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Abstract 
 
A variety of activity-based methods exist for estimating the carbon footprint in transportation. For 
instance, the Greenhouse Gas protocol suggests a more aggregate estimation method than the 
Network for Transport and Environment (NTM) method. In this study, we implement a detailed 
estimation method based on NTM and different aggregate approaches for transportation carbon 
emissions in the Dynamic Lot Sizing Model. Analytical results show the limitations of aggregate 
models for both accurate estimation of real emissions and risks of compliance with carbon 
constraints (e.g. carbon caps). Extensive numerical experimentation shows that the magnitude of 
errors can be substantial. We provide insights under which limited conditions aggregate estimations 
can be used safely and when more detailed estimates are appropriate. 
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A variety of activity-based methods exist for estimating the carbon footprint in 

transportation. For instance, the Greenhouse Gas protocol suggests a more aggregate 
estimation method than the Network for Transport and Environment (NTM) method. In this 
study, we implement a detailed estimation method based on NTM and different aggregate 
approaches for transportation carbon emissions in the Dynamic Lot Sizing Model. 
Analytical results show the limitations of aggregate models for both accurate estimation of 
real emissions and risks of compliance with carbon constraints (e.g. carbon caps). 
Extensive numerical experimentation shows that the magnitude of errors can be substantial. 
We provide insights under which limited conditions aggregate estimations can be used 
safely and when more detailed estimates are appropriate. 

 
 

 

1. Introduction. 

 

There is a widespread belief that anthropogenic carbon emissions contribute to global 

warming, based on a vast number of studies by climate scientists (IPCC, 2007). The three 

main contributing sectors to emissions in the developed world are electricity production, 

energy-intensive manufacturing, and transportation. While technology developments are 

expected to contribute significantly to curtailing emissions in electricity production and in 

energy-intensive manufacturing, prospects for the transportation sector are grimmer, and a 

substantial contribution is needed by more efficient operation of the world’s supply chains 

(European Commission, 2011). 

 

Decision makers in industry are increasingly taking the consequences of their decisions for 

climate change into account. Hoffman and Woody (2008) argue that regardless of whether 

executives believe in the results of climate change research, a market shift is occurring that 

drives many companies towards measuring and disclosing their carbon emissions, and 

implementing policies to reduce those emissions. For instance, the number of companies 

around the world reporting their emissions to the Carbon Disclosure Project, a not-for-

profit foundation, has increased from 687 in 2007 to 1525 in 2010 (CDP, 2011). Moreover, 

a substantial number of companies publicly state carbon emission reduction targets. For 

instance, in the 2011 Carbon Disclose Project annual report,  926 companies publicly 



commit to a self-imposed carbon target such as FedEx, UPS, Wal-Mart, AstraZeneca, 

Pepsico, Coca-Cola, Danone, Volkswagen, Campbell, and Ericsson. 

 

In order to report emissions, and as a first step towards emissions reductions, actual 

emissions need to be estimated. The most common approach to measure emissions is the 

Greenhouse Gas Protocol (GHG, 2011). The protocol distinguishes emissions in three so-

called “scopes”. Scope 1 emissions include all emissions by assets owned by the reporting 

company. For a manufacturing company, this typically includes on-site fuel consumption 

for production or heating. For a transportation company, this would include the fuel 

consumption of its trucks. Scope 2 emissions are emissions caused by the production of 

electricity that those assets consume. For a company in the service industry, typically scope 

1 emissions are substantially smaller than scope 2 emissions, while for a steel plant the 

reverse would be true. Finally, scope 3 emissions include all remaining emissions by other 

companies from which products or services are bought, directly or indirectly. Scope 3 

reporting is generally underdeveloped due to measurement complexity but those companies 

that do report often include here the emissions from their transportation service providers. 

 

Within each of the scopes, the methods to actually measure or estimate the emissions may 

vary widely. While for scope 1 and scope 2 estimates or actually measurements based on 

fuel consumption may be easy to obtain, this is substantially more challenging for scope 3 

emissions. Hence, emissions in scope 3 are typically not estimated based on energy (or fuel 

consumption), but on reference parameters for industry activities. For instance, the US 

Environmental Protection Agency (EPA, 2011) provides estimates for emissions per tone-

mile for an average “heavy duty truck”. Based on shipment data, a shipper can then 

estimate its scope 3 transportation emissions using such an estimate, which is called an 

emission factor. In addition to the EPA data, other more detailed models are available that 

estimate emissions at a much more granular level. An example of such a model is the one 

developed by NTM (NTM, 2008), which provides alternative calculation approaches for 

transportation. More detailed estimates however also require more detailed data collection 

on behalf of the shipper. For instance, rather than using and “average heavy-duty truck” the 

shipper would need to know what type of truck was used for a particular shipment to apply 



a more specific NTM parameter. Another parameter that has a substantial impact on 

emissions is the load factor of a truck. Whereas the EPA data uses an average load factor 

across the United States, the NTM model allows for using more specific load factors for a 

particular network. Also here, more detailed information on actual shipments would need to 

be collected. 

 

For managers that are determining their transportation carbon footprint, it is not obvious 

whether aggregate estimates are sufficient, and whether the decisions based on an aggregate 

estimation model are effectively identical to those based on a more detailed transportation 

carbon footprint. It can be argued that an aggregate estimate should be sufficient, since the 

underlying driver - reducing the number of shipments - is identical and hence it does not 

pay off investing time and effort in developing a detailed estimate. On the other hand, it can 

be argued that by estimating an aggregate footprint, any subsequent decision making or 

optimization would take advantage of the poor estimation and hence drive the firm towards 

increasing its footprint rather than reducing it. 

