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Abstract Changes in the hydrologic cycle due to increase

in greenhouse gases are projected to cause variations in

intensity, duration, and frequency of precipitation events.

Quantifying the potential effects of climate change and

adapting to them is one way to reduce vulnerability. Since

rainfall characteristics are often used to design water

management infrastructures, reviewing and updating rain-

fall characteristics (i.e., Intensity–Duration–Frequency

(IDF) curves) for future climate scenarios is necessary.

This study was undertaken to assess expected changes in

IDF curves from the current climate to the projected future

climate. To provide future IDF curves, 3-hourly precipi-

tation data simulated by six combinations of global and

regional climate models were temporally downscaled using

a stochastic method. Performance of the downscaling

method was evaluated, and IDF curves were developed for

the state of Alabama. The results of all six climate models

suggest that the future precipitation patterns for Alabama

are expected to veer toward less intense rainfalls for short

duration events. However, for long duration events (i.e.,

[4 h), the results are not consistent across the models.

Given a large uncertainty existed on projected rainfall

intensity of these six climate models, developing an

ensemble model as a result of incorporating all six climate

models, performing an uncertainty analysis, and creating a

probability based IDF curves could be proper solutions to

diminish this uncertainty.
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Introduction

Degradation of water quality, property damage, and

potential loss of life due to flooding is caused by extreme

rainfall events. Damage from erosion can impact areas

from farm fields to stream banks adjacent to important

infrastructure (Wright et al. 2010). Historic rainfall event

statistics (in terms of intensity, duration, and return period)

are used to design stormwater management facilities,

erosion and sediment control structures, flood protection

structures, and many other civil engineering structures

involving hydrologic flows (McCuen 1998; Prodanovic and

Simonovic 2007). An IDF curve presents the probability of

a given rainfall intensity and duration expected to occur at

a particular location. Standards have been developed for

designing infrastructures based on IDF curves (Wolcott

et al. 2009).

During the last century, the concentration of carbon

dioxide (CO2) and other greenhouse gases (GHGs) in the

earth’s atmosphere has risen due to increased industrial

activities (Prodanovic and Simonovic 2007). This increase
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in GHG concentrations is causing large-scale variations in

atmospheric processes, which can then lead to changes in

precipitation and temperature characteristics. The changes

in rainfall characteristics can change IDF curves. Antic-

ipating the potential effects of climate change (as mani-

fested by IDF curves) and adapting to them is one way to

reduce vulnerability to adverse impacts (Prodanovic and

Simonovic 2007).

Changes in extreme rainfall events can lead to a revision

of standards for designing civil engineering infrastructures.

It can also lead to reconstruction and/or upgrade of existing

civil engineering infrastructures. Current design standards

are based on historic climate information. For example, a

dam that is designed to control a 100-year flood event will

provide a significantly lower level of protection if the

intensity and duration of the 100-year flood event increa-

ses. To prepare for future climate changes, it is imperative

that we review and update the current standards for water

management infrastructure design. This would prevent

water management infrastructures from performing below

the designated guidelines in the future (Prodanovic and

Simonovic 2007). This study was funded by the National

Oceanic and Atmospheric Agency (NOAA) Regional

Integrated Sciences and Assessments (RISA) program. Its

main objective was to create IDF curves for Alabama using

high-resolution projections (for 2038–2070) derived from

dynamical downscaling of General Circulation Models

(GCMs) by Regional Climate Models (RCMs) and to

evaluate the impact of climate change on IDF curves.

Methodology

Stations and data

The stations providing long-term historical precipitation

data for Alabama are shown in the supplementary material

(Online Resource 1). Observed (historical) precipitation

data at 15-min intervals were obtained from NOAA

National Climatic Data Center (NCDC Online Climate

Data Directory). Historical simulations of precipitation for

the period 1968–2000 and future projections for the period

2038–2070 were obtained from the North American

Regional Climate Change Assessment Program (NARC-

CAP) at 3-h intervals with a spatial resolution of 50 km

(Sebastien et al. 2007; Richard et al. 2007). NARCCAP

was designed to investigate the uncertainties in future

climates at regional scales (Mearns et al. 2007). To this

end, it uses several GCM historical simulations and pro-

jections from the Intergovernmental Panel on Climate

Change (IPCC) Coupled Model Intercomparison Project

and dynamically downscales them using a set of RCMs.

