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The Impact of Channel Randomness on Coverage
and Connectivity of Ad Hoc and Sensor Networks

Daniele Miorandi, Eitan Altman, and Giuseppa Alfano

Abstract— In this paper, we first present an analytical proce-
dure for the computation of the node isolation probability and
coverage in an ad hoc network in the presence of channel ran-
domness, with applications to shadowing and fading phenomena.
These results are used to obtain an estimate of the connectivity
features for very dense networks. Stochastic orderings are used
to show the beneficial impact of lognormal shadowing and the
negative impact of Rayleigh fading. The impact of SIMO/MISO
and MIMO schemes is also addressed, showing how channel
diversity can be exploited to enhance network coverage and
connectivity.

Index Terms— Wireless networks, ad hoc networks, connectiv-
ity, coverage, random channels, multiantenna systems.

I. INTRODUCTION

ONE of the research fields which have gained more
attention by the scientific community in the last few

years is that of self-organizing large-scale wireless networks,
variously referred to as multihop, ad hoc or packet radio
networks. Slightly aside, a growing interest is deferred to
wireless sensor networks [1], which, while presenting peculiar
features, possess at the same time many of the characteristics
of ad hoc networks.

One of the issues of more concern, for such networks, is
that of limiting achievable performance, in terms of capacity,
connectivity, delay and coverage [2], [3], [4]. Most of the
published works still rely on a simplistic model of channel
propagation, where the randomness inherently present in radio
communications is not considered. During the last couple of
years, however, a growing interest has risen on investigation
of channel randomness impact on limiting achievable perfor-
mance of random networks.

In this work, we characterize the relationship linking, in
the presence of a generic random channel, the node isolation
probability and the second-order moment of the communi-
cation range. This will be approached generalizing a result
obtained (implicitly) in [5] for the node isolation probability
in the case of lognormal shadowing. We then show that,
under our assumptions, the coverage probability, an important
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performance metric and design parameter in sensor networks,
coincides with the complement of the node isolation probabil-
ity obtained with an “equivalent communication range” having
the same distribution of the sensing range. Further, under the
assumption of very dense networks (to be formalized later), we
provide an estimate of the probability that any finite portion
of the network is connected. The possibility of exploiting the
channel randomness by means of diversity schemes is also
considered, showing that the network connectivity features
may be enhanced with the adoption of multiple antennas
or equivalent diversity schemes. The analytical results are
compared with the outcomes of numerical simulations. It is
also analytically proven that techniques based on the random
selection of the transmission power (with an average power
constraint) cannot enhance the network connectivity with
respect to the case in which all nodes transmit at the same
power.

The paper is organized as follows. Sec. II presents related
work and details the novel results contained in the paper.
Sec. III presents the framework and reports the computation
of the node isolation probability under the channel models
mentioned above. The results are then used in Sec. IV to
get an estimate of the connection probability in very dense
networks. The impact of diversity schemes is investigated in
Sec. V. Sec. VI concludes the paper indicating some directions
for future research.

II. RELATED WORK

Connectivity and coverage in wireless ad hoc/sensor net-
works have received considerable attention over the last few
years. In [6] the problem of finding a necessary and sufficient
scaling for the transmission range to obtain a fully connected
network (in the limiting dense regime) was studied. The
same results were obtained independently by Penrose in a
more abstract framework [7]. Scalings for the case of sparse
networks were investigated in [8]. The connectivity achievable
in the presence of nodes mobility was first addressed in [9].
All these works rely on a simplistic model of radio waves
propagation, where nodes communicate to each other if and
only if their distance is smaller than a given value.

The impact of lognormal shadowing on connectivity of ad
hoc networks was first addressed by Bettstetter and Hartmann
[10] (which extends a previous conference work). In particular,
they proposed a numerical method for evaluating the impact
of lognormal shadowing. The same issue is dealt with in
[11] (which extends a previous conference paper by the same
authors), where qualitative results are presented. In [12] we
provided a closed-form expression for such case. The same
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result had been (implicitly) obtained by Orris et al. in a
different framework (cellular networks) [5]. The same authors
also extended their work to the superposition of shadowing and
fading phenomena [13], [14]. The impact of Rayleigh fading
on network connectivity was studied by Haennggi in [15]. All
these results can be seen as particular cases of the general case
first analyzed in [12]. In that respect, this paper contains two
important generalizations, i.e., to the case of MIMO channels
(with maximal ratio combining) and to the case of Rician
fading.

III. ANALYSIS OF THE NODE ISOLATION PROBABILITY

A. System Model

Let N be a two-dimensional stationary Poisson point
process over �2, defined on a probability space (Ω,F , P).We
denote by E[·] the expectation taken with respect to the
measure induced by P. The points of the process represent
the location of the devices. The process is assumed to have
intensity 0 < λ < +∞, where λ is defined as the expected
number of points in the unit square. Given a bounded subset
A ∈ �2, the number of points of N in A, denoted by N (A),
is a Poisson random variable of intensity λν(A), where ν(A)
is the area of A. All devices transmit at a fixed power level
Ptx. We consider as “receiver” an arbitrarily located point,
which is independent of the process N . We pose questions
concerning one single receiver, but the results apply to any
number of receivers provided that interference (created by
possibly multiple simultaneous transmissions) is negligible.
We assume that a white noise of power W is present at the
receiver.

In our study of connectivity, we neglect the impact of
interference. Our results are thus valid in the presence of low
traffic load or when an efficient MAC layer protocol is present,
so that we may disregard the mutual interference generated by
the devices. Although this may seem an optimistic assumption
(the impact of interference on connectivity is widely discussed
in [16], [17]), in our view the connectivity is a “limiting”
performance, representing in some sense the supremum of
the connectivity properties over the whole range of MAC
protocols.

