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Abstract: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative
pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The
associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined
antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with
controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2
infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and
causes neurological complications, resulting in a health burden and an adverse impact on PLWH
and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2
infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting
HAND is poorly explored. In the present review, we compiled the current knowledge of differences
and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19
and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of
COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the
neurological syndrome, the development of HAND, and its influence on preexisting HAND are also
discussed. Finally, we have reviewed the challenges of the present syndemic on the world population,
with a particular emphasis on PLWH.
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1. Introduction

The world is in the middle of a debilitating coronavirus disease 2019 (COVID-19)
pandemic, which overlaps with the acquired immunodeficiency syndrome (AIDS) epi-
demic [1–3]. The causative agent for COVID-19 is severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), and for AIDS, it is human immunodeficiency virus type-1
(HIV-1) [4–8]. Worldwide, SARS-CoV-2 infections exceed 758 million, with more than
6.8 million deaths due to COVID-19 [9]. However, there is a total of 84.2 million people
infected with HIV-1 and 40.1 million deaths from AIDS-related illnesses. In 2021, the total
number of people living with HIV-1 (PLWH) was 38.4 million, with 1.5 million new infec-
tions and more than 650 thousand deaths [10,11]. The coinfection of SARS-CoV-2 and HIV-1
results in SARS-CoV-2/COVID-19/and HIV-1/AIDS co-pandemic or syndemic [12,13].
It was presumed that PLWH are at higher risk of SARS-CoV-2 infection and resultant
outcomes owing to their dysregulated immunity and inflammatory conditions, but there is
a lack of clear consensus [13–18]. A paucity of higher risk may be possibly due to combined
antiretroviral treatment (cART) regiments with suppressed viral loads and nearly immune
reconstituted status. However, worldwide reports revealed severe clinical presentations,
and the increased morbidity and mortality of SARS-CoV-2 infection in PLWH compared to
people without HIV-1 [19–23]. In addition to respiratory syndromes, COVID-19 induces
neurological manifestations such as headache, confusion, impaired consciousness, anosmia,
ageusia, meningoencephalitis, neuropsychiatric disorder and others [24–27]. Thus, the
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emergence of COVID-19-associated neurological manifestations may have cumulative
neurological manifestations in PLWH and people who have progressed to HIV-1-associated
neurocognitive disorders (HAND) [28,29].

HIV-1 invasion into the central nervous system (CNS) was recognized early in the
HIV-1 epidemic, and brain infections have been well-studied and characterized, as are viral
proteins and their neurotoxicity [30–32]. Emerging evidence indicates that SARS-CoV-2
invades the CNS and modulates the host immune responses, causing neurological manifes-
tations [33–35]. It is noticed that post-acute sequelae of SARS-CoV-2 (PASC) or Long-COVID
has an adverse impact on PLWH, especially in people with HAND [36,37]. This review por-
trays recent advances in neurological manifestations imposed by SARS-CoV-2/COVID-19
on PLWH with or without HAND. It covers the similarities and differences between SARS-
CoV-2 and HIV-1; delineates SARS-CoV-2-induced neurological manifestations, including
learning from HIV-1-induced neurological outcomes; presents the risk factors of COVID-19
in PLWH and the neurological impact of SARS-CoV-2/COVID-19 and the HIV-1/AIDS
syndemic; and explores plausible mechanisms underlying neurological sequelae in SARS-
CoV-2 infection of PLWH and people with HAND focusing on the NLRP3 inflammasome
overactivation-associated neurotoxicity [38,39]. Additionally discussed are the challenges
of COVID-19 on PLWH, including PASC and Long COVID incidences and possible ways
to overcome the overwhelming influence of the SARS-CoV-2/HIV-1 syndemic.

2. Similarities and Differences between SARS-CoV-2 and HIV-1

SARS-CoV-2 and HIV-1 are natural RNA viruses transmitted to humans via a zoonotic
transmission [40,41]. Despite differences, these viruses employ common molecular mech-
anisms during transmission and disease progression [3,41–43]. The similarities between
SARS-CoV-2/COVID-19 and HIV-1/AIDS are described below and summarized in Table 1.
The differences are presented in Table 2.