The regional downscaling process uses the relatively

coarse resolution output from the GCMs as a continuously

updated boundary condition for the high-resolution RCMs.

The regional downscaling domain of NARCCAP covers

the United States and most of Canada (Mearns et al. 2007,

2009; Sebastien et al. 2007; Richard et al. 2007).

Models used

As mentioned above, future projections of precipitation

data for this study were obtained from the NARCCAP

website. Six different dynamically downscaled datasets

were used (in the entries below, the datasets are named

with the RCM identifier, followed by the identifier of the

GCM providing boundary conditions):

1. HRM3-HadCM3: HRM3 is the Hadley Centre

Regional Model. HadCM3 is the Hadley Centre

Coupled Model. Both developed at the Hadley Centre

in the United Kingdom.

2. CRCM-CGCM3: CRCM 4.2 is a Canadian Regional

Climate Model developed at the Université du Québec

à Montréal, and CGCM3 is the Coupled Global

Climate Model, developed at the Canadian Centre for

Climate Modelling and Analysis (CCCma).

3. HRM3-GFDL: GFDL CM 2.1 is a coupled atmo-

sphere–ocean general circulation model (AOGCM)

developed by Geophysical Fluid Dynamics Laboratory

(GFDL), Princeton University.

4. CRCM-CCSM: The Community Climate System

Model (CCSM) is a coupled climate model developed

at the National Center for Atmospheric Research

(NCAR) in Boulder, Colorado.

5. RCM3-GFDL: RCM3 or RegCM is a regional climate

model originally developed at the National Center for

Atmospheric Research (NCAR).

6. ECP2-GFDL: The updated data from the Regional

Spectral Model developed at the Experimental Climate

Prediction Center at Scripps Institute of Oceanography.

Bias correction

Models are not perfect; a twentieth century–simulated

climate, projected from a model, is not the same as the

climate of the twentieth century coming from observations.

Hence, GCMs precipitation outputs cannot be used in

hydrological models or in decision making without per-

forming some form of bias correction (Sharma et al. 2007;

Hansen et al. 2006; Feddersen and Andersen 2005). A

realistic presentation of future precipitation from global

climate models is extremely important for vulnerability and

impact assessment (Wood et al. 2004; Schneider et al.

2007). Therefore, modelers use bias correction techniques

to represent more realistic GCM outputs by establishing a
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relationship between climate model outputs and observations,

then using that relationship to transform the simulated twenty-

first-century climate to a ‘‘best guess’’ twenty-first-century

climate. These techniques are given a variety of names in the

literatures, such as statistical downscaling, histogram equal-

izing, and quantile-based mapping (Piani et al. 2010).

For this study, a quantile-based mapping method pro-

posed by Li et al. (2010) was used. In this method, monthly

rainfall values were used to define the CDF error of his-

torical model runs relative to observations. This error was

used to correct the model CDF for the future period by

calculating a scaling factor from the monthly totals. The

scaling factor is defined as bias-corrected rainfall total for a

given month, divided by the non-bias-corrected total. Prior

to disaggregation of 3-hourly rainfall events, the 3-hourly

totals were multiplied by this scaling factor (Li et al. 2010).

Temporal downscaling

High-temporal-resolution (e.g., 15, 30 min, and 1-h) data

are needed to create the IDF curves. Since NARCCAP

provides future climate data at 3-h intervals, it is necessary

to temporally downscale the precipitation data. Different

types of downscaling techniques have been developed over

the years; they can be categorized as weather generators,

transfer functions (e.g., linear regression, stochastic

method, and artificial neural networks), and weather-typing

schemes (Von Storch 1999).