 

Recent work explores the inclusion of carbon emissions in lot-sizing problems. Absi et al. 

(2011) present different types of constraints in lot-sizing problems including a complexity 

analysis. Bouchery et al. (2010) present the sustainable economic order quantity (EOQ) 

problem in a multi-objective setting. Chen et al. (2011) modify the EOQ by adding a 

carbon constraint. Mooij et al. (2011) include a carbon constraint for the dynamic lot-sizing 

problem, similar to Benjaafar et al. (2010), and develop an algorithm based on lagrangean 

relaxation to find a lower bound for the problem. All these authors use a single emission 

factor per unit (supplied or produced), i.e., their structures are based on aggregate 

estimations of carbon emissions (see section 4 for a more in depth discussion of the 

differences). 

 

In this paper, we study the impact of the choice of carbon footprint aggregation level in 

transportation decision making. We do not assume a cost per unit of CO2 emitted since this 

parameter is very specific to each company: companies may be subject to a cap-and-trade 

system, or may use carbon emission reductions as a driver for brand management, product 



differentiation or employee motivation (CDP, 2011). We are interested in learning whether 

(1) using aggregate carbon footprint drives decisions so self-imposed carbon reduction 

targets are reached, and (2) whether actual lot-sizing decisions are different under different 

aggregation levels of carbon footprinting. Cost aggregation has been studied before in the 

operations research literature in Jalil et al., (2011) who found that errors can be significant 

in real-life spare parts planning.  Unlike prices or costs, carbon emission information is not 

currently shared among supply chain members. Thus, a company faces data aggregation 

choices based on activity-based methods that change the underlying problem. 

 

To study this, we add transportation carbon footprint to the Dynamic Lot Sizing (DLS) 

Problem. The DLS Problem is a well-known production planning problem that has been 

extensively studied. The problem was introduced by Wagner and Whitin (1958). The model 

considers a firm that faces deterministic dynamic lot planning decisions for a single item 

over a finite planning horizon, and minimizes the setup, inventory holding and 

production/transportation cost, deciding when and how much to order in each period so that 

the demand is satisfied at minimum cost. We build on the formulation by Zangwill (1969) 

which includes the cost of backordering. The dynamic lot size model is applicable in 

different contexts such as material requirement planning and outbound distribution (Lee et 

al., 2001) and it has been received interest for its simplicity and importance as a sub-

problem for more difficult lot sizing problems (Brahimi, et al., 2006). 

 

We provide both analytical and numerical results, showing that under a wide range of 

conditions the use of an aggregate model will lead to decisions by which the carbon 

reduction targets are not obtained while a detailed model is able to reach such targets at 

limited additional cost. 

 

The remainder of this paper is organized as follows. Section 2 includes a review of the 

GHG and NTM methodologies to estimate the carbon footprint in transport activities. The 

detailed carbon footprint formulation and various aggregate models are explained in 

Section 3. Section 4 includes the formulation for the DLS problem and models with 

different carbon emission constraints based on different levels of aggregation. That section 



also includes a set of properties that help to understand the behavior of the models under 

different conditions. We conduct an experimental analysis for all models based on the data 

of a retail company. These results are shown in Section 5. We summarize our conclusions 

in Section 6.  

 

2. Methodologies to estimate carbon emissions in 

transportation activities. 

 

Generally, transportation modes are classified into four different types: air, water, rail and 

road. In this study, we limit our modeling to road transportation. Road transportation 

accounts for a large share of freight transport emissions. In the European Union (EU), for 

instance, road transport accounts for more than 65% of EU transport-related greenhouse gas 

emissions and over 20% of the EU's total emissions of CO2, the main greenhouse gas (EU 

Transport GHG, 2007). In the United States, road accounts for approximately 30% of 

greenhouse gas emissions and it is the fastest-growing major source of greenhouse gases 

(EPA Road, 2011). 

 

Actual emissions in transportation can be calculated if information is available on the fuel 

consumption of a vehicle. In practice, however, transportation is outsourced and this 

information is either difficult to obtain or - if available to the carrier - the carrier has no 

incentive to share this information as it serves as a proxy for the cost price. Consequently, 

emissions cannot be measured but need to be estimated. 

 

In this paper, we use estimation methods that are activity-based, i.e., the emission factors 

are estimated based on a reference model and database that relates a particular 

transportation activity to the emissions caused by that activity. One such method is the 

transportation estimation model of the GHG Protocol. 

 

In the GHG Protocol methodology, the required parameters to estimate the carbon 

emissions if the fuel consumption information is not available are freight distance traveled 



(tonmile or tonkilometer) and type of vehicle. The carbon emissions are then estimated 

according to: 

         (2.1) 

where, 

TE total emissions in grams of CO2 

EF emission factor in grams of CO2 per kilogram-

kilometer 

D distance in kilometers 

W cargo weight in kilograms 

 

The most common database used by the GHG protocol to define the value of  is the data 

provided by the United States Environmental Protection Agency (EPA) (GHG Protocol 

calculation tools, 2011). The EPA uses the same emission factor independent of the type of 

vehicle or type of road by developing an average of the trucks that use diesel as fuel (GHG 

Protocol core module guidance, 2008). This methodology does not include a specific load 

factor, and therefore it is based on an average utilization per truck. This means that the total 

emissions are not related to the number of shipments but only to the amount of units. 