Table 1. Similar attributes of SARS-CoV-2 and HIV-1.

SARS-CoV-2 HIV-1

Yes Public fear Yes

Yes Enveloped virus Yes

Yes ssRNA genome Yes

Yes Natural origin Yes

No Symptoms in the natural reservoir No

Yes Asymptomatic spread Yes

Yes Inflammation Yes

Yes NLRP3 inflammasome activation Yes

Yes Lymphopenia Yes

Yes NETosis Yes

Yes Neurocognitive disorders Yes

(a) Fear among the public is the most common attribute of both SARS-CoV-2 and HIV-1
viral infection. This public fear makes people psychologically ill, leading to stress and
anxiety [42].

(b) Both SARS-CoV-2 and HIV-1 are enveloped viruses with single-stranded RNA as
the genome.

(c) Both the genomes of SARS-CoV-2 and HIV-1 are prone to mutation, and the accumu-
lation of mutations within the host under selection pressure results in the emergence
of new variants. Furthermore, immunocompromised PLWH harbor SARS-CoV-2 for
a longer time, providing ample time for mutant accumulation and resulting in the
SARS-CoV-2 variant stemming [44].
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(d) SARS-CoV-2 and HIV-1 have zoonotic origins and were transmitted to humans
from animal reservoirs, HIV-1 from non-human primates (NHPs) and SARS-CoV-2
from bats.

(e) In respective natural reservoirs, SARS-CoV-2 and HIV-1 infections produce mild to no
symptoms but incite disease upon human infection.

(f) One reason for the widespread COVID-19 and AIDS pandemics is the transmission of
SARS-CoV-2 and HIV-1 via asymptomatically infected individuals.

(g) Lymphopenia as a result of drastic loss of CD4+T cells occurs due to HIV-1 and SARS-
CoV-2 infection and is considered a prognostic marker [45–47]. There is a substantial
drop in CD4+T cell counts in the acute phase of HIV-1 infection in contrast to the
chronic phase, where a continued decline in CD4+T cells occurs and leads to AIDS.
Lymphocytopenia is the hallmark of COVID-19 severity, but elevated levels of CD4+T
and CD8+T cells were associated with milder disease conditions [45].

(h) SARS-CoV-2 and HIV-1 induce neutrophil extracellular traps (NETs) and cause NE-
Tosis, a neutrophil death mechanism. NETosis also may cause increased secretion of
chemokines and cytokines, leading to increased inflammation.

(i) Both SARS-CoV-2 and HIV-1 induce higher proinflammatory cytokine secretion and
inflammation.

(j) Increased serum levels of proinflammatory cytokines in SARS-CoV-2 and HIV-1 in-
fected patients are considered to be biomarkers and are predictive variables associated
with morbidity and mortality.

(k) Both these viruses, SARS-CoV-2 and HIV-1 infection, lead to immune dysregulation
and are mediated by inflammasome activation. These viruses can activate NLRP3
inflammasome in different cells, including monocytes/macrophages and microglia.
SARS-CoV-2-induced Microglial and macrophage NLRP3 inflammasome activation in
the CNS results in neuroinflammation, causing myriad neurological manifestations.

(l) A portion of SARS-CoV-2 and HIV-1 infected individuals develop neurocognitive
impairments.

Table 2. Differences between SARS-CoV-2 and HIV-1 (adapted from Ref. [42] with modifications).

