by BB emis-
sions, while the other half undergoes photochemical oxida-
tion pathways leading to OOAx_BB. Overall, our results sup-
port the importance in the Po Valley of SOA formation by
aqueous-phase processing of wood combustion reported by
Gilardoni et al. (2016), extending the ambient observations
of these phenomena to a larger dataset (Fig. 10).
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Figure 10. Seasonal relative contribution of the main OA sources
at both the urban and rural sites with explicit separation also of
the SOA (OOA) components. The pie-chart area is proportional to
the total average concentration of OA (shown on the upper-left side
of each box in terms of µg m−3) and the individual portions are
the averages between the different campaigns made at the site in
one season. OOA factors influenced by biomass burning (charac-
terized by a brown background color) are divided into the two cat-
egories, “bb-SOA” and “bb-aqSOA”, representing the OOAx_BB
and OOAx_BB-aq described in the text. “Other SOA” is the sum
of the other OOA factors whose source has not been unequivocally
identified.

5 Conclusions

The Supersito project constitutes the first extensive (multi-
site and multi-year) time-resolved aerosol chemical experi-
ment in the Po Valley. Eight intensive observation periods
(IOPs) were carried out over the 4 years of the project (from
2011 to 2014) at two different sites (Bologna, urban back-
ground, and San Pietro Capofiume, rural background) using
a High Resolution Aerosol Mass Spectrometer (HR-AMS).
The source apportionment of the OA allowed improvement
of our understanding of aerosol sources, their chemical fea-
tures and the spatial–temporal variability in the region, one of
the most important pollution hotspots in Europe. Considering
the special focus of the project on the cold season (three cam-
paigns in fall and two in winter, out of eight in total), it was
especially possible to investigate the wintertime SOA forma-
tion pathways, which are the less characterized and, for this
reason, one of the most important missing processes in at-
mospheric chemistry and air quality models (Tsimpidi et al.,
2016).

The possibility of comparing the organic factors identified
by the HR-AMS with additional chemical tracers measured
in parallel by other advanced spectroscopic techniques (i.e.,
NMR) and more traditional ones (IC, GC / MS, OC / EC,
etc.) provided new insights into the detailed chemical struc-
ture and especially into the formation and aging mechanisms
of SOA.

On the multi-year basis of the project, OA represents on
average 45±8 % (33 %–58 %) and 46±7 % (36 %–50 %) of
the total non-refractory submicron particles (PM1-NR) at the
urban and rural sites, respectively, within the range reported
in the literature for other European sites (Crippa et al., 2014)
and the Asian regions (Hu et al., 2017; Li et al., 2015; Wu et
al., 2018, for China and East Asia; Chakraborty et al., 2018,
for India), and slightly less than the values reported for the
southeastern US (50 %–75 %, Xu et al., 2015; Budisulistior-
ini et al., 2016). Among this fraction, primary sources (POA)
are dominated by biomass burning (23 ± 13 %), especially
at the rural site (SPC), whereas the fossil fuel combustion
(12 ± 7 %) is higher at the urban background site (Bologna),
where it also presents a marked seasonality. However, the
biomass burning contribution to POA remains the most im-
portant source of POA also at the urban site during the cold
fall/winter seasons. The BBOA contribution ranging from
17 % to 38 % at Bologna during the fall/winter seasons is
not far from the values reported for other European cities
(10 %–40 % in Paris, Crippa et al., 2013b; 5 %–27 % from the
EUCAARI multi-site study, Crippa et al., 2014) and United
States areas (e.g., 15 %–33 % for the southeastern US, Bud-
isulistiorini et al., 2016), and slightly higher than that of other
highly populated and polluted cities/regions of Asia (11 %–
14 % at Beijing, China, Sun et al., 2018; 10 %–20 % at Kun-
pur, India, Chakraborty et al., 2018), where, however, other
combustion sources (i.e., coal) contribute to the POA frac-
tion.

The contributions of OOA (used as a proxy for SOA) were
found to be much higher than the primary ones, regardless
of site and season, with multi-year averages of 66 % (44 %–
92 %; standard deviation SD = 16 %) and 71 % (35 %–96 %;
SD = 27 %) of the total OA mass, at the urban and rural sites,
respectively. The SOA dominance is also observed during
winter at the urban site, where the SOA represents on average
56 % (50 %–61 %; SD = 8 %) of the total OA mass. Within
this SOA, the measurements highlight the dominant presence
of biomass burning secondary components, even in the urban
background. The HR-AMS data indicate that the OA mass
contributions of this SOA factor influenced by wood com-
bustion were on the order of 14 %–44 %, which translates
into biomass burning emissions representing the 31 %–82 %
of the OM mass in the Po Valley during cold months (fall and
winter). Significant contribution of aged BB emissions on the
OA mass loadings has already been suggested by previous
studies regarding the Po Valley (Saarikoski et al., 2012) and
different European (Paris, France, Crippa et al., 2013b; east-
ern Mediterranean, Bougiatioti et al., 2014; Athens, Greece,
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Stavroulas et al., 2019), Asian (Beijing, China, Hu et al.,
2017; Sun et al., 2018; Kunpur, India, Chakraborty et al.,
2018) and American sites (southeastern US, Xu et al., 2015;
Budisulistiorini et al., 2016). However, studies reporting the
identification and quantification in ambient air of specific
BB-influenced OOA factors are still very limited (Gilardoni
et al., 2016; Xu et al., 2017).

Our study also identified and quantified a particularly rel-
evant role of the aqueous-phase processing in the formation
and transformation of primary biomass burning emissions.
Aqueous SOA (aqSOA) factors identified as OOAx_BB-aq
represent on average 21 % (14 %–28 %) and 25 % (14 %–
35 %) of the total OA mass at the urban and rural sites,
respectively, highlighting the importance of aqueous-phase
processing for SOA formation and transformation. Consider-
ing the widespread wintertime occurrence of fog, low-level
clouds and wet aerosols at many other highly populated sites
enclosed in orographic basins (Benelux and Ruhr district,
Paris and London basins, Cermak et al., 2009; Californian
Central Valley, Baldocchi et al., 2014; Yangtze River corri-
dor, Niu et al., 2010; and Indo-Gangetic Plain, Saraf et al.,
2011), this study strongly suggests that aqueous processing
can be a major driver for secondary aerosol formation in win-
tertime at all these sites, with important consequences for air
quality policy at the global level.

These results suggest the importance of a continuous mon-
itoring system for better characterization of biomass burning-
driven pollution in the Po Valley area, using complemen-
tary measurements both routinely and through intensive cam-
paigns in order to explore the importance of biomass burning
for air quality and climate.
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