The modeling of propagation in a radio channel is a com-
plex task, which heavily depends on the environment under
study (indoor, outdoor urban, outdoor land etc.). The received
power is given by the product of Ptx and the path loss l,
which is usually described by means of random variables1.
The mean of the path loss is given by a law of the type
Kr−α, where K is a constant which depends on some physical
layer system features and r represents the transmitter-receiver
distance2. The path loss exponent, α, is usually in the range

1Note that, according to our definition, the path loss should be understood
as “path gain”.

2As widely discussed in [18], the fact that the path loss goes to ∞ when r
goes to zero may lead to optimistic conclusions in the analysis of scaling
laws for dense networks. However, this phenomenon appears as long as
we take interference into account. As stated therein, “For models neglecting
interferences (. . . ) these changes from a strict power law attenuation function
may be only second order effects on the performance of the network”. Also,
in some situations where absorption plays a major role (e.g., underwater
communications) the path loss can follow also an exponential decrease.

(2, 4), while for some particular application scenarios it can
be taken as large as 10 [19].

As far as the randomness inherently present in the radio
channel is concerned, two different effects are usually consid-
ered, which may be observed over different time (or space)
scales. The first, referred to as shadowing, reflects the different
propagation conditions which may be encountered by radio
waves due to buildings, terrain roughness, foliage and other
obstacles. In other words, it considers that two terminals,
located at the same distance by a transmitter, may experience
different received signal power. A widely acknowledged model
for shadowing predicts the received power to be lognormally
distributed (i.e. the received power, expressed in dB, is nor-
mally distributed) [19]. The shadowing phenomena are also
referred to as “medium scale” or slow fading, to distinguish
them from the “small scale” or fast fading phenomena. The
latter terms describe one of the peculiarities of radio wave
propagation, i.e. the rapid fluctuation of the amplitude of a
radio signal over a short period of time or travel distance.
(Since we are considering static networks, the fading has in
our case to be understood as a phenomenon which acts over
the spatial dimension, even if it could also take place over
the time dimension due to reflections from moving objects.)
In the presence of dense multipath conditions, each received
signal may be modelled as the superposition of two orthogonal
normal components, so that the signal envelope is distributed
as a Rayleigh random variable. In turn, this leads to an
exponential distribution for the received power [20].

Our analysis starts with the computation of the probability
of a node being isolated, denoted by PI , meaning that none of
the other nodes present in the network is able to communicate
with it. We denote by PS|Γ(y) the packet success probability
given that the received signal presents an average signal-to-
noise ratio (SNR) Γ = y. In our model, the packet error rate
versus instantaneous signal-to-noise ratio is approximated by
a step-like function, the threshold being denoted by Ψ. Such a
model works, e.g., in the case when good long codes are used.
(A similar model, called “physical model”, has also been used
in [3].) The parameter PS|Γ(y) depends therefore only on the
distribution of the instantaneous SNR, given its average value.

In this work, we assume that the fading processes on the
various links are independent. While such assumption may
not reflect a real network environment (especially as the node
density becomes large), it still enables us to obtain some
closed-form expressions which may be used as estimates for
more realistic situations and compared with testbed measure-
ments. In particular, we could expect that, in the presence
of links for which the attenuation is correlated, the connec-
tivity properties of the network will degrade with respect to
the independent case. In a sensor network framework, one
interesting performance metric is the coverage probability,
which plays a fundamental role in intrusion detection and
other applications [21].In particular, we focus on networks
where sensing relies on wave propagation laws which are those
which guide signal propagation in the ad hoc case. In general,
coverage is based on the sensing range which is usually
different from the communication range. The node isolation
probability is the probability that a “typical” node is not
connected to any other nodes, i.e. that it is not covered by the
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footprint generated by all other nodes. Let us assume (with a
slight abuse of terminology) that in this case the “connectivity”
is based not on the communication range but, rather, on the
sensing range. On the other hand, the coverage probability
Pcov is the probability that a “typical” point is covered. If the
point process representing devices location is stationary, we
can consider the event {the origin is covered}. The coverage
probability is the probability of such event under the measure
induced by P. On the other hand, the node isolation probability
is the complementary of the probability of such event under
the measure induced by the Palm probability [22] associated
with the point process N . Since we assumed N to be a Poisson
process, we can exploit Slivnyak’s theorem3 [23], obtaining:

Pcov = 1 − PI . (1)

In case N is a more general point process (stationary ergodic),
the two quantities can be related by means of a Palm inversion
formula [23].

B. A Deterministic Path-Loss Model

The deterministic case will be used, in the following, as
a reference to show the impact of the channel randomness
induced by the shadowing and fading phenomena. In the case
of a deterministic channel model, there exists a deterministic
distance R (referred to, in the following, as the communication
range), so that a node is able to communicate with all the
nodes lying within distance R. The signal-to-noise ratio (SNR)
in the presence of a transmitter-receiver distance of r is given
by γ(r) = Ptxl(r)

W , where in this case l(r) = Kr−α. The
communication range may be computed as the distance at
which the SNR falls below the threshold Ψ. Thus, we get:

R =
(

KPtx

WΨ

) 1
α

. (2)

This is indeed a classical Boolean model with deterministic
(circular) shapes [24], and the node isolation probability is
given by:

PI = e−λπR2
= e−λπ(KPtx

WΨ )
2
α

. (3)