The temporal downscaling method employed in this

study is a modified version of a stochastic method intro-

duced by Socolofsky et al. (2001). They used the method to

downscale daily precipitation data to hourly data. The

method developed for this project breaks 3-hourly precip-

itation into possible storm intensity patterns by selecting

samples of measured event statistics from a 15-min

observed precipitation data (Socolofsky et al. 2001). Most

stochastic methods are based on two popular models,

Neyman–Scott and Bartlett and Lewis (Rodriguez-Iturbe

et al. 1987; Islam et al. 1990). One of the main reasons of

selecting Socolofsky method was the reduction of com-

putational effort needed to perform the method compared

the above-mentioned approaches.

Stochastic method

For the purposes of the stochastic disaggregation, a month-

specific database of 15-min observed precipitation data was

created. An ‘‘event’’ was defined as a continuous sequence

of precipitation, separated by 30 min of dry weather. In

case, an event was longer than 3 h; it was further divided

into 3-h subintervals starting from the beginning of the

rainfall. As such, the database was composed of several

observed events, no longer than 3 h each. Following the

stochastic method, each 3-hourly predicted precipitation

(X) was disaggregated into a randomly selected collection

of N rainfall events of xi magnitude (i = 1,…, N), such that

Rxi = X (i = 1,…, N). These rainfall events are selected

from the formed database. Finally, to form 15-min distri-

bution of X, each selected event was randomly placed

throughout the 3-h interval. More explanation on stochastic

method is presented in supplementary material document

(page 3–4).

Performance

This method’s performance was tested to ensure its ability

to disaggregate the 3-hourly precipitation data to 15-min

data. Three-hourly precipitation time series at each 15-min

gauge were created by adding the measured 15-min pre-

cipitation, and the disaggregation method was tested in its

ability to disaggregate the 3-hourly data into a 15-min

synthetic time series. To evaluate the performance of the

disaggregation method, the statistics of measured and

synthetic time series were compared as suggested by So-

colofsky et al. (2001) and Choi et al. (2008). The statistical

parameters of the maximum rainfall values were also cal-

culated to ensure the model captured the peaks. Since the

disaggregation method is stochastic, 30 model runs were

performed at each station, and the mean value of statistics

over all 30 runs was used in the error quantification.

Creating IDF curves

Generalized Extreme Value (GEV) distribution was

selected as the best probability distribution for Alabama

based on different tests (e.g., probability plots, goodness of

fit, and L-moment ratio) in a study by Durrans and Brown

(2001). The GEV distribution is a continuous probability

distribution that combines Gumbel, Frechet, and Weibull

distributions, and it is based on extreme value theory

(Coles 2001). This distribution was used in this study for

creating IDF curves. GEV parameters have been estimated

using the method of moments (MOM) (Hosking et al.

1985; Bhunya et al. 2007). Kolmogorov–Smirnov (K–S)

test was used to evaluate the performance of the fit.

The steps below describe the process of creating IDF

curves:

1. Obtain annual maximum series of precipitation depth

for a given duration (15, 30, and 45 min, 1, 2, 3, 6, 12,

24, and 48 h)

2. Use GEV distribution to find precipitation depths for

different return periods (2, 5, 10, 25, 50, and

100 years)

3. Repeat the first two steps for different durations

4. Plot depth versus duration for different frequencies.
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Results and discussion

Bias correction

As mentioned earlier, the quantile-based mapping method

proposed by Li et al. (2010) was used in this study. Bias

correction was done on a monthly basis for each of the six

climate models. CDFs of observed data from all stations

and CDFs of climate model data for the same period were

compared with each other. The twenty-first-century pro-

jections were then corrected based on the differences

between theses CDFs. The resulting bias-corrected model

projections were used for the remainder of this study.

Performance

The statistical measures used in the error quantification for

typical months in winter (February) and summer (August)

are presented in the supplementary material (Online

Resource 2). In addition, statistical parameters of maxi-

mum rainfall values were calculated to make sure that the

disaggregation model was capturing the peaks (Online

Resource 3). These results show that the method was per-

forming well in disaggregating the 3-h interval precipita-

tion to 15-min data. Performance of GEV parameter

estimation was also evaluated using Kolmogorov–Smirnov

(K–S) test (Massey 1951). The critical value between

sample and theoretical cumulative distributions at 95 %

level of confidence (a = 0.05) was 0.234. The maximum

distance between the sample and theoretical cumulative

distributions needs to be less than the critical value. Table

presented in the supplementary material (Online Resource

4) shows statistical measures used for this evaluation.

