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The impact of disease-causing defects is often not limited to the products of a mutated gene but,
thanks to interactions between the molecular components, may also affect other cellular functions,
resulting in potential comorbidity effects. By combining information on cellular interactions,
disease–gene associations, and population-level disease patterns extracted from Medicare data, we
find statistically significant correlations between the underlying structure of cellular networks and
disease comorbidity patterns in the human population. Our results indicate that such a combination
of population-level data and cellular network information could help build novel hypotheses about
disease mechanisms.
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Introduction

Most cellular functions are carried out by a complex network
of genes, proteins, and metabolites that interact through
biochemical and physical interactions (Gerstein et al, 2002;
Barabási and Oltvai, 2004; Albert, 2005; Basso et al, 2005;
Almaas, 2007; Alon, 2007; Yildrim et al, 2007). Therefore,
disease-causing defects may initiate cascades of failures that
trigger the co-emergence of multiple diseases in a patient, such
as diabetes and obesity. Yet, given the environmental, lifestyle,
or treatment-related factors that all contribute to comorbidity,
it is not obvious whether these cellular network-based
interdependencies manifest themselves at the individual
or at the population level. Discovering such systematic
correlations between cellular networks and disease patterns
could potentially open new avenues for understanding the
human interactome, and may help uncover hitherto unknown
disease mechanisms (Ergun et al, 2007; Loscalzo et al, 2007;
Braun et al, 2008).

The possibility that there may be systematic links between
hereditary diseases, thanks to their common genetic origins,
was postulated recently by Goh et al, who created a Human
Disease Network (HDN) by connecting all hereditary diseases

that share a disease-causing gene according to the Online
Mendelian Inheritance in Man (OMIM) database (Goh et al,
2007; Feldman et al, 2008). Although some of the diseases
connected in the HDN captured well-known comorbidity
patterns, the functional relevance of the links in the network
remains to be demonstrated, leaving open the question
whether most diseases connected in the HDN exhibit
significant comorbidity. Interestingly, the most disconnected
disease class in the HDN is that of metabolic diseases.
However, Lee et al recently showed that metabolic diseases
can be also organized in a metabolic disease network if the
enzymes and their associated diseases are linked through
metabolic pathways (Lee et al, 2008). Most importantly, the
study found that metabolic diseases connected through shared
pathways tend to show significant comorbidity, suggesting
that information encoded in the structure of the metabolic
network is amplified, becoming discernible at the population
level as comorbidity patterns.

Metabolic networks represent only one of the several
networks functionally relevant to our understanding of
cellular activity. Indeed, when it comes to cellular interactions
of potential importance to human diseases, we need to
consider protein–protein interaction (PPI) and coexpression
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networks as well as the links between diseases generated by
shared genes. Therefore, earlier research raises an important
question: are the cellular-level relationships encoded by PPIs,
coexpression, and shared genes amplified at the population
level? That is, should we expect statistically significant
comorbidity patterns for disease pairs that share a gene,
whose proteins interact, or whose genes show high coexpres-
sion patterns? To answer these questions, we analyzed the
large-scale comorbidity pattern extracted from the US Medi-
care claims database and the gene–disease association net-
work from OMIM (McCusick, 1998). We find that cellular
interaction links indeed manifest themselves at the population
level, resulting in statistically significant comorbidity patterns.
We quantify the relative magnitude of these correlations and
discuss the current difficulties in mapping population- and
cellular-level data into each other, as well as the benefits of
such an approach toward elucidating disease mechanisms.

Results and discussion

The starting point of our study is the Medicare claims database
containing the diagnoses that Cij led to the hospitalization of
N¼13039 018 elderly patients, each disease or condition
identified by an ICD-9-CM code. We denote the incidence of
disease i with Ii, and the number of patients who were
simultaneously diagnosed with diseases i and j with Cij. The
comorbid tendency between the two diseases can be quantified
using either the relative risk, RR¼Cij/Cij*, where Cij*¼IiIj/N
is the expectation value of Cij when the two diseases
are independent, or the f-correlation defined as
f ¼ ðNCij � IiIjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IiIjðN � IiÞðN � IjÞ

p
. When two diseases co-

occur more frequently than expected by chance, we have RR41
and f40. Note, however, that although RR and f are not
independent of each other, each carries unique biases that are
complementary. Therefore, we use both measures of comorbid-
ity to ensure the robustness of our findings (see Supplementary
information (SI) for further details). The disease–gene associa-
tions used in the study were obtained from the OMIM database,
which contains 44900 such associations as of October 2008.
Although the disease–gene record is far from complete, OMIM is
currently the most complete repository of all known disease
genes and their associated disorders.