C. The Impact of Channel Randomness

Let us consider a case where the channel model presents
a random component. We assume the path loss, given a
transmitter-receiver distance r, to be described by a proba-
bility density function (pdf) fl|r(·|·), or, equivalently, by the
corresponding cumulative distribution function Fl|r(·|·). We
denote by li the loss on the path between the intended device
and node i. A node is isolated if, for any i, the SNR Ptxli

W
falls below the threshold Ψ. We define a random variable R,
which will be referred to as the communication range in the
following, having cumulative distribution function:

FR(a) = P[γ(a) ≤ Ψ] = P

[
l(a) ≤ WΨ

Ptx

]
=

= P

[
l(r) ≤ WΨ

Ptx
|r = a

]
= Fl|r

(
WΨ
Ptx

|a
)

. (4)

3Roughly speaking, Slivnyak’s theorem states that the distribution of points
in a Poisson process does not depend on the assumption of the existence of
a point at the origin.

In the more general case where PS|Γ(·) is not a step function,
we have:

FR(a) = 1 −
∫ +∞

0

fl|r

(
Wx

Ptx
|a
)

PS|Γ(x)dx. (5)

Intuitively, the communication range determines the probabil-
ity that one device is able to communicate to another one
located at distance a. The deterministic path-loss model can
be seen as a special case, having the whole mass concentrated
on a single value R. We assume 0 < E[R2] < +∞. The cases
E[R2] = 0 and E[R2] = +∞ are trivial and of no interest:
in the first case our device is disconnected P-a.s., whereas in
the second one it is connected with all other devices P-a.s.
Triviality extends also to network connectivity (see [25] for a
percolation argument).

We now compute the distribution of the number of one-hop
neighbors of a device, generalizing a result in [5]. The proof
can be found in [12].

Theorem 3.1: Given that nodes are distributed according
to a Poisson process of intensity λ, and denoting by R
the communication range, the number of one-hop neighbors
follows a Poisson law of intensity λπE[R2].
As a corollary, the node isolation probability is given by:

PI = e−λπE[R2]. (6)

Formula (6) is worth some comments. Indeed, it predicts that
channel randomness may have a beneficial impact on network
connectivity. This holds if and only if the physical phenom-
enon which induces the randomness leads to an increment in
the second-order moment of the random variable R.

On the other hand, (6) can also be used in the network
dimensioning phase, as we shall do in the following Sections,
in that we can choose a given λε which ensures that any ran-
domly chosen point in the network is covered with probability
1 − ε:

λε = − log ε

E[R2]
. (7)

D. Analysis in the Presence of Shadowing

In [10] a semi-analytical approach is presented for the
computation of the node isolation probability in a shadowing
environment. In particular, the procedure is based on the
distribution of the k-th nearest neighbor distances, but no
closed-form formula is obtained. By following the procedure
outlined in the previous subsection, we are able to get a closed-
form expression for PI , from which it is possible to clearly see
the impact of the different factors. Given a transmitter-receiver
distance ρ, the pdf of the path loss is given by [26]:

fl|r(a|ρ) =
1√

2πσa
e
− 1

2

�
ln a−ln(Kρ−α)

σ

�2

, (8)

where σ, the lognormal spread, is the standard deviation of the
Gaussian distribution describing the shadowing phenomenon.
The cumbersome derivation, reported in [12] leads to:

PI = e−λπ(PtxK
ΨW )

2
α e

�√
2σ
α

�2

, (9)

a result that was derived also in [5].
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This suggests that the presence of lognormal shadowing im-
proves the connectivity properties of the network, as predicted
by the results in [11], [27]. Further, the node isolation proba-
bility is monotonically decreasing in the lognormal spread σ.
This fact may also be seen as a byproduct of a more general
result, which regards the possibility of finding a stochastic
ordering4 among the distributions of the communication range
with different values of the lognormal spread σ. Indeed, we
have:

FRσ
(a) = 1 −

∫ ΨW
KPtx

0

dx
1√

2πσx
e
− 1

2

�
ln(xaα)

σ

�2

=

=
∫ ln ΨW aα

KPtx
σ

−∞

dt√
2π

e−
t2
2 = Φ

(
ln ΨWaα

KPtx

σ

)
. (10)

It is then easy to see that we may write:

Rσ1 � Rσ2 , σ1 ≤ σ2. (11)

From [28], (11) is equivalent to E[f(Rσ1)] ≤
E[f(Rσ2)], σ1 ≤ σ2 for any increasing function f(·).
Hence, we have that:

E[Rh
σ1

] ≤ E[Rh
σ2

], σ1 ≤ σ2, h ≥ 0. (12)

Taking h = 2 and recalling (6), we retrieve that the node iso-
lation probability decreases monotonically with the lognormal
spread σ.

In the limit σ → +∞ the behavior of the resulting network
will resemble that of an Erdös-Rényi random graph [29], for
which the distance between any node pairs has no impact on
the probability of having a direct link between such nodes.
In such limiting regime, the probability that a typical node is
connected to any other node tends to 1

2 . Indeed the probability
of connection to a node at distance ρ is:

1 − FRσ
(ρ) = Q

(
ln WΨρα

PtxK

σ

)
, (13)

which for any finite ρ tends to Q(0) = 1
2 as σ → +∞.