Based on the K–S test results, on all attempts, GEV

distribution fitted to the sample CDFs with minimal error.

The test results were always smaller than the critical value

at 95 % confidence and had a small standard error.

IDF curves

Intensity–Duration–Frequency curves for Alabama were

created as a series of 60 maps for each of the 6 NARCCAP
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(c) Auburn, 10-yr
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(d) Auburn, 100-yr
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(e) Auburn, 10-yr
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(f) Auburn, 100-yr
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Fig. 1 IDF curves under

current and future climate using

HRM3-HadCM3, CRCM-

CGCM3, and HRM3-GFDL

models for Auburn, AL
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regional climate projections (360 maps total) for 10 dif-

ferent rainfall durations and 6 different return periods.

An example of the type of maps that can be gener-

ated is illustrated in the supplementary material

(Online Resource 5) using HRM3-HadCM3 projections.

Comparing these maps with NOAA, Technical Paper 40

(TP-40) (Hershfield 1961) shows that changes in future

IDF curves are expected with the future climate (TP-40 is

not shown in the figure). For example, for a 50-year return

period with 6-h duration, about 7.5 inches of precipitation

is expected to fall in the southwestern part of the state.

Based on TP-40, this amount is currently 6 inches—about

25 % less than what is predicted for the future. The largest

projected 12-h rainfall value (about 11.5 inches) is

expected to happen in southwest Alabama. For the same

region and duration, TP-40 (Hershfield 1961) demon-

strates about 8 inches of rainfall, 44 % less than what is

predicted by IDF curves under the future climate scenario.

Changes in future rainfall intensity are expected to

continue for other rainfall durations and return periods,

but it is not possible to discuss the results of all 360 maps

here. Therefore, City of Auburn in Alabama was selected

as an example from which to discuss the results in more

detail. Figures 1 and 2 show the future and current IDF

curves using all six NARCCAP regional climate projec-

tions for Auburn, AL for the two different return periods

of 10 and 100 years.

Figure 1a, b shows IDF curves under both the future and

current climates for Auburn when HRM3-HadCM3 pro-

jections were used to develop future IDF curves. Figure 1a

demonstrates that the projected rainfall intensity for a

10-year return period tends to decrease by 20 % when the

rainfall duration is less than 4 h and is expected to increase

by 42 % for rainfall durations of more than 4 h. Also,

rainfall intensity tends to increase by 38 % if the rainfall

duration exceeds 6 h and is expected to decrease by 20 %

for durations less than 6 h when the return period is

100 years (Fig. 1b).
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(b) Auburn, 100-yr
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(c) Auburn, 10-yr
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(d) Auburn, 100-yr

Duration (hr)
0.1 1 10 100R

ai
n

fa
ll 

in
te

n
si

ty
 (

m
m

/h
r)

1

10

100

1000

RCM3-GFDL
Current

(e) Auburn, 10-yr
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(f) Auburn, 100-yr
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Fig. 2 IDF curves under

current and future climate using

CRCM-CCSM, RCM3-GFDL,

and ECP2-GFDL models for

Auburn, AL
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Figure 1c, d depicts the changes in IDF curves when

CRCM-CGCM data were used. For a 10-year return period,

rainfall intensity tends to be reduced by 51 %. Results also

show a 49 % decrease for a 100-year return period. Using

HRM3-GFDL projections present a 26 % decline in rainfall

intensity for durations less than 4 h and a 65 % increase for

durations more than 4 h (Fig. 1e). Likewise, a 22 % decrease

and a 129 % increase are expected to be observed for dura-

tions of less than and more than 4 h, respectively (Fig. 1f).

Figure 2a, b displays future and current IDF curves

developed using the CRCM-CCSM model. Forty-three

percent and 49 % declines are expected to be noticed for

all durations when the return period is 10- and 100-year,

respectively. The result of utilizing the RCM3-GFDL

model for developing IDF curves is presented in Fig. 2c, d.