It is important to note that disease names used in the
Medicare database by the medical and the insurance commu-
nities (the ICD-9-CM scheme) and those used in the OMIM
database by geneticists are not identical. Therefore, we
enlisted a professional ICD-9-CM coder to manually map the
OMIM disease names into ICD-9-CM codes and established
connections between the genetic associations and the comor-
bidity measures (see Box 1 and SI sections S1 and S2 for more
detail). On account of the discrepancies in disease names and
the complex, hierarchical nature of the ICD-9-CM scheme, we
recognize that the mapping is not perfect, and may contain
debatable and occasionally erroneous ICD-9-CM-to-OMIM
correspondence. Therefore, we are providing the mapping
used by us in the SI, offering a chance for the community to
improve on it in future studies.

As OMIM comprises the set of hereditary or complex
diseases with validated gene–disease associations, it is

anticipated that only a subset of ICD-9-CM codes would
correspond to the diseases in the OMIM. Indeed, we find that,
of the 412 000 available ICD-9-CM codes, 763 unique ICD-9-
CM codes can be mapped to OMIM diseases. The fact that our
analysis is limited to 5% of possible diagnosis codes contained
in the Medicare database, could limit our population (patient)
coverage. We find, however, that this is not the case: as
Figure 1A shows, 90% of patients in the Medicare database are
diagnosed with at least one disease whose ICD-9-CM code is
contained in our mapping to the OMIM database.

We use the following three quantities to capture the cellular
network-level relationship between diseases i and j, as
illustrated in Figure 1B for the case of breast cancer (ICD-9-
CM 174) and cancer of bone and cartilage (ICD-9-CM 170.9,
see also SI):

(i) nij
g, the number of shared genes associated with both

diseases i and j, which quantifies the potential common
genetic origin of the two diseases (Goh et al, 2007);

(ii) nij
p, the number of PPIs between the proteins of diseases i

and j capturing the PPI network-level relationships between
them (Rual et al, 2005; Stelzl et al, 2005).

(iii) �rij, the average Pearson correlation of coexpression
between pairs of genes from each disease, capturing the degree
to which the genes associated with the two diseases are
coexpressed (Ge et al, 2005).

The main question can be formulated as follows: does the
existence of these cellular-level links (i.e., nij

g40, nij
p40,

�rij40) between the two diseases increase the likelihood that
individuals simultaneously develop both conditions? We start
our investigation by measuring the Pearson correlation
between the cellular variables (nij

g, nij
p, �rij) and comorbidities

(RR and f) for 83 924 disease pairs. Of these, 2239 pairs are
linked through either shared genes (nij

g
X1) or PPIs (nij

p
X1; 658

with shared genes, and 1873 with PPIs). In Figure 2A and
Table I we present the Pearson correlation coefficients (PCCs)
between the comorbidity measures and the genetic variables.
Although ng, in general, has the highest correlation with
comorbidity, we do observe positive PCC with all three
variables.