The probability that, given n other nodes in the network,
the typical node is isolated is 1

2n → 0 as n → +∞. Since
in our unbounded region there is P-a.s. an infinite number
of nodes, our network will P-a.s. not present any isolated
node, which provides an informal justification of the fact that
lim

σ→+∞PI = 0. On the other hand, if σ → 0 we retrieve

the deterministic path–loss model previously analyzed. It is
interesting to note that in such limiting case, the connectivity
properties are driven only by the features of the underlying
spatial process; in this sense, we may regard the resulting
network as a geometric random graph [30] (this relationship
between ad hoc networks and geometric random graphs is
not new, see [31]). In some sense, the partial randomness
introduced by the lognormal shadowing may be expected to
produce a network similar to a small world [32], which is
indeed known to present better connectivity properties than
geometric random graphs.

4Given two random variables A and B, we say that A is stochastically
smaller than B, A � B if FA(x) ≥ FB(x) ∀x ≥ 0 [28].
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Fig. 1. Node isolation probability vs. node density in the presence of
lognormal shadowing, α = 3.5, Ptx = 1 mWatt, K = 10, W = 0.01
mWatt, Ψ = 10 dB, σ = 0, 1, . . . , 10 (a larger value of σ corresponds to a
curve to the left). Circles represents simulation results (averaged over 1000
simulations) .

This, indeed, can be seen noting that as ρ → +∞, (13)
matches the connection law in [33], hence our model is likely
to exhibit long-range connections. Related results are obtained
in [34], where the authors, by using a continuum percolation
approach, show the beneficial impact of spread-out connec-
tions (i.e., a spread-out density for R in our setting) on the
network connectivity keeping a fixed E[R2]. On the other hand,
we demonstrated that some forms of channel randomness
(e.g., lognormal shadowing) are able to improve connectivity
features by actually enlarging E[R2] without any increase in
Ptx. The interesting phenomenon observed in [34] impacts the
critical density at which network percolation occurs. However,
this is not directly related to the node isolation probability,
but to its relationship with the probability of existence of
an infinite component. Further, in the limit λ → +∞ the
enhancement due to spread-out connections vanishes, since
the probability of existence of an infinite component tends to
1 at the same rate as PI (which depends just on E[R2]) tends
to 0 [25].

It is worth remarking that these results do not account for
the basic fact that a wireless channel, in reality, cannot amplify
a signal, so that the impact of lognormal shadowing in a real
setting is not completely clear.5 Further, notice that, with the
lognormal shadowing model considered, we are introducing a

bias, in that E[R] =
(

PtxK
ΨW

) 1
α e

�
σ√
2α

�2

, so that the average
path gain increases with the lognormal spread.

In Fig. 1 we plotted some results, in terms of node isolation
probability versus the node density λ for various values of the
lognormal spread σ. The other system parameters are α = 3.5,
Ptx = 1 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB. From
the curves it is evident that lognormal shadowing may have a
tremendous impact on network performance, leading to a large

5The shadowing is, indeed, caused by obstacles between the transmitter
and the receiver, blocking and/or reflecting the useful signal; hence, only in
ideal cases pure reflection is allowed, while the overall effect is actually of
signal power absorption.
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Fig. 2. Node isolation probability for α = 3.5, Ptx = 1 mWatt, K = 10,
W = 0.01 mWatt, Ψ = 10 dB.

performance enhancement, with respect to the deterministic
channel model (correspondent to σ = 0), even for low values
of the lognormal spread.

In order to validate our results, we simulated a 100m ×
100m square, and took the same system parameters as above.
We considered a node density λ = 0.04 m−2 and varied σ
between 0 (path loss only) and 3. We then computed the
node isolation probability averaging over 1000 simulations.
The results are plotted in Fig. 2, where for the simulation
results we reported the mean value.

It may be seen that our analysis is able to closely follow
the system behavior for a wide range of node density, our
analysis slightly overestimating the node isolation probability.
This effect is due to the fact that our analysis has been carried
out for an unbounded region, neglecting thus the border effects
that arise in the presence of a finite area [35]. In such a case, in
fact, nodes placed close to the border regions are more likely
to be isolated, since they can connect only to devices placed
in a region of area smaller than πE[R2]. The border effect,
in our example, has an impact which is increasing with an
increase in the mean covered area πE[R2], as it may be seen
in Fig. 2.d. This explains the small mismatch between analysis
and simulation data. Simulation results obtained through the
use of a toroidal distance, which allows to get rid of border
effects are plotted as well, showing a better match with
theoretical curves.

E. Analysis in the Presence of Superimposed Lognormal
Shadowing and Rayleigh Fading

The analytical procedure showed above may be easily
extended to more complex scenarios, such as that where
both lognormal shadowing and fast (Rayleigh) fading are
simultaneously present [13]. Let Γ be the average SNR
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Fig. 3. Node isolation probability vs. node density: the impact of Rayleigh
fading; Ptx = 1 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB, α = 3.5,
σ = 0, 3, 6 (a larger value of σ corresponds to a curve to the left).

(meaning that it is averaged over the variations of the small-
scale fading), and consider again a threshold-like success
probability, with threshold equal to Ψ. The instantaneous SNR
γ is exponentially distributed with mean Γ = y [20] so that
we have:

PS|Γ(y) =

+∞∫
Ψ

dafγ|Γ(a|y) =

+∞∫
Ψ

da
1
y
e−

a
y = e−

Ψ
y . (14)

Substituting in (6), we obtain, after some algebra [12]:

PI = e−λπ 2
α Γ( 2

α )( ΨW
KPtx

)−
2
α e

�√
2σ
α

�2

, (15)

where Γ(·) represents the usual Gamma function.
Since yΓ(y) ≤ 1 for any y ≤ 1, equality holding only

for y = 1, we have that, for α > 2 (note that the case
α = 2 corresponds to free-space propagation, so that for
any real system it is α > 2) Rayleigh fading reduces the
connectivity properties of the network. Indeed, also the bias
in the average path gain actually reduces in the presence of
Rayleigh fading. This can be explained by simply recalling
the negative impact of Rayleigh fading on an AWGN wireless
link, where transmitted power is isotropically spread causing
on average a negative drift of the received power. As for
the case of traditional wireless communications on Rayleigh
faded links, such a negative impact can be partially avoided
by means of diversity, whose exploitation will be investigated
in the following sections. This holds for any σ, so that the
negative influence of the Rayleigh fading does not depend on
the underlying shadowing phenomena.