SARS-CoV-2 HIV-1

Phylogeny β-coronavirus Lentivirus

Virion size Spherical particle 50–200 nm in diameter Spherical particle ~100 nm in diameter

Genome One copy of single-stranded positive-sense RNA Two copies of single-stranded
positive-sense RNA

Genome size ~29.2 kb ~10 kb

Genome integration No Yes

Reservoir No viral reservoir formation This virus integrates into the human
genome and forms reservoirs

Transmission Air, aerosol Sexual, body fluid

Receptor in use ACE2, TMPRSS2 CD4, CCR5 and CXCR4

Symptoms Breathing difficulty, fever, pneumonia and
kidney failure

Flu or mononucleosis-like during early
infection and opportunistic infections in
late stages. Long time to progress to AIDS

Symptom timeline 2–14 days after contact with the virus 2–6 weeks after viral contact

Death percentage 1–4% ≥95%

Vaccine Available Not available

Medicine Antivirals Antiretroviral therapy (cART)

Cure Curable
(By antivirals or plasma therapy)

No cure
(Can be controlled with cART)
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3. HIV-1-Induced Neurological Manifestations

In addition to systemic infection and immune dysregulation, HIV-1 infects the CNS
and causes neurological manifestations. CNS infection by HIV-1 was recognized early in the
HIV-1 epidemic [30,48,49]. The presence of HIV-1 in the CSF and brain tissues within days
of primary systemic infection indicates HIV-1 neuroinvasion early during the course of infec-
tion [49–53]. Despite controversy regarding how exactly HIV-1 enters the brain, the Trojan
horse mechanism of HIV-1 infection of monocytes and lymphocyte trafficking and penetrat-
ing the blood–brain barrier (BBB) is the most convincing in terms of CNS infection [54–56].
Thus, HIV-1 neuroinvasion occurs primarily via immune cell trafficking across the BBB
and subsequent dissemination by infection of perivascular macrophages/monocytes and
lymphocytes [25,50,53,57,58]. HIV-1 does not infect neurons. Neuronal injury is believed to
be mediated by HIV-associated neuroinflammation and neurotoxic viral proteins (gp120,
Tat, Nef and Vpr). The productive viral replication produces a prolonged inflammatory
environment resulting in sustained neuroinflammation [59,60], leading to the pathogenesis
of HAND [59,60]. HAND pathogenesis and progression may also be the consequence of
the reactivation of HIV-1 reservoirs in the brain [61–63]. HAND can be categorized by
neuropsychological tests and/or assessment of functional status into three categories (i)
Asymptomatic neurocognitive impairment (ANI), (ii) Mild neurocognitive disorder (MND)
and (iii) HIV-1-associated dementia (HAD) [59,60,64,65].

Prior to cART, HAD was found in 25% of HIV-1-infected individuals [30]. Although
the incidence of HAD has declined significantly in the cART era, more than 50% of the
PLWH exhibit a milder form of HAND [50]. The clinical manifestations of HAND are mem-
ory impairment, attention disruption, poor judgment and challenges in multitasking [65,66].
The severity of HAND worsens with disease progression due to motor dysfunction, re-
sulting in coordination disruption, executive dysfunction and end-stage dementia [65,66].
Whether HAND is a legacy effect of residual viral replication in the CNS after cART or due
to the systemic inflammation mediated by glial cells is still unresolved and warrants dedi-
cated investigation. The lessons learned from comprehensive research on HIV-1-induced
neurological manifestations may provide researchers with the following pathways for
studying SARS-CoV-2-induced CNS damage: (a) direct infection of the CNS glial cells and
macrophages, (b) direct neurotoxic effect of viral proteins on resident cells and (c) hyperac-
tivated immune cell trafficking into the brain, the neuroimmune axis [67]. An investigation
of the above-mentioned pathways may enhance our understanding of the potential impact
of SARS-CoV-2 on the brain, especially on PLWH and PLWH with HAND in SARS-CoV-
2/HIV-1 syndemic. Nevertheless, the acquired knowledge from HIV-1 research on the CNS
may provide insight into the impact of SARS-CoV-2-induced neurological manifestations.