There are numerous factors that determine whether two
diseases co-occur in a patient, some of which are environ-
mental, lifestyle-related or treatment-induced. Our study
captures only the role of the cellular network on comorbidity.
The small magnitude of the correlations observed by us
suggests that the cellular network offers only a small
contribution to the observed comorbidity. Note, however, that
placing significant emphasis on the magnitude of these
correlations is premature, as two known effects limit the
correlations observed by us. First, the magnitude of the
correlation is limited by the predictive power of specific
genetic mutations catalogued in the OMIM database, and the
likelihood of a patient developing a particular disease. Indeed,
it is known that genetic mutations result in an increase of at
most a few percentage points in the likelihood of an individual
developing a specific complex disease (Loscalzo, 2007) and the
correlations observed by us cannot exceed the known disease–
gene correlations. Second, the correlations are further limited
by the noise in the mapping between the OMIM diseases and
the ICD-9-CM codes. As we noted, there is inherent ambiguity
both in the mapping as well as in the process of assigning a
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particular diagnosis to specific ICD-9-CM codes in hospitals.
Each instance of such misdiagnosis or mapping ambiguity
decreases the magnitude of the observed correlations. There-
fore, at this point it is not the magnitude, but the statistical
significance of the correlations that we can rely on. As
summarized in Table I, the observed correlations are
statistically significant.

To quantify the degree of comorbidity caused by the
observed correlations, we measured the average comorbidities
/RRS and /fS for disease pairs that are connected at the
cellular network level. Compared with the entire set of 83 924
pairs of hereditary diseases considered in our study, we find
(see Figure 2B; Table II) a two- to four-fold increase in the
average comorbidity in disease pairs that share genes (nij

g
X1),

indicating that if a patient develops a particular disease
associated with a gene or multiple genes in the HDN, then they
have a two-fold higher chance of developing another disease
mapped to one or more common genes in the HDN, compared
with diseases that are not. An increased comorbidity is also

observed for disease pairs linked through PPIs (nij
p
X1) and

high coexpression (�rijX0:5).
The observed correlations between the cellular links and

comorbidities raise a related question: would disease pairs that
are more interconnected than others (i.e., have larger nij

g, nij
p, or

�rij) show higher comorbidity? To address this, in Figure 2C we
show that comorbidity increases rapidly with the number of
shared genes: sharing two or more genes (nij

g
X2) results in

nearly a five-fold increase in comorbidity compared with
hereditary disease pairs that do not share genes. An increase in
comorbidity is observed with increasing nij

p and �rij as well
(Figure 2D and E), although the effect is weaker than that
observed for nij

g, which is not unexpected given the smaller
impact that nij

p and �rij have on comorbidity in comparison with nij
g.

Note that the average comorbidity measured between all
pairs of diseases is 41 (Figure 2B), indicating that many
patients develop multiple disorders, whether or not the
specific diseases are linked at the cellular level. Such
correlations have been observed in other studies focused on
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Schematic description of the procedure used to connect comorbidity (calculated in the Medicare Layer, top) and genetic associations (given in the OMIM Layer,
bottom) between a pair of diseases. Breast Cancer and Bone and Cartilage Cancer are treated as the example here, also presented in Figure 1B. In the Medicare
Layer (top), each disease is represented by an ICD-9-CM code, a widely used hierarchical disease diagnosis code system. The incidence Ii of each disease
(represented by a blue line) is found by counting patients in the Medicare database diagnosed with the corresponding ICD-9-CM code and its sub-level codes (i.e.
174.1 is also counted as an incidence of 174 for breast cancer), while the co-occurrence Cij (red line) of a disease pair is found by counting patients diagnosed with
both codes. The comorbidity measures RR and f can be calculated from these quantities and the total number of patients in the Medicare database (approximately
13 million). The associated genes of each disease are provided in the OMIM Layer (bottom, green lines). Because of differences in the disease-labeling schemes in
the Medicare (ICD-9-CM) and the OMIM databases (the codes are as given in Goh et al, 2007), we manually constructed a mapping between the two (grey lines).
See Supplementary information for detail.
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comorbidity patterns (Rzhetsky et al, 2007; Hidalgo et al,
2009). These overall comorbidity patterns are not particularly
surprising considering that the Medicare population is 65 years
of age or older, the age at which individuals do develop
multiple disorders. Thus, the overall comorbidity represents
the baseline against which we can assess the impact of the
genetic and cellular networks. It is reassuring, therefore, that
hereditary diseases that are linked in the HDN (and thus at the
cellular level) show comorbidity higher than the baseline
/RRS¼1.92±0.01 and /fS¼(1.84±0.02)� 10�3 observed for
the set of all disease pairs.