 

An alternative activity-based methodology is the one developed by NTM (2008). In the 

NTM methodology, at the highest level of aggregation, the estimation is also calculated 

using Equation 2.1. At the next level of detail, however, the NTM methodology requires 

more detailed parameters: fuel consumption, distance traveled and weight per shipment 

(NTM Road, 2008). The fuel consumption is a function of the type of truck/trailer, the load 

factor and the type of road. NTM uses the European ARTEMIS (Assessment and 

Reliability of Transport Emission Models and Inventory Systems) database which 

developed a detailed emission model for all transport modes to provide consistent emission 

estimates at the national, international and regional level (TRL, 2010). At this level of 

aggregation, the NTM estimation model then is: 

 

    (2.2) 

where 



TE total emissions in grams of CO2 

FC fuel consumption in liters per kilometer 

CE constant emission factor (2,621 grams of CO2/liter) 

D distance in kilometers 

 fuel consumption of the empty vehicle liters/km 

 fuel consumption of the fully loaded vehicle liters/km. 

 load factor, defined as w/W (w=cargo weight, W=truck capacity). 

 

Note that in this estimation model, the emissions consist of a fixed amount per shipment 

and a variable amount related to the number of units shipped. Hence, Eq. 2.2 can be 

reduced to 

              (2.3) 

such that  are the fixed emissions due to the number of trips 

(shipments) required and  is the marginal emission factor 

per unit to be transported. 

 

Since we recognize the fixed and variable components of transport emissions, we use the 

NTM methodology to include these emissions into the formulation of the dynamic lot 

sizing problem. We define the formulation based on this methodology as the detailed 

approach. 

 

Table 1 provides the fuel consumption for six different types of trucks that we will use in 

this paper (adapted from NTM Road, 2008). The parameters W (Capacity),  and 

 are values related to the type of trailer and type of road. 

  



Table 1- Fuel consumption and maximum truck capacity per type of trailer. Adapted from 

NTM Road (2008) 

Type of Trailer W (tons) Motorway Rural Urban 

      

1 7.5 0.122 0.137 0.107 0.126 0.11 0.134 

2 14 0.165 0.201 0.152 0.197 0.171 0.228 

3 26 0.204 0.273 0.199 0.284 0.244 0.352 

4 28 0.201 0.294 0.205 0.318 0.255 0.402 

5 40 0.226 0.36 0.23 0.396 0.288 0.504 

6 50 0.246 0.445 0.251 0.495 0.317 0.634 

 

From Table 1, we notice that for a constant distance,  and  are larger as the 

truck capacity increases. We will use this characteristic to demonstrate some of the 

properties in this paper.     

 

3. Detailed carbon footprint formulation and aggregate 

models. 

 

As mentioned earlier, more detailed estimates also require more detailed data collection on 

behalf of the shipper. However, this needs to be traded off against the effort needed to 

collect the required data. NTM provides an analytical framework for a very detailed 

estimation of the carbon footprint in transportation when data is available. Some of the 

required data to compute those estimations are obtained from the transportation supplier, 

e.g., type of trailer, fuel consumption, distance, utilization of trucks. A common practice in 

companies is to estimate the parameters based on average information, similar to the 

information published by the EPA (2011). When using this approach, all emission factors 

are identical, regardless of the type of trailer or road. Other companies use the total demand 

of units divided by the total number of shipments to estimate a common load factor per 

truck. Thus, tactical and operational decisions that incorporate these estimation models 

could be sensitive to the specific aggregation level chosen.  



 

In this paper, we implement six different levels of aggregation in the DLS problem in order 

to compare the performance of the inventory policies and the magnitude of the error. We 

consider two dimensions in the level of detail to distinguish the six different approaches: 

two levels of emission factor (EF) and three levels of load factor (LF).  

 

In the EF dimension we define two levels of detail: Standard EF, when a single number (a 

standard truck) is used to estimate the carbon emissions, and EF per truck, when a truck 

specific EF is used to estimate carbon emissions. In the LF dimension we define three 

levels of detail: FTL (Full Truck Load), when the load factor is estimated assuming full 

truck utilization; Average demand, when the LF is estimated based on the average per 

period shipment size (total demand divided by the time horizon); and Lot size per shipment, 

when the load factor is calculated using the actual number of units on each shipment. When 

combining these two dimensions 

 

Table 2 – Problem names for the six aggregation approaches  

 Lot size per shipment Average demand FTL 

EF per truck Model A Model C Model E 

Standard EF Model B Model D Model F 

 

Table 2 helps to identify the following six different models: 

  

A. This model corresponds to the highest level of detail. The model uses specific 

EF for each type of truck, and the truck load factor (LF) is based on the actual 

units shipped. We will also refer to this model as the detailed approach. 

B. This model uses a standard EF, and a LF is based on the actual units shipped. 

C. This model uses specific EF for each type of truck, but the LF is estimated by 

dividing the total demand by the total number of shipments.  

D. This approach assumes a standard EF, and average demand to calculate an 

average LF. This approach is one of the most commonly used in practice to 

estimate carbon emissions. 



E. This model uses a standard EF, and a LF assuming a full-truck-load, which 

implies 100% utilization. 

F. This final model corresponds to the highest level of aggregation (or lowest 

resolution). The model uses a standard EF and assumes all shipments are FTL. 

 

The remainder of this paper will compare the six modeling approaches and analyze the 

magnitude of error per model compared to the true carbon emissions. This will provide 

insight into the impact of aggregation on the performance in the DLS problem. The next 

section shows the different formulation of the DLS with carbon footprint constraints based 

on each of the models described in this section. 