4. Impact of SARS-CoV-2 on the CNS

The newly emerged novel coronavirus SARS-CoV-2 is a spillover from bats and is
primarily a respiratory pathogen [68–71]. The SARS-CoV-2 infection proliferates to other
organ systems in infected individuals, such as the renal, cardiovascular, and nervous
systems [24,26,27,68,72]. Recent postmortem studies of COVID-19 victims have detected
SARS-CoV-2 RNAs in the brain tissues and cerebrospinal fluid (CSF) [73–75]. Neuroinva-
sion of SARS-CoV-2 was revealed by immunostaining of viral nucleocapsid and/or spike
protein [33,76]. SARS-CoV-2 invasion into the CNS was observed in COVID-19 animal mod-
els (NHPs, mice and hamsters) and the autopsy of COVID-19 patients [33,35,77]. Further,
studies on brain organoids also demonstrated the neuroinvasion of SARS-CoV-2, like other
coronaviruses, such as SARS-CoV and MERS [78–80]. Worldwide studies have revealed
that SARS-CoV-2 enters the CNS by crossing the BBB or/and via retrograde neuronal
transfer through the olfactory nerves. Despite evidence of SARS-CoV-2 neuroinvasion,
how exactly this virus enters the CNS and its precise timing warrant further investigation.
SARS-CoV-2 also causes neurological sequalae without CNS infection, implying indirect
viral effects on the brain, such as abortive infection and/or viral proteins in the CNS.
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Nonetheless, understanding the influence of SARS-CoV-2 and viral proteins on the brain
and resultant neurological consequences is imperative.

Emerging neurological symptoms reported in COVID-19 patients include headache,
seizures, stroke, encephalopathies, altered mental status, and many more (Figure 1). SARS-
CoV-2 was identified as a primary respiratory pathogen early in the pandemic, and it has
been confirmed to be a neuropathogenic virus [26,81,82]. There is evidence indicating a
restricted SARS-CoV-2 infection in the CNS [83]. The lower level of SARS-CoV-2 viremia
than a typical viral brain infection suggests an alternate mode of CNS infection rather
than crossing BBB [84]. In parallel with the viral load level in the blood, the level of viral
load in the CSF was also low, indicating an unlikely possibility that productive viral in-
fection/replication in the CNS is solely responsible for COVID-19-induced neurological
outcomes [84]. Since angiotensin-converting enzyme 2 (ACE2) and transmembrane pro-
tease serine 2 (TMPRSS2) are expressed in vascular cells such as pericytes and immune
cells (monocytes/macrophages, microglia) [84,85] but not neurons, and neuronal injury
could be an indirect effect of viral CNS infection. Nevertheless, the possible ways that
SARS-CoV-2 implies COVID-19-induced neurological outcomes could be direct infection
into the CNS, viral neurotoxic proteins and the neuroimmune axis.
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Figure 1. Neurological disorders associated with SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic.
COVID-19 has a broad impact on neurological manifestations and specifically on HIV-1/ADIS
patients. COVID-19 may worsen neurological disorders, including ischemic/hemorrhagic stroke,
encephalitis, meningitis, seizures, migraine, mental health disorders, memory and cognition disorders,
musculoskeletal disorders and Guillain–Barre syndrome.