Despite the significant increase in /RRS and /fS, there are
many disease pairs that share genes yet fail to show significant
comorbidity. We hypothesize that this is, in part, because of

pleiotropy, which in this context means that different muta-
tions on the same gene can have different pathological effects
on a protein (Dudley et al, 2005), thereby predisposing an
individual to different disorders. In general, we expect that
disease pairs associated with mutations on the same functional
domain of the shared protein show higher comorbidity than
disease pairs whose mutations occur in different functional
domains. To test this hypothesis, we identified the functional
domains of disease-causing mutations on shared genes using
the Pfam database (Finn et al, 2006). In agreement with our
hypothesis, we find higher /RRS and /fS, for disease pairs
whose mutations are on the same domain of the shared gene,
compared with disease pairs whose mutations are in distinct
functional domains (Figure 2B).

The observed correlations suggest that a combination of
disease data and cellular network information may assist us in
identifying new comorbidity patterns alongside their potential
genetic origin. Indeed, upon inspection of the 2239 disease
pairs that are genetically linked (i.e., nij

g
X1 or nij

p
X1), we find

several disease pairs whose comorbidity patterns are already
well known to the medical community, such as diabetes and
obesity (Evans et al, 2002), or breast cancer and osteosarcoma
(Knowling and Basco, 1986). At the same time, due to the
aforementioned mismatch between disease names used by
clinicians (within the ICD-9 coding scheme) and by geneticists
(within the OMIM tabulation), several highly comorbid
disease pairs are readily anticipated (such as diabetes and
hypoglycemia, as hypoglycemia is a common side effect of the
treatment of diabetes) or cases in which one disease is a
broader version of the other (such as mononeuritis and
hereditary peripheral neuropathy). Such mapping limitations
notwithstanding, we find several interesting disease pairs that
are linked at the cellular level and also show significant
comorbidity. For example, consider Alzheimer’s disease (ICD-
9-CM 331) and myocardial infarction (ICD-9-CM 410.9), for
which earlier comorbidity studies were either inconclusive or
contradictory (Bursi et al, 2006). As Figure 3A shows, we not
only find statistically significant comorbidity (PE10�5)
between the two, but the figure suggests that the shared ACE
and APOE genes may contribute to the observed effect.
Similarly, we observe significant comorbidity (PE10�148)
between autonomic nervous system disorder (ICD-9-CM
337.9) and carpal tunnel syndrome (ICD-9-CM 354,
Figure 3B). A known mechanism is L-chain amyloidosis,
which may affect the autonomic nervous system and causes
carpal tunnel syndrome when the amyloid infiltrates the flexor
retinaculum of the patient’s wrist (Haan and Peters, 1994).
Figure 3B, however, suggests that a PPI between the associated
genes of each disorder may also play a role in the observed
effect. Although there may be additional possible physiologi-
cal or social explanations for some of the observed comorbid-
ities (see SI), the method described above has the potential to
offer new, testable hypotheses about the biological basis of
disease interrelationships. These examples were selected only
to demonstrate the potential of the combined investigation of
the network and population-level data in identifying poten-
tially interesting disease pairs worthy of further study. A more
detailed description of these disease pairs, along with the
complete list of the 2239 genetically linked disease pairs and
their genetic associations are provided in the SI.
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Figure 1 (A) The fraction of patients in the Medicare database diagnosed with
ICD-9-CM codes mapped to OMIM diseases. Although they represent fewer than
6% of all ICD-9-CM codes, 90% of the patients were diagnosed with at least one.
(B) Breast cancer and cancer of bone and cartilage offer an example of a disease
pair linked on the cellular-network level. They share two genes (CHEK2 and
TP53), and their proteins interact through 13 protein–protein interactions (green
lines). The average coexpression �r between the genes of each disease is 0.103.
Their comorbidity between the two diseases are RR¼ 8.69, indicating that the
number of patients who simultaneously develop both diseases shows a seven-
fold increase compared with random expectation, and f¼ 0.00813
(PE6� 10�71). (C) The functional domains of the TP53 protein. Breast cancer
and cancer of bone and cartilage shown also constitute a domain-sharing
disease pair: mutations on the TP53 protein associated with breast cancer and
cancer of bone and cartilage take place on the same P53 domain.