 

4. Formulation. 

 

This section presents the formulation of the standard DLS model and the model variations 

introduced in Section 3. In Section 4.1 we present the basic DLS problem of Wagner and 

Within (1958). Section 4.2 includes the formulation of the carbon footprint constraint for 

the detailed and aggregate approaches, and in Section 4.3 we present the formal comparison 

between the detailed model and the aggregate approaches. 

 

4.1. A Single Item Dynamic Lot Size Model with Backlogging. 

 

In the Dynamic Lot Sizing problem an entity must determine, over a specified  period 

planning horizon with known demand, when and how much to order (produce). We will 

base the discussion on the formulation proposed by Zangwill (1969) where backlogs are 

allowed. The other key assumptions of the model are as follows: 

 

 Demand is dynamic and known in advance 

 Planning horizon is finite 

 Supply lead times are zero 

 Unfulfilled demand is backordered 

 All the demand should be fulfilled during the planning horizon 



 

The parameters are defined as follows:  

 

 fixed cost per order per period t 

 variable cost per unit per period t 

 cost per unit for inventory carried at the end of period t 

 cost per unit backordered carried at the end of period t  

 demand per period t 

 

The decision variables associated with the problem are denoted by 

 

  

      

  

 

 order quantity per period t 

 amount of inventory at the end of period t 

 amount of inventory shortage at the end of period t 

 

The problem (P1) is formulated as follows: 

 

Minimize    

Subject to 

 

        

     

       

       

        

  

This problem has been proven to be NP-hard even under simplifying conditions in the cost 

structure (Florian, et al., 1980). However, if the costs are concave, a set of “zero-switch” 



properties for the optimal solution defined by Zangwill (1969) allows solving the problem 

in polynomial time by using dynamic programming.  

 

The next section will add carbon emissions to this formulation. 

  

4.2. Carbon emissions formulation 

 

In order to include carbon emissions in the DLS model, we make the following additional 

assumptions: 

 

 The supply chain (SC) consists of one supplier and one buyer. 

 The lot size decision is made by the buyer. 

 The buyer includes transportation carbon emissions in his GHG inventory via Scope 

1 or Scope 3 guidelines (GHG Protocol Standard, 2011). 

 Transportation is conducted by truck, with different kinds of trailers of known 

capacity.  

 The distance is known and constant between the two SC entities. 

 The warehouse carbon emissions are fixed. 

 Production emissions are a linear function of production quantities. 

 

The total carbon emissions in this supply chain include those related to storage, production 

and transportation. Since emissions due to storage do not depend on the number of units in 

the warehouse, they are not a function of the lot size and can be ignored from the DLS 

formulation. Furthermore, there is evidence showing that storage emissions are 

substantially smaller than transportation emissions, by a factor of 10 for some products 

(Cholette and Venkat, 2009). In the base DLS model we assume that all demand is satisfied 

at the end of the planning horizon (equations 4.2-4.3). Hence, total emissions due to 

production are constant and can also be ignored in the base DLS model. Consequently, all 

variations of carbon emissions are obtained by various options of shipment frequency and 

lot sizes, and not a function of time-phased production decisions, unsatisfied demand or 



varying levels of inventory. From now on, the carbon constraint is assumed to be adjusted 

to exclusively reflect carbon emissions due to the transport activity. 

 

4.2.1. Model A: Detailed approach 

 

Since we consider a single item, we can replace  in Eq. 2.3 by its  equivalent units. 

Since  and  could be different per period according to the type of trailer (see 

Table 2), the expression of transport carbon constraint can be reduced to Equation 4.7a: 

 

        

where:      

 

 

 

  

 

The emissions consist of a fixed amount per shipment and a variable amount related to the 

number of units shipped. Notice that expression 4.1 has a different structure compared to 

4.7a, specifically decision variables  and  are not included in 4.7a. Therefore, a 

reduction in cost does not necessarily imply a reduction in carbon emissions and vice versa. 

A reduction of fuel for the DLS problem is driven by reductions in the number of 

shipments (associated with transport cost) within the planning horizon ( ), while this 

reduction could imply an increase in inventory or backorder cost. 

 

We define Model A as the DLS formulation presented in section 4.1 plus Expression 4.7a. 

This constraint has similarities to a capacity restriction, but it is different from the 

capacitated lot-sizing problem since it accumulates the lot sizes for all periods. Since it has 

been proven that the capacitated lot-sizing problem without backlogging may not satisfy the 

“zero-switch” property (Xie and Dong, 2002), we conjecture that when emission factors 

 are different per period, the zero-switch property will not hold in this model and 

therefore heuristic approaches need to be developed. 



 

 

Figure 1- CO2 emissions per unit under different modeling assumptions 

 

Figure 1 compares the emissions of a vehicle based on the number of units it carries. The 

solid line represents the behavior of Eq. (4.7a): a fixed emission per truck and variable 

emission related to the number of units shipped in the truck. We will refer to this approach 

as “Real Emissions” for the purpose of this paper, since this is the most detailed level of 

analysis. 

 

4.2.2. Model B: Lot size per shipment and standard EF per period 

 

When operations are contracted with a transportation service or third party logistics 

provider, information of the specific type of trucks is not readily available. Thus, a common 

practice is to assume a standard truck for all transportation movements. In this case, 

constraint (4.7a) is modified to the following expression (4.7b): 

 

        

 

Where  and  are the emission factors related to a standard truck with known capacity 

across all time periods. On this formulation, the decision variable  is still part of the 



carbon constraint and therefore the utilization estimation is based on the amount of units 

shipped as in model A.  