In Fig. 3, a comparison between lognormal shadowing
and superimposed shadowing and Rayleigh fading is shown.
Notice that the Rayleigh fading, although having a negative
impact on the connectivity properties of the network, does not
change much the node isolation probability. This is further
confirmed by Fig. 4 where we plot the required node density
to achieve a prescribed node isolation probability according
to (7), for two values of the lognormal spread. The curves
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confirm both the positive impact of lognormal shadowing as
well as the slightly negative impact of Rayleigh fading at
the network dimensioning stage, since to achieve a prescribed
isolation probability a slightly higher node density is required
in the case of superimposed Rayleigh fading with respect to
the case of lognormal shadowing with no fading. Furthermore,
the required node density scales down with increasing values
of the lognormal spread.

F. Analysis in the Presence of Rician Fading Channels

Rayleigh fading models worst-case situations, in which all
the received power comes from reflection and scattering. A
more realistic alternative model exists, called Rice fading, in
which a line-of-sight path is present, and there are also a large
number of independent paths. This model is characterized by
a parameter κ, defining the ratio of the energy in the line-of-
sight path to the energy in the scattered paths. For the case
κ = 0 we return to Rayleigh fading, whereas if κ → +∞ the
model approaches a deterministic channel.

We start by computing the probability of successful recep-
tion in the presence of an average SNR Γ = y:

PS|Γ(y) =
∫ ∞

Ψ

dafγ|Γ(a|y) =

(κ + 1)
eκ

∞∑
t=0

κ(κ + 1)
(t!)2

∫ ∞

Ψ

exp[−(κ + 1)a/y](a/y)t da

y
=

= exp[−(κ + 1)Ψ/y]

[
e−κ

∞∑
t=0

κt

t!

t∑

=0

[(κ + 1)Ψ]


�!y


]
(16)

In this case, we have:

E
[
R2
]

=
∫ ∞

0

2ρdρPS|Γ

(
Kρ−αPtx

W

)
, (17)

which by virtue of (20), yields to

E
�
R2� =

�
2

α

��
KPtx

ΨW (κ + 1)

�α
2

e−κ
∞�

t=0

κt

t!

t�
�=0

Γ
�

2
α

+ �
�

�!
(18)

and finally to the node isolation probability:

PI = exp

{
−λπ

(
2
α

)(
KPtx

ΨW (κ + 1)

)α
2

e−κ
∞∑

t=0

κt

t!

t∑

=0

Γ
(

2
α + �

)
�!

}
. (19)

The analysis can also be extended to the case of superimposed
lognormal shadowing and Rician fading, where:

PI = exp
{
−λπ

∫ ∞

0

da√
2πσa

∫ ∞

0

2ρdρ·

· exp

⎡
⎢⎣−1

2

⎛
⎝ ln

(
aρα

K

)
σ

⎞
⎠

2
⎤
⎥⎦PS|Γ

(
aPtx

W

)⎫⎪⎬
⎪⎭ .

We can thus proceed further in the evaluation of the isolation
probability as for the Rayleigh case, noticing that [36, Formula
3.478.1] ∫ ∞

0

xν−1 exp(−μxp)dx =
μ−ν/p

|p| Γ
(

ν

p

)
. (20)

Combining with (16), the final result of the integration is
�

2

α

��
KPtx

ΨW (κ + 1)

�α
2

e

�√
2σ
α

�2

e−κ
∞�

t=0

κt

t!

t�
�=0

Γ
�

2
α

+ �
�

�!
(21)

and finally the node isolation probability is

PI = exp

{
−λπ

(
2
α

)(
KPtx

ΨW (κ + 1)

)α
2

e

�√
2σ
α

�2

·

·e−κ
∞∑

t=0

κt

t!

t∑

=0

Γ
(

2
α + �

)
�!

}
(22)

which for κ = 0 reduces to (15) as expected.
A natural way to establish a stochastic ordering is in this

case to look at the influence of the κ factor on the node
isolation probability. By inspection of (21) we see in fact that
E
[
R2

κ1

] ≤ E
[
R2

κ2

]
when κ1 ≥ κ2, hence the node isolation

probability decreases with increasing values of κ, as expected.
In Fig.5, still referring to the same parameters set as Fig. 3,
the node isolation probability is plotted vs. the node density
both for the cases of superimposed Rice fading and lognormal
shadowing, and the case of Rice fading without shadowing.
Notice that the beneficial impact of the shadowing is further
confirmed, while the node isolation probability increases very
slowly with κ.