Impact of cellular networks on disease comorbidity
J Park et al

4 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited



The main finding of this paper is that health care and
treatment data on a large number of individuals offer
information useful to systems biology that can complement
the information from the well-established genomic studies.
Indeed, Medicare and insurance databases already collect the
health care history of millions of individuals, allowing us to
uncover the correlations in the occurrence of various diseases.
In parallel, increasing knowledge about the molecular origin of
disease indicates that many disorders are rooted in defects in
gene products that are part of the same cellular network,
raising the possibility that these diseases should co-occur in
the same individual. Admittedly, much of the currently
available network data are incomplete and probably noisy.
We may be approaching a tipping point, however, where we
have acquired sufficient knowledge of human cellular net-
works to begin understanding the way a disturbance in the
networks may contribute to the development of a disease and
suggest potential disease-modifying factors.

To test the validity of this hypothesis, here we correlated
cellular level information for human cells, namely data on

shared genes, PPIs, and coexpression patterns, with comor-
bidity data obtained from the Medicare database. Despite the
aforementioned limitations of the mapping and the data
collection process, we found statistically significant correla-
tions between cellular interactions and comorbidity patterns.
We also found that disease pairs with higher correlations tend
to be linked more strongly in the cellular network.

Although our work was mainly driven by the desire to
uncover evidence that cellular information is amplified in the
human population and thus can be detected from patient data,
our results point to the potential usefulness of our approach in
uncovering disease mechanisms. Indeed, we discuss two
disease pairs in which the network-based information offers a
plausible mechanism for statistically significant comorbidity
patterns. These results suggest that Medicare and other
insurance databases could play an increasing role in future
studies of the systems biology of human cells and diseases.

Table II The average comorbidity of disease pairs satisfying various criteria,
quantifying the strength of the cellular and genetic links connecting the pairs

Number of pairs RR
(error)

f
(error)

All diseases 83 924 1.92 (0.01) 1.84 (0.02)� 10�3

ng
X1 658 4.35 (0.60) 7.57 (0.96)� 10�3

np
X1 1873 2.35 (0.16) 2.28 (0.23)� 10�3

�rX0:5 215 2.79 (0.32) 3.44 (0.82)� 10�3

ng
X1

Domain-sharing 182 5.98 (1.86) 9.77 (2.85)� 10�3

ng
X1

Non-domain-sharing 476 3.73 (0.38) 6.72 (0.84)� 10�3
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Figure 2 (A) The Pearson correlation between comorbidity and the three quantities (ng, np, �r) that capture cellular-level links between diseases. See also Table I.
(B) Average comorbidity for disease pairs satisfying the cellular constraints discussed in the text. See also Table II. (C–E) Average comorbidity for disease pairs with
increasing values of ng, np, and �r.

Table I The Pearson correlation between relative risk, f-correlation and
the three genetic variables (see Figure 2A)

Genetic
variables

Pearson correlation
with relative risk

Pearson correlation with
f-correlation

ng 0.0469 (PE3.85�10�4) 0.0902 (PE1.48�10�4)
np 0.00948 (PE1.65�10�2) 0.00941 (PE1.49�10�2)
�r 0.0272 (PE1.07�10�3) 0.0334 (PE3.41�10�4)

All correlations are positive, with P-values shown in parentheses.
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Materials and methods

Data sets

We used the HDN from Goh et al for disorder–gene associations (Goh
et al, 2007), updated based on the version of the Morbid Map from
OMIM at the time of the study. The most up-to-date version can be
found at http://www.ncbi.nlm.nih.gov/sites/entrez?db¼omim. The
PPI data were taken from Rual et al (2005) and Stelzl et al (2005). The
genetic coexpression levels were calculated on the basis of an Affeymetrix
microarray data (Ge et al, 2005) (see www.affymetrix.com). Protein
domain information is available on UnitProt (http://www.uniprot.org/)
and Pfam (http://www.sanger.ac.uk/Software/Pfam/).