 

 

 

4.2.3. Model C: Average demand utilization and flexible EF per period 

 

Since information on actual load factor may not be available, a common approach is to 

assume an average load factor across the planning horizon. Thus, any carbon emission 

calculations will not include a variable emission but only a fixed emission every time an 

order is delivered. Figure 1 (dash line) shows the carbon emissions for model C compared 

to Models A and E.  

 

For model C we use an average demand to estimate the truck utilization while keeping the 

flexible assumption of different emission factors per period. Since the total demand for the 

item will be satisfied at the end of the horizon (4.7), an estimation of the average number of 

units shipped per truck can be calculated by using the total demand. In this case, the carbon 

constraint is defined as follows (4.7c): 

 

         

 

With . This approach has the advantage of considering different 

emission factors per period. However, since the model is based on the assumption of 

delivering the average demand every time an order is released, this implies that carbon 

emissions could be overestimated or underestimated.  

 

4.2.4. Model D: Standard EF and average demand of utilization 

 

Model D is similar to model C but assuming a standard truck for the entire planning 

horizon . This implies constant emission factors . This modeling approach does not 



require any detailed operational information, and it is very common in practical industrial 

initiatives. The carbon constraint for this model is defined as follows (4.7d): 

  

                             

  

With   such that  correspond to the emission factors related to a 

standard truck. In this approach the truck is assumed to be loaded with an average demand 

every time an order is released.  

 

 

4.2.5. Model E: FTL utilization and different EF 

 

In some instances, in order to avoid a solution that exceeds the carbon constraint, a 

conservative approach is to assume FTL on all shipments. This curve is shown in Figure 1 

(dot line). Model E assumes different EFs per shipment but an utilization fixed to the 

capacity of the truck. The following expression (4.7e) shows the formulation of model E: 

 

          

 

With . When the shipment sizes are close to the maximum truck 

utilization, assuming that if the capacity of the trucks is more or less equal to the total 

demand, then the estimated emissions are closer to the real emissions.  

 

4.2.6. Model F: FTL utilization and standard EF 

 

Finally, Model F requires just the information related to one standard truck and a 

conservative assumption of FTL for all shipments This model uses the highest level of 

aggregation to estimate carbon emissions. The following expression (4.7f) shows the 

formulation: 

 



                                                     

where .  

 

As in model E, this approach is based on the assumption that if the capacity of the trucks is 

close to the total demand, then the estimated emissions are a good approximation to real 

emissions.  

 

Benjaafar et al, (2010) developed some approaches that include the formulation of carbon 

emissions subject to a mandatory external carbon emission constraint in a series of lot 

sizing models. Their study defined emissions associated with transportation, ordering 

(production) and per unit in storage. Even though their proposed formulation structure is 

general (fixed and variable factors), in their interpretation they assumed a fixed emission 

factor due to transportation activity (as in models C, D, E and F), while common 

methodologies also include a variable transportation emission factor (see section 2). The 

analysis in the following sections will give insight into the impact of this assumption, 

including an experimental study with estimated parameters based on real data from a major 

retail company in North America. We will show that the differences in estimations are not 

only directly due to the differences in parameters between the methods, but are aggravated 

by the optimization, which is also consistent with Wagelmans (1990) who demonstrated, 

through post optimality analysis of parametric variations, that perturbations of data can 

highly affect the optimal solution in mixed integer problems.  

 

The next section focuses on the analytical comparison and properties for the proposed 

various models.  

 

4.3. Analytical comparison between model formulations 

 

In this Section, we provide theoretical properties for the six aggregate approaches defined 

in Section 4.2, to highlight the conditions under which these formulations can lead to 

significant differences in optimal inventory policies. The goal is to understand performance 

of various levels of modeling strategies. 



 

Undesirable performance of aggregate approaches occurs when solutions have one of these 

two properties: 

 

a. The solution exceeds the carbon cap, which means that the solution is feasible in the 

aggregate model but infeasible in the detailed model. 

b. Excludes an optimal solution, which means that the solution is infeasible in the 

aggregate model even if optimal in the detailed model. 

 

In this section, we prove that solutions to models C and D that use average demand to 

estimate the load factor, can exceed the carbon cap. We also prove that Models E and F 

based on FTL estimation cannot reach the optimal solution. In Section 4.3.1, the properties 

related to model C are explained. In Section 4.3.2 the property related to model D is 

explained and Section 4.3.3 explains the properties related to models E and F. The formal 

proofs are shown in the Appendix section. 

 

4.3.1. Properties of using average utilization and flexible EF per period (Model C) 

 

We define as follows:  

 

 Let  be the carbon emissions calculated by model C, such that 

 and  are two matrices related to emission 

factors and decision variables respectively, where  and 

, for . 

 Let  be the real total emissions for  such that 

,  and . 

 Let . 

 If  then  is an inventory policy that is exceeding the carbon 

cap. 

 



Then, the following property can be defined: 

 

 Property 1. Let  and  be the 

optimal inventory policy obtained by model C. Suppose  and  

such that  and , if  and 

, then   exceeds the carbon cap. 

 

Property 1 shows that whenever there are optimal solutions for Model C that place orders in 

every period and have larger lot sizes at the beginning of the time horizon (due to lower 

emissions), the solutions will exceed the true carbon cap. Clearly, not all optimal solutions 

will have this property. However, property 1, shows that the modeling approach used in 

Model C is unreliable.  