It can be seen that a 34 % rainfall intensity reduction was

observed for durations of less than 5 h, while there was a

27 % increase for periods longer than that (Fig. 2c). A

14 % decline for durations of less than 3 h and a 55 %

increase in rainfall intensities for longer durations was also

observed (Fig. 2d). Figure 2e, f demonstrates changes in

rainfall intensity employing the ECP2-GFDL model. Both

the 10- and 100-year return periods saw 33 and 37 %

reductions, respectively, for all rainfall durations. Table 1

summarizes the discussed results for different return peri-

ods using six climate models for Auburn, AL.

As the results above clearly demonstrate, the six dif-

ferent NARCCAP-based projections are not identical.

Analyzing all the developed maps for the state of Alabama

also shows the same disparity as Auburn. Two of the

models (CRCM-CGCM3 and CRCM-CCSM) show a

decrease in future rainfall intensity for all return periods

and all rainfall durations for Alabama. The other four

suggest that, depending on the return period, future rainfall

intensities could decrease below and increase above a

specific rainfall duration. The disparity in results could be

due to many factors. Dai (2006) performed a study in

which precipitation characteristics in eighteen climate

models were analyzed and compared with historical data.

The study pointed out that some of the climate models’

(like CGCMs) deficiencies in measuring tropical rainfall

were correlated with biases in the sea surface temperature

(SST) areas (Dai 2006). The SST biases in the CGCM3

model are in accordance with dry biases in the Caribbean

Sea and the Gulf of Mexico, so it may underestimate

variables such as precipitation (Dai 2006). It was also noted

that the HadCM3 model simulates a realistic precipitation

pattern, but that the results of climate models vary for

different regions in the world (Dai 2006). Therefore, it

should be noted that these models are different in nature,

and many different variables could be involved in creating

discrepancies. Differing results could be attributed to dif-

ferent types of GCMs and RCMs or to initial conditions

and boundary conditions for each climate projection—but

they all agree that for short durations of rainfall (usually

less than 4 h), rainfall intensity is expected to decrease or

remain close to the current one. It suggests that the current

standard and guidelines, which use short rainfall durations

for designing water management infrastructures (e.g., a

roadside channel, a detention pond for a small drainage

area), can serve their purpose in the future well.

As mentioned earlier, the results of six different

NARCCAP-based projections are not consistent with

respect to larger events. To further explore the results of

Table 1 Comparisons of IDF curves under the current and future

climate scenario for Auburn, AL

Model Return period Average percentage

difference in rainfall

intensity

HRM3-HadCM3 2 and 5 years Duration(t) [3 h: 49 %

increase

t \ 3 h: 22 % decrease

10 years t [ 4 h: 42 % increase

t \ 4 h: 20 % decrease

50 years t [ 5 h: 33 % increase

t \ 5 h: 20 % decrease

100 years t [ 6 h: 38 % increase

t \ 6 h: 20 % decrease

CRCM-CGCM3 All return periods 50 % decrease for all

durations

HRM3-GFDL 2–5 and 10 years t [ 4 h: 50 % increase

t \ 4 h: 29 % decrease

50 years 162 % increase for all

rainfall durations

100 years t [ 4 h: 129 % increase

t \ 4 h: 22 % decrease

CRCM-CCSM All return periods 44 % decrease for all

durations

RCM3-GFDL 2 years t [ 12 h: 13 % increase

t \ 12 h: 38 % decrease

5 years t [ 6 h: 23 % increase

t \ 6 h: 34 % decrease

10 years t [ 5 h: 27 % increase

t \ 5 h: 34 % decrease

50 years t [ 4 h: 44 % increase

t \ 4 h: 20 % decrease

100 years t [ 3 h: 55 % increase

t \ 3 h: 14 % decrease

ECP2-GFDL 2-year t [ 12 h: 15 % increase

t \ 12 h: 46 % decrease

5-year t [ 17 h: 3 % increase

t \ 17 h:41 % decrease

10, 50 and 100 years 36 % decrease for all

durations
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larger events, graphs presented in Fig. 3 were prepared. In

this figure, rainfall intensity for a 12-h rainfall under future

and current climate was plotted for different return periods.