G. Random Transmission Power Selection

The main result we can draw from (6) is that any mechanism
able to increase the second-order moment of the transmission
range enhances the network performance. Since the mean
value of the transmission range is determined by physical layer
constraints (noise, average transmission power, SNR threshold
and path loss factor), it seems quite natural to look for a
technique able to enhance the variance of the transmission
range. In this view, the easiest thing to do would be to allow
the terminals to independently randomly choose a power level
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Fig. 5. Node isolation probability vs. node density: the impact of Rice
fading; Ptx = 1 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB, α = 3.5,
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Ptx according to a distribution FPtx
(·) on which we pose only

a constraint on the mean value, namely:

E[Ptx] =

+∞∫
0

da [1 − FPtx
(a)] = ω. (23)

We get the following proposition, whose proof can be found
in [12]:

Proposition 1: Given an ad hoc network where nodes
are distributed according to a Poisson point process of in-
tensity λ, and in the presence of a deterministic channel
model/lognormal shadowing/superimposed Rayleigh fading
and lognormal shadowing, under the constraint (23), it is not
possible to reduce the node isolation probability by means
of any mechanism which randomly selects the transmission
power.

IV. CONNECTIVITY ANALYSIS AND RESULTS

A. Asymptotic Connectivity

One of the most important issues in ad hoc networks
is that of connectivity. Indeed, the conventional paradigms
based on end-to-end communications require, as a preliminary
condition, the network to be fully connected.6

In this section, we aim at characterizing the probability that
the nodes in a given bounded, convex subarea of the plane
form a connected topology. In general, this question cannot
be answered exactly (see [24] for more details). However,
we may still get some insight taking the intensity of our
driving process N to infinity (i.e., considering a “very dense”
network) and scaling the communication range in such a way
that the probability of a node being isolated vanishes. In such
a situation, the probability of the network being connected
tends to the probability that no isolated nodes are present.
This approximation, which clearly offers an optimistic bound

6Note that this contrasts with the approach followed in the flourishing area
of delay-tolerant networking, where communication is based on opportunistic
forwarding [37]

on the probability of the network to be connected, has been
shown in [10] to provide good results. Furthermore, such result
is known to hold for the case of deterministic channel model
[7], [30]. Consider a bounded, convex set D of area μ. The
number of points in D forms a Poisson r.v. with intensity λμ.
Let us introduce the following approximations:

(i) the region D is sufficiently large, so that border effects
may be neglected [35];

(ii) the probability that a node is isolated, given that there
are n nodes in D, is given by PI ;

(iii) given n nodes in D, the events Ik =
{node k is isolated}, k = 1, . . . , n are independent.

As a consequence, the probability of the event {absence
of isolated nodes in D| n nodes are present} is given by
(1 − PI)

n. Using the total probability theorem, we have:

P[A] =
∞∑

n=0

e−λμ [λμ(1 − PI)]
n

n!
= e−λμPI . (24)

where A is the event {absence of isolated nodes}. Notice
that the approximations introduced above, while clearly rep-
resenting a simplistic picture of the network behavior, have
proven in [10] to provide a satisfactory level of approximation.
We conjecture that, even relaxing independence assumption
between the node isolation events, still a similar result can be
proved, relying on the basis of Chen-Stein method (see, e.g.
[38]).

The next step is to approximate (in the limiting regime)
the event C ={the network is connected} with the event
A (absence of isolated nodes). This means that the network
would get connected at the same moment at which the last
isolated node becomes able to communicate successfully with
another node. While there is no proof that this holds in general,
such result apply rigorously to the case of both deterministic
channel (geometric random graphs [30]) as well as pure Erdös-
Rényi random graphs [29].

The node isolation probability PI is a function of Ptx; we
shall allow Ptx to be a function of λ as well. From (24), the
dependence of P[A] on λ is through the behavior of λPI .

We shall say that the network is asymptotically connected
if lim

λ→+∞
P[A] = 1. Under the approximations (i) − (iii),

from (24) a necessary and sufficient condition for asymptotic
connectivity of any finite D is:

lim
λ→∞

λPI = 0. (25)

Let us assume that we are in the presence of a deterministic
channel model/lognormal shadowing/superimposed Rayleigh
fading and lognormal shadowing, and let the transmission
power scale as:

Ptx =
(

1
πξ

· ln λ + c(λ)
λ

)α
2

, (26)

where the expression of ξ depends on the channel model (see
§III-G). For the three channel models considered, we have

PI = e−λπξ(Ptx)
2
α . Using the expression (26), we have:

PI = e−(ln λ+c(λ)) =
e−c(λ)

λ
.
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Fig. 6. Connection probability vs. node density in the presence of lognormal
shadowing; Ptx = 10 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB,
α = 3.5, σ = 3, 4.

From (25), a necessary and sufficient condition for asymptotic
connectivity is e−c(λ) → 0, from which a necessary and
sufficient condition for asymptotic connectivity is:

lim
λ−→∞

c(λ) = +∞. (27)

It is worth noting that the scaling law of the transmis-
sion power for asymptotic connectivity in dense networks
is insensitive to the presence of shadowing and/or fading
phenomena (up to a multiplicative factor). This insensitivity
is really important since it provides guidelines for a robust
dimensioning of the network. Otherwise stated, the planning
of an ad hoc network can be made relying on a simplistic
deterministic channel model. On the other hand, a factor
of great importance is the path loss factor α, so that a
conservative value of such parameter should be considered
in the dimensioning phase.

In order to check for the validity of relationship P[A] ≈
P[C], which has been derived under some simplifying ap-
proximations, we simulated a 100m × 100m network, with
the same parameters of §III-D but with a transmission power
of 10 mWatt. Simulations were run for σ = 3, 4 and, in
order to overcome the border effect, a toroidal distance metric
was used [35]. The results, averaged over 1000 simulations,
are shown in Fig. 6 in terms of 95% confidence interval.
As it may be seen, the simulation results closely follow the
predicted ones for both cases, slightly underestimating the
network connection probability.