 

Property 1 also provides strong evidence that if an estimation of carbon emissions is based 

on average demand instead of the specific amount requested per period, even when the total 

demand and the total number of lots remains the same, if the largest number of orders are 

located in the smallest trucks (with the lowest capacity), the aggregate approach faces an 

underestimation of carbon emissions. 

 

4.3.2. Properties of using standard EF and average demand of utilization (Model D) 

 

We define as follows: 

  

 Let  be the carbon emissions calculated by Model D, such that 

 and  is the matrix of decision variables such 

that  for . 

 Let  be the real total emissions for  such that 

,  and . 

 If , then  is an inventory policy that is exceeding the carbon 

emissions cap. 



 

Then, the following property and corollary can be defined: 

 

 Property 2. Let  and  be the 

optimal inventory policy obtained by model D. Suppose , if 

 such that  is the number of  for any , then 

 exceeds the carbon cap. 

 

o Corollary 2.1 Let  and  

be the optimal inventory policy obtained by model D. Suppose 

, if  and , then  exceeds the carbon cap.  

 

Corollary 2.1 is a particular case of property 2. Since , the only way not to exceed the 

carbon cap is when . This relation shows that if the emissions calculated by 

Model D are strictly equal to the cap target, the only case in which cannot exceed the cap 

is when the optimal solution is to release orders in each period. Thus, an optimal solution in 

which an order is not loaded in one of the periods, implies that the solution will exceed the 

carbon cap constraint. Moreover, property 2 provides the range for which the solution 

obtained by model D will exceed the cap if >0 and an optimal solution such 

that . It is intuitively clear to expect optimal solutions that try to decrease the 

difference of the constraint and the resource as much as possible. Therefore, the difference 

between the carbon cap and the carbon emissions calculated by Model D tends to zero in 

most cases. Thus,  is in the range of exceeding the carbon emissions cap. 

 

This analysis was based on the assumption of having the same truck capacity in all periods. 

Since this cannot always be guaranteed, we can expect that the approach generates 

solutions that exceed the carbon cap in a wide range of situations.  

 

4.3.3.  Properties of using FTL utilization with standard or different EF (Models E 

and F) 



 

In order to avoid the underestimation of carbon emissions, models E and F assume that 

every time an order is placed, the carbon emissions associated to that order are equal to the 

full truck emissions. In that case, the LF is not estimated with the average demand, but by 

assuming that the full truck capacity was used in that period. Clearly, this approach does 

not underestimate carbon emissions. However, we show that this approach, even though 

guarantees that the carbon cap is never exceeded, cannot reach an optimal solution. In order 

to show this, we use the following definitions: 

 

 Let  be the carbon emissions calculated by model F, such that 

 and  is the matrix of decision variables where 

 for . 

 Let  be the real total emissions for  such that 

,  and . 

 Let  and  be an optimal inventory policy 

obtained by the detailed approach and let  and 

 be an optimal inventory policy obtained by model F, then the 

solution of model F is the true optimal if  and . 

 

The following property and corollary can be defined: 

 

 Property 3. Let   be the 

optimal inventory policy obtained by model F. Suppose , if 

 such that  is the number of  for any , then 

is not the true optimal. 

 

o Corollary 3.1 Let   be 

the optimal inventory policy obtained by model F. Suppose , if 

 and  then the optimal solution of model F is 

not the true optimal solution.  



 

Property 3 provides the range of solutions of model F that are not true optimal solutions: 

when the difference between the total demand and the capacity of the trucks is close to 

zero, i.e., . If the capacity of the trucks is equal to the total demand, corollary 3.1 

shows that the solution is not the true optimal solution for any inventory policy when an 

order is not place in at least one period, i.e., some , . However, since a 

key assumption of the DLS problem without capacity constraint is that the capacity of the 

trucks should be much larger than the lot size,  implies that the truck capacity per 

period should be exactly equal to the average demand. Thus, this condition could lead to an 

infeasible solution  for some . In order to prevent such an infeasible 

solution, we define the following condition  and therefore  for all . 

Since that condition implies , we notice that an optimal solution 

obtained by the detailed approach could be infeasible for the FTL approach. The following 

property specifies this overestimation problem for model E (different trucks per period), 

and therefore the results are also applicable to model F (standard truck for the planning 

horizon). In order to show this relation, we use the following definitions: 

 

 Let  be the carbon emissions calculated by model E, such that 

 and  are two matrix related to emission 

factors and decision variables respectively, where  and  

for . 

 Let  be the real total emissions for  such that 

,  and . 

 Let  and  be an optimal 

inventory policy obtained by model E and let  and 

 be an optimal inventory policy obtained by model F 

 The optimal solution is the true optimal if  and  or  and 

 for model E and F respectively. 

  

We define the following property and corollary: 



 

 Property 4. Let  and  be the 

optimal inventory policy obtained by model E. If 

 then  is not the true optimal. 

 

o Corollary 4.1. Let  and 

 be the optimal inventory policy obtained by 

model F. If  then   is not 

the true optimal. 

 

Property 4 provides a range for  where the optimal solutions of model E 

are not true optimal solutions. It can be noticed that as the number of   increases, the 

range increases as well. This implies that if the carbon cap increases, the number of 

possible optimal solutions obtained by model E that are not perfect are larger. Collorary 4.1 

shows similar results for model F. Thus, it is clear that the FTL approaches (models E and 

F) overestimate the carbon emissions and therefore they result in worse solutions. The 

following Section shows the experimental results of all the models.  