Estimating P-values and errors

The P-values for the PCCs shown in Figure 2A and Table I were
calculated by a Monte Carlo sampling method. We generate a
randomized sequence of the genetic variables and calculate its PCC
with comorbidity. After 2 million randomizations, the P-value is the
fraction of the total trials that resulted in a PCC that is larger than what
was observed.

As RR andf are monotonically increasing functions of Cij, their one-
sided P-value is equal to the sum of probabilities that the co-occurrence
Cij is larger than the actual value. It can be obtained using standard
computational software such as Mathematica (www.wolfram.com) by
approximating the binomial distribution generated from the number of
patients N and Cij*¼Np¼IiIj/N as a Poisson distribution, and therefore

P ¼
XN

k¼Cij

expð�C�ijÞ�ðC�ijÞ
k

k!

The errors on the comorbidity values (Figure 2) were calculated using
the bootstrap method based on resampling (Efron, 1979; Newman and
Barkema, 1998).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V,
Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR,
Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and
services. Nucl A Res 34: D247–D251

Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM,
Aburatani H (2005) Interpreting expression profiles of cancers by
genome-wide survey of breadth-of-expression in normal tissues.
Genomics 86: 127–141

Gerstein M, Lan N, Jansen R (2002) Interacting interactomes. Science
295: 284–286

Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007)
The human disease network. Proc Natl Acad Sci 104: 8685–8690

Haan J, Peters WG (1994) Amyloid and peripheral nervous system
disease. Clin Neuro Neurosurg 96: 1–9

Autonomic nervous
system disorder 

Carpal tunnel syndrome

I=7525 I=33 262

B

A

DRD4

Alzheimer's disease Myocardial infarction

I=331 661 I=157 770

10
additional

genes

18
additional

genes

ACE

A2M

IKBKAP

TTR

C=4282 RR=1.07 �=0.0012C*=4013

C=220 RR=11.5 �=0.013C*=19.2

APOE

LRP8

Figure 3 Two examples of disease (disorder) pairs with significant comorbidity
that are connected at the cellular level through either shared genes (A) or
protein–protein interactions (A and B). (A) Alzheimer’s disease and myocardial
infarction (PE10�5). (B) Autonomic nervous system disorder and carpal tunnel
syndrome (PE10�148).

Impact of cellular networks on disease comorbidity
J Park et al

6 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited

http://www.ncbi.nlm.nih.gov/sites/entrez?db&equals;omim
http://www.ncbi.nlm.nih.gov/sites/entrez?db&equals;omim
www.affymetrix.com
http://www.uniprot.org/
http://www.sanger.ac.uk/Software/Pfam/
www.wolfram.com
www.nature.com/msb


Hidalgo CA, Blumm N, Barabási A-L, Christakis NA (2009) A dynamic
network approach for the study of human phenotypes. PLOS Comp
Bio; doi:pcbi 1000353 (in press)

Knowling MA, Basco VE (1986) Breast-cancer after treatment for
osteosarcoma. Med Pediatr Oncol 14: 51–53

Lee D-S, Park J, Kay K-A, Christakis N-A, Oltvai ZN, Barabási A-L
(2008) The implications of human metabolic network topology for
disease comorbidity. Proc Natl Acad Sci 105: 9880–9885

Loscalzo J (2007) Association studies in an era of too much
information: clinical analysis of new biomarker and genetic data.
Circulation 116: 1866–1879

Loscalzo J, Kohane I, Barabasi A-L (2007) Human disease classification
in the postgenomic era: a complex systems approach to human
pathobiology. Mol Syst Biol 3: 124

McCusick VA (1998) Mendelian Inheritance in Man. A Catalog of
Human Genes and Genetic Disorders, 12 edn Baltimore: Johns
Hopkins University Press

Newman MEJ, Barkema GT (1998) Monte Carlo Methods in Statistical
Physics. Oxford (UK): Clarendon Press

Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N,
Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord

N, Simon C, Roth FP, Vidal M (2005) Towards a proteome-scale map
of the human protein–protein interaction network. Nature 437:
1173–1178

Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic
overlap among human phenotypes. Proc Natl Acad Sci 104:
11694–11699

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J,
Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E,
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