B. Connectivity for Networks with Unreliable Devices

The asymptotic analysis can be easily extended to the case
of unreliable devices [39], [40], where each device is assumed
to be active with probability p. We let p be a function of
λ (which allows for an engineering tradeoff between devices
reliability and nodes density), and study scaling laws for the
transmission power. Let the channel be characterized by a
path loss factor α, regardless of the possible presence of
shadowing and/or Rayleigh fading and let Ptx(λ) denote the

transmission power. Then, under approximations (i) − (iii),
and threading the footprints of [39], [40], it is easy to show
that the followings hold:
(a) a necessary and sufficient condition for asymptotic con-

nectivity is given by:

lim
λ→+∞

λp(λ)e−λp(λ)(Ptx(λ))
2
α = 0. (28)

(b) If p = lim
λ→+∞

p(λ) satisfies 0 < p < 1 and Ptx(λ) =(
1

πξ · ln λ+c(λ)
λ

)α
2

, the network is asymptotically con-

nected at distance d if c(λ) satisfies

c(λ) ≥ ζ ln λ, (29)

where ζ > 1−p
p . Furthermore, the network is asymptoti-

cally connected only if c = lim
λ→+∞

c(λ) = +∞.

(c) Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1 . Then a
sufficient condition for asymptotic network connectivity
at distance d is given by:

p(λ) [Ptx(λ)]
2
α ≥ ζ

ln λ

λ
, (30)

where the constant ζ satisfies ζ > 1 − γ.

V. EXPLOITING DIVERSITY TO ENHANCE NETWORK

CONNECTIVITY

In this section we explore the possibility of improving the
connectivity of the network in the presence of superimposed
Rayleigh fading and lognormal shadowing by using multiple
antennas at the receiver side. Apart from the theoretical
importance of the issue, it is worth noting that diversity can
be exploited not only by using multiple antennas, but also by
means of cooperation schemes [41], [42] and time diversity
techniques, where the spatial dimension of the network itself
and, respectively, the time varying nature of the channel, is
used to provide diversity.

Assuming that M antennas are present at the receiver, and
that they are spaced apart, so that the paths from the transmit-
ter to the receiver antennas may be considered independent, we
study the impact of two signal processing technique, namely:

• best path selection (BPS): among the M received signals,
the one with the largest SNR is decoded;

• maximal ratio combining (MRC): the M received signals
are combined in such a way to maximize the overall SNR
(see [20] for more details).

Let us focus on BPS; given an average SNR of Γ = y, the
probability that at least one path presents a SNR greater than
Ψ is the complement of the probability of all paths presenting
an SNR lower than Ψ:

PS|Γ(y) = 1 −
M∏

k=1

Ψ∫
0

daifγi|Γ(ai|y) =

= 1 −
⎡
⎣ Ψ∫

0

da
1
y
e−

a
y

⎤
⎦

M

= 1 −
(
1 − e−

Ψ
y

)M

=

= −
M∑

h=1

(
M

h

)
(−1)he−

hΨ
y . (31)
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Substituting (31) in (6), together with (8), we get:

PI = exp

{
λπ

M∑
h=1

(
M

h

)
(−1)h·

·

⎡
⎢⎣

+∞∫
0

da

+∞∫
0

dρe−
hΨW
aPtx 2ρ

1√
2πσa

e
− 1

2

�
ln aρα

K
σ

�2
⎤
⎥⎦
⎫⎪⎬
⎪⎭ =

= exp

{
λπ

M∑
h=1

(
M

h

)
(−1)h·

·
⎛
⎝ +∞∫
−∞

dx

+∞∫
0

dρ
1√
2π

e−
x2
2 2ρe−

hΨW e−σxρα

KPtx

⎞
⎠
⎫⎬
⎭ . (32)

Some cumbersome algebra leads to :

PI = exp

{
λπ

2
α

Γ
(

2
α

)(
ΨW

KPtx

)− 2
α

e

�√
2σ
α

�2

·

·
M∑

h=1

(
M

h

)
(−1)hh− 2

α

}
. (33)

Since
M∑

h=1

(
M

h

)
(−1)hh− 2

α ≤ −1,

we may conclude that the use of receiver diversity with best
path selection improves the connectivity properties of the
resulting network, as expected. Note, however, that the scaling
for asymptotic connectivity remains unchanged.

In case of MRC, the system behaves as if the channel con-
sisted of an M -Nakagami fading superimposed to lognormal
shadowing [20]. The pdf of the instantaneous SNR is given
by:

fγ|Γ(a|y) =
(

M

y

)M
aM−1

Γ(M)
e−M a

y ,

where Γ(·) is the Gamma function. Note that for M = 1 we
obtain the usual expression for Rayleigh fading. The ccdf is
given by:

PS|Γ(y) = P[γ > Ψ|Γ = y] = 1 − Fγ(Ψ) =
Γ
(
M, MΨ

y

)
Γ(M)

,

(34)
where Γ(·, ·) is the incomplete Gamma function [36]. Since
M is an integer, the expression above simplifies to:

PS|Γ(y) = e−M Ψ
y

M−1∑
h=0

(
MΨ
y

)h 1
(h + 1)!

. (35)

Proceeding as above, the node isolation probability turns out
to be:

PI = exp

⎧⎨
⎩−λπ

M−1∑
h=0

1
(h + 1)!