 

5. Experiments 

 

In order to study the difference in the decisions obtained by the detailed and aggregate 

approaches, seven MIP formulations were implemented in Mathematica 7 for models A, B, 

C, D, E, F and the original DLS without carbon constraint (see Section 3). For all the 

experiments we used urban road fuel consumption parameters and distance D equal to 492 

kilometers. Since the cost of producing  is constant, we do not include this parameter in 

the experimental study. The information related to truck capacities, demand and emission 

factor parameters used on the experiments are shown in Table 3.  

  



Table 3- Parameters for the models. 

Period Demand   W 

1 4451 328830.66 3.39 56000 

2 4922 371385.22 3.48 80000 

3 4003 408781.65 4.09 100000 

4 4365 328830.66 3.39 56000 

5 4139 371385.22 3.48 80000 

6 4287 408781.64 4.09 100000 

7 4665 328830.66 3.39 56000 

8 4459 371385.22 3.48 80000 

9 4311 408781.64 4.09 100000 

10 4467 328830.66 3.39 56000 

11 4183 371385.22 3.48 80000 

12 4745 408781.64 4.09 100000 

 

We ran 5000 experiments with 100 different carbon caps each with 50 different setup, 

holding and backorder costs in order to evaluate the differences in cost, carbon emissions 

and inventory policies for the various DLS models.  We generated these parameters 

randomly using ranges from operations of a North American retail company, as follows: 

,  and .,  tons of CO2, 

where U denotes the uniform distribution. The parameters of the Uniform distribution for 

the carbon cap C were determined by the Lower Bound and Upper Bound, respectively of 

model A. In our data, 2,000 units weigh one ton of truck capacity. Finally, we assume that 

the truck with the lowest capacity is capable of carrying the total demand.  

 

Figure 2 shows the average total cost for each of the carbon caps (tons of CO2), based on 

the EF dimension: a) EF per shipment (models A, C and D) and b) Standard EF (models B, 

D and F). All the models are compared against the original DLS without carbon cap. In 

Figure 2a, we notice that the average cost of the detailed approach (model A) is always 

between the average cost of models C and E. This occurs because models C and E face the 

underestimation and overestimation problem respectively described in Section 4.3. Model 



C has lower cost than model A, because its emissions are larger, and therefore a lower cost 

solution can be found. Model E overestimates carbon emissions and therefore its cost is 

larger. The three approaches achieve the same solution (the original DLS solution) if the 

carbon cap increases and the carbon constraint becomes redundant. 

 

Figure 2b is based on the assumption of considering an identical EF for all periods. This 

situation implies discrete jumps in the cost function. The general behavior observed in 

Figure 2a is similar to 2b in the sense that the average cost of model B is always between 

the average cost of model D and F, because these two models face underestimation and 

overestimation of carbon emissions respectively. However, an important difference 

between the models in Figure 2a versus those in Figure 2b is that the latter approaches 

could exceed the lower bound of the carbon constraint and therefore no solution to the 

problem can be found. In Figure 2b, this phenomenon can be observed for models B and F.   

 

 
a)                                                                                     b) 

Figure 2- Total average cost per carbon cap, a) EF per shipment b) Standard EF 

 

Figure 3 shows the carbon emissions for the DLS without carbon constraint per different 

experiment (the experiments are sorted in ascending order of carbon cap). Obviously, the 

carbon cap (solid line) does not impact the solution. Note that the dotted line shows the 

average emissions across the different parameter settings, while the dashed and dash-dotted 

lines show the minimum and the maximum emissions obtained, respectively. We use these 

carbon emissions from the original as a baseline to make the comparison among different 

approaches. 



 

 

Figure 3- Carbon emissions (grams of CO2) for the DLS. 

 

Figure 4 shows the average carbon emissions per inventory policy obtained by the 

approaches, including the maximum and the minimum value. Figure 4a shows the detailed 

approach. The average emissions are very close to the carbon cap. Besides, we notice that 

that the maximum emission value is always below the carbon cap. A more aggregate 

approach is model B. Figure 4b shows that the average emission is always below the carbon 

cap, but the maximum emissions across all experiments could exceed the carbon cap by a 

small amount. Similar to the cost chart in Figure 2b, the discrete jumps can be explained by 

the EF remaining the same across the entire planning horizon. Figures 4c and 4d show the 

emissions of models C and D respectively. Both approaches have the unreliable behavior 

explained in Section 4.3, i.e., sometimes above the carbon cap and sometimes below. 

Finally, in Figures 4e and 4f, models E and F provide inventory policies with carbon 

emissions far below the carbon cap (overestimation) and therefore they require a high 

carbon cap in order to achieve lower cost solutions. Model F does not generate solutions if 

the carbon cap is less than 660 thousands of grams of CO2.  

 



 

a)      b) 

 

c)      d) 

 

 

e)      f) 

Figure 4- Carbon emissions (grams of CO2) per model. a) Model A, b) Model B, c) Model 

C, d) Model D, e) Model E, f) Model F 

 

In order to quantify the magnitude of error for the aggregate approaches, a mean percentage 

error is calculated as follows: 

 



 

 

where: 

 

 Emissions estimated by aggregate approach. 

 Real emissions of aggregate approach. 

 Number of carbon caps. 

 Number of different sets of cost parameters. 