Figure 3a presents the results when HRM3-HadCM3 pro-

jections were used to develop future IDF curves. It shows

that if a given rainfall intensity under current climate

occurs once every 20 years (the probability of that given

rainfall happening in any year; p = 5 %), the same rainfall

intensity is expected to happen once every 2 years

(p = 50 %), under future climate. Figure 3b, c also shows

increase in rainfall intensity under future climate using

HRM3-GFDL and RCM3-GFDL projections. On the other

hand, Fig. 3d that presents the results of using CRCM-

CGCM3 projections suggests that if a given rainfall

intensity under current climate occurs once every 2 years

(p = 50 %), the same rainfall intensity is expected to

happen once every 10 years (p = 10 %) under future

climate. Likewise, Fig. 3e, f shows reduction in future

rainfall intensity. How these results will affect designing

different structures will be discussed below.

The first step toward designing different water man-

agement structures (dams, channels, detention ponds, etc.)

is to identify the characteristics of design storm in terms of

duration, return period, and intensity. Time of concentra-

tion of the watershed draining to the hydraulic structure

usually dictates the design storm duration. Storm return

period is assigned based on economic assessments and risk

analysis (probability of damage, loss of life, etc., in case of

failure). For example, a 5–10-year return period is used for

designing roadside channels (Brown et al. 1996) where the

cost of failure is negligible whereas a much larger return

period is used for designing small dams (100-year and

over) where there is a great risk of life in case of failure.

Knowing the storm return period, the design rainfall

intensity is then acquired from developed IDF curves of the

region. Rainfall intensity and duration of design storm

dictate the cost of the hydraulic structure, and any uncer-

tainty bound to estimation of these parameters can greatly

impose design uncertainties. For example, Fig. 3a–c sug-

gests design rainfall intensities of 16, 28, and 23 mm/h,
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(c) Auburn, 12-hr
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(d) Auburn, 12-hr
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Fig. 3 Rainfall intensity versus

return period under current and

future climate for a 12-h rainfall

using a HRM3-HadCM3,

b HRM3-GFDL, c RCM3-

GFDL, d CRCM-CGCM3,

e CRCM-CCSM, and f ECP2-

GFDL model
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respectively, for a 100-year return period and 12-h duration

while Fig. 3d, f recommend 9 mm/h, and Fig. 3e proposes

8 mm/h as a design rainfall intensity (design rainfall intensity

based on current IDF curves for this specific example is

12 mm/h). As can be clearly seen, there is a large uncertainty

existed on projected rainfall intensity of these six climate

models for long durations. Developing an ensemble model as

a result of incorporating all six climate models could be a

proper solution to diminish this uncertainty.

Summary and conclusions

This study developed IDF curves under the future climate

scenarios for Alabama, which were then compared with the

IDF curves under the current climate. Six dynamically

downscaled projections were used in this study. Results of

the four climate model projections suggest that future

rainfall intensity could be subject to decreases or increases

depending on the return period. Analysis of the results of

the remaining two model projections indicates a reduction

in future rainfall intensity for all return periods and all

rainfall durations for Alabama. A large uncertainty on

projected rainfall intensity of these six climate models for

long durations (i.e., larger than 4 h) makes it difficult to

obtain any strong conclusions about the expected changes

on future rainfall intensity in Alabama. A variety of factors

cause the differing results; a likely reason is the difference

in physical parameterizations, especially of radiative and

precipitation-forming processes, among different GCMs

and RCMs, as well as the difference in initial and boundary

conditions for each climate projection—but the result they

all have in common is that the precipitation pattern for

Alabama veers toward less intense rainfalls for short

rainfall durations (i.e., less than 4 h). From this, we can

conclude that the current standards and guidelines for

designing municipal management infrastructures based on

short rainfall durations can continue to serve well in the

future. This conclusion is solely based on the results of the

six climate model projections used in this study and not all

existing climate models and scenarios. Using additional

climate model projections in the future will help to make a

stronger conclusion in this regard. Also, given the large

uncertainty in the output from GCMs, performing an

uncertainty analysis and creating a probability based IDF

curves has been considered top priority for future work.
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