⎡
⎣ +∞∫

0

da

+∞∫
0

dρe−
ΨW
aPtx ·

·
(

MΨW

aPtx

)h

2ρ
1√

2πσa
e
− 1

2

�
ln a−ln(Kρ−α)

σ

�2]}
, (36)

that after some algebra reduces to:

PI = exp

{
−λπ

2
α

e

�√
2σ
α

�2 ( ΨW

KPtx

)− 2
α

·

·
M−1∑
h=0

1
(h + 1)!

MhΓ
(

h +
2
α

)}
. (37)

Since
M−1∑
h=0

1
(h + 1)!

MhΓ
(

h +
2
α

)
≥ Γ

(
2
α

)
,

also receiver-based diversity with MRC improves the network
connectivity.

For both BPS and MRC, the connectivity improvement
could be predicted by establishing a stochastic ordering among
the distributions of the communication range R in the presence
of different number of antennas. It suffices to note that for both
schemes, if M1 ≤ M2, PS|Γ,M1 ≤ PS|Γ,M2 , where PS|Γ,x is
the probability of successful reception given an average SNR
of Γ and in the presence of x antennas. Substituting in (5), it
is easy to see that a stochastic ordering among the distribution
corresponding to different values of M is possible:

RM1 � RM2 M1 ≤ M2, (38)

and the connectivity improvement follows along the arguments
outlined in §III-D.

A. A Special Case: MIMO MRC

We now turn our attention to the case of MIMO processing,
where multiple antennas are employed at both the transmitter
and the receiver side. We assume that M antennas are present
at the transmitter end and at the receiver one. We assume to
employ MRC at the receiver to deal with simple instantaneous
SNR distribution expressions, nevertheless our results hold for
any informed transmitter communication scheme, as discussed
in [43]. For the sake of simplicity, we focus on a MIMO
Rayleigh faded channel, whose antennas are assumed to
be uncorrelated at both transmitter and receiver ends. The
probability of successful reception can be written as [44]
PS|Γ(y) = β det(Π), where Π is matrix with (i, j)-th entry
Πi,j = γ(i + j − 1, a/y), γ(·, ·) is the lower incomplete

gamma function [45] and β =
[∏M


=1(M − �)!2
]−1

. In order
to get relatively concise expressions from where to provide
connectivity guidelines we assume M = 2; however, the
derivation can be repeated for any M always getting closed-
form results

Now, recasting the expression of PS|Γ(y) using [46, For-
mula (23)] and some algebra, and still exploiting (20), we can
finally write the node isolation probability as

PI = exp

{
−λπ

(
2
α

)
Γ
(

2
α

)(
KPtx

ΨW

)α
2

e

�√
2σ
α

�2

β·

·
[(

2
α

)(
2
α

+ 1
)

+ 2 − 2−
2
α

]}
, (39)

where one can see immediately the gain in terms of E
[
R2
]

achievable through the use of nodes equipped with two an-
tennas instead of a single one. This gain in terms of node
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Fig. 7. Node isolation probability vs. node density: comparison of best path
selection (BPS), maximal ratio combining (MRC) and MIMO MRC; Ptx = 1
mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB, α = 3.5, σ = 3.

isolation probability still holds for increasing values of M .
In particular, even if a general formula cannot be provided
for generic values of M , due to the particular expression of
PS|Γ(y) involving a determinant, PI can be anyway always
evaluated in closed form for fixed M , under Rayleigh fading
conditions, even for the case of correlated links, always
starting from the results in [46]. A direct comparison of the
performance achieved by the three different transmit and/or
receive diversity schemes is represented in Fig. 7, where it
may be seen that MRC outperforms the simpler BPS scheme,
and that the performance achievable with BPS and M = 3
antennas are slightly worse than those achievable by limiting
the number of antennas to M = 2 and employing a MRC
scheme. Furthermore, the beneficial impact of the deployment
of multiple antennas both at the transmitter as well as at the
receiver is confirmed by drawing the node isolation probability
both for the case of M = 2 and M = 3 transmit and receive
antennas. Notice finally that we assume all nodes to have the
same number of antennas only for symmetry reasons, but such
an assumption can be relaxed without loss of generality and
still the node isolation probability can be evaluated in closed
form.

VI. CONCLUSIONS

In this paper we have presented an analytical procedure
for the computation of the node isolation probability in an
ad hoc network in the presence of channel randomness, with
a particular emphasis on the effect of lognormal shadowing,
Rayleigh and Rice fading phenomena. We have shown that the
node isolation probability decreases as the lognormal spread σ
increases, and investigated the negative effect of both analyzed
fading models. We proved that no connectivity improvement
may be achieved, under an average power constraint, by
means of transmission power random selection schemes. The
coverage probability coincides with the complement of the
node isolation probability computed under an equivalent com-
munication range distributed as the sensing range, given that

nodes are distributed according to a Poisson point process;
otherwise it is possible to relate the two quantities through an
inversion formula.

From the node isolation probability we can get, under some
simplifying approximations, a closed form formula for the
probability of the network being connected in the presence
of a very large device density. Simulation results have been
presented, which show the soundness of the proposed proce-
dure. For the case of superimposed shadowing and Rayleigh
fading, the connectivity improvement achievable by means of
two simple diversity schemes, best path selection and maximal
ratio combining, has been investigated; a general stochastic
ordering relationship has been found for both schemes, show-
ing the beneficial impact of the use of diversity schemes; the
investigation has been also extended to MIMO maximal ratio
combining technique, showing the advantages achievable with
respect to the case where multiple antennas are used at just
one of the communication end points.

Directions for future work include the generalization of
the results to more general node placement distributions and
a study of the impact of various mobility patterns on the
connectivity results found for a static scenario.
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