 

For a given inventory policy obtained by the aggregate approaches, the error is measured as 

the absolute difference between the carbon emissions estimated by these approaches 

compared to their real emissions. Figure 5 shows the mean percentage error for each of the 

approaches. We define the formulation of the detailed approach as the real emissions. We 

notice that as the level of aggregation increases, the magnitude of the error increases as 

well. Furthermore, this chart allows showing the points where the big changes in error 

occur. If a company is interested in increasing the level of detail in measuring carbon 

emissions, a movement between models C and D is clearly not significant (0.1% of 

difference). However, the break points from model F to D (~9%) and from model C to A 

(~16.4%) are related to a larger change in the error. 

 

 

Figure 5- Mean percentage of error for aggregate carbon emissions versus carbon cap 



 

Alternatively, the experimental results show significant differences in the inventory 

policies. Figure 6 shows the average inventory and backorder cost for different values of 

the carbon cap. Since the carbon emissions are related to the activity of ordering, we notice 

that including a carbon cap implies a higher inventory and backorder cost than a cost 

minimization approach. 

 

 
  a)        b)     

Figure 6- Average inventory and backorder cost per carbon cap (tons of CO2) 

a) DLS, b) Detailed approach. 

6. Conclusions. 

 

The importance of including carbon emissions in planning decisions is becoming an 

important element in supply chain management, considering the relevance of greenhouse 

gases as the main cause of climate change, and also the risks associated with the potential 

implementation of regulatory policies. This paper addresses the relevance of including a 

more detailed formulation to measure carbon emissions due to transportation activities in 

the dynamic lot sizing model as a self-imposed constraint. We have defined a lot-sizing 

model that can provide both an optimal inventory policy under a carbon constraint and the 

total carbon emissions under such a policy, in accordance with the NTM methodology. We 

developed a comparison between aggregate approaches to include carbon emissions, versus 

a more detailed approach. The formal proofs show that under different conditions, 

aggregate approaches can cause a significant distortion in the lot sizing decisions such that, 



by defining an inventory policy, the carbon cap is exceeded or a cost-worse solution is 

obtained. The numerical experiments confirm this conclusion and show that the magnitude 

of error could be up to 25% for a very aggregate approach (with a standard emission factor 

and a full truck load utilization assumption) and 16% for models that assume an average 

load factor rather than a specific one. Furthermore, we show formally that some of the 

models systematically overestimate the carbon emissions, while other models 

underestimate emissions under some conditions. Errors associated with aggregation tend to 

be substantial and systematic. 

 

Our results show the importance of selecting a sufficient level of detail in estimating carbon 

emissions in transportation, based on the significant differences in the decisions obtained 

by more aggregate models through the optimization process. This paper may motivate 

future research related to the implementation of detailed carbon constraints in more 

complex lot-sizing problems such as Capacitated Lot-Sizing, Lot sizing with Multi-setup 

costs, Multi-item Lot Sizing, among others. Our work poses an open issue with regard to 

the complexity of the lot sizing problem under a carbon constraint. We conjectured that the 

detailed approach does not keep the properties of Zangwill (1969), but the formal proof of 

this and the study of solution methods through heuristics remain as future research.  
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Appendix. 

 

 Property 1. Let  and  be the 

optimal inventory policy obtained by model C. Suppose  and  

such that  and , if  and 

, then   exceeds the carbon cap. 

Proof. 

 

Since ,  for some . If we assume that  is not 

exceeding the carbon cap, the following relation should always hold:  

 , which implies 

 such that . Thus, 

. Using the nomenclature  the condition is reduced to 

 such that  and  are the emission 

factors related to  and   respectively. Clearly 

, and therefore it is possible to define a factor  such that  

and . Therefore, . 

Since condition  implies that , thus   

 

 Property 2. Let  and  be the 

optimal inventory policy obtained by model D. Suppose , if 

 such that  is the number of  for any , then 

 exceeds the carbon cap. 

 

Proof. 

 



Since , and we can define  for some . If we 

assume that  is not exceeding the carbon cap, the following relation should 

always hold: , which implies 

the following condition . Thus, 

   

 

o Corollary 2.1. Let  and 

 be the optimal inventory policy obtained by 

model D. Suppose , if  and , then 

 exceeds the carbon cap.  

 

Proof.  

 

If  thus . However, since  it is 

clear that the previous condition is just valid for , but we know 

that    

 

 Property 3. Let   be the 

optimal inventory policy obtained by model F. Suppose , if 

 such that  is the number of  for any , then 

is not the true optimal. 

 

Proof. 

 

Since , we can define  for some . 

Besides, we notice that  and therefore we define 

for some .If we assume that the optimal solution of model F is indeed 

the true optimal solution, the following relation should always hold: , thus 



 , which implies 

. Thus        and therefore 

the following condition should hold   

 

o Corollary 3.1. Let   be 

the optimal inventory policy obtained by model F. Suppose , if 

 and  then the optimal solution of model F is 

not the true optimal solution.  

 

Proof.  

 

If  thus . However, since  it is clear that the 

previous condition is just valid for , but we know that   

 

 

 Property 4. Let  and  be the 

optimal inventory policy obtained by model E. If 

 then  is not the true optimal. 

 

Proof. 

 

Since  we define  for some . 

Furthermore, we notice that .If we assume that model E is a true 

optimal solution the following relation should always hold: , thus 

 , which implies 

  

 

o Corollary 4.1. Let  and 

 be the optimal inventory policy obtained by 



model F. If  then   is not 

the true optimal. 

 

Proof.  

 

Since , property 2 is reduced to 

 . 

 