There is agreement regarding SARS-CoV-2 entry into the CNS, and the nose is consid-
ered to be the front door, while the retina is the window [84,86]. After infection, SARS-CoV-2
replicates in the upper respiratory tract. Thus, most detection methods for COVID-19 use
nasopharyngeal swab samples to detect the presence of the virus [87,88]. The entry of
SARS-CoV and SARS-CoV-2 into the human host occurs by binding of viral S-protein to
host cell receptor ACE2 and TMPRSS2 priming of S-protein [89]. Previously SARS-CoV in-
tranasal infection was demonstrated using mice expressing human ACE2 [90,91]. Similar to
bronchial transitory secretory lung cells, it was found that some neuronal and glial cells in
the CNS also have ACE2 expression [82,85,92]. Moreover, under physiological conditions,
some olfactory mucosal non-neuronal cells also express the ACE2 receptor [93]. Further,
using regional mapping, the presence of a higher level of SARS-CoV-2 RNA was shown
in the olfactory mucosa. Due to the proximity of neurons and nerve fibers in the olfactory
region and the signs of alteration in taste and smell perceptions, it was suggested that the
neural–mucosal interface is a promising port of SARS-CoV-2 entry into the CNS [86]. The
high prevalence of S-protein in the olfactory mucosa also indicates SARS-CoV-2 neuroin-
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vasion via the transmucosal route along the olfactory tract [86]. Studies using autopsy
samples from COVID-19 victims revealed SARS-CoV-2 replication in the olfactory bulb
and hypothalamus, suggesting the olfactory route of CNS invasion [33,94,95]. In another
study carried out on the K18-hACE2, a mouse model of COVID-19 intranasal infection, the
authors detected SARS-CoV-2 brain infection and the upregulation of neuroinflammatory
markers [96]. It was in that study that a productive infection of SARS-CoV-2 occurred in
the nasal turbinate cells, olfactory bulb and eyes, supporting the olfactory route of the CNS
infection [96]. This route of CNS infection was further supported by experimental results
that SARS-CoV-2 RNA was detected in blood and CSF one day after intranasal infection,
further stipulates lymphatic/hematogenous virus spread via BBB endothelial cell infection
to disseminate into the CNS [97,98]. A recent study has reported CNS damage and dis-
ruption in BBB integrity in the acute phase of COVID-19 patients with severe neurological
symptoms [99]. In this study, authors have shown increased plasma neuro–axonal damage
specific biomarker neurofilament light chain (NfL) levels in COVID-19 patients, specifically
those with ARDS [99]. Further, matrix metalloproteinases (MMPs) are zinc-dependent
enzymes and mediators of neuroinflammatory processes regulating BBB integrity and were
found to be upregulated in COVID-19 patients. Additionally, in neuro-COVID-19 patients,
increased levels of both plasma and CSF NfL and MMP-2 (a form of MMPs) were found
in ARDS compared to non-ARDS groups [99]. Thus, this study confirms the CNS damage
and breach in BBB integrity in COVID-19, which may lead to Long COVID or PASC.

SARS-CoV-2 neurotoxic proteins play a crucial role in neurological outcomes. In
addition to productive brain infection of SARS-CoV-2, an abortive SARS-CoV-2 infection
can elicit inflammatory responses in brain cells [67]. Additionally, SARS-CoV-2 may
be trapped inside lysosomes of microglia, astrocyte and macrophage and viral proteins
may stimulate Toll-like receptors (TLRs) to initiate an inflammatory cascade [100]. Thus,
SARS-CoV-2 proteins may modulate the neuroimmune milieu and be responsible for
COVID-19-induced neurological outcomes. Like other viral proteins, SARS-CoV-2 spike
protein in the CNS induces neuroinflammation by promoting the release of neurotoxic
cytokine via the microglial inflammasome activation [35]. Thus, in addition to other
mechanisms, inflammasome activation by SARS-CoV-2, and viral proteins play a substantial
role in the neuroinflammation-induced COVID-19-associated neurological consequences.
How SARS-CoV-2 proteins induce neuroinflammation and neurodegeneration via NLRP3
inflammasome activation is discussed in the mechanism section of this review.

The neuroimmune axis is another potential way to modulate COVID-19-induced
neurological syndrome. The brain is an immune-privileged site, and immune cells traffic to
the CNS in the absence of infection or BBB breakdown at a slower rate and less in number
than other parts of the body [101]. Brain infection produces inflammatory responses and
enhances immune cells trafficking into the brain. Such an immune response is regulated
to balance the inflammatory response to contain the viral infection. As a standard belief,
the Trojan horse theory for viral dissemination to various organs is widely accepted in
which migratory immune cells can infiltrate diverse tissues [102,103]. Thus, the Trojan
horse theory explains how brain infection occurs, where brain-infiltrated monocytes dif-
ferentiate into resident tissue macrophages and spread the virus [102,103]. A noteworthy
point for HIV-1 infection is that not monocytes but monocyte-derived macrophages support
productive HIV-1 brain infection [104]. SARS-CoV was previously known to infect brain
macrophages/microglia (CD68+) and T cells (CD3+), as evident from histochemical analy-
sis of human brain autopsy samples [105]. It has recently been reported that SARS-CoV-2
infects monocytes, but this infection was abortive. The abortive infection induces inflam-
mation by inflammasome activation-mediated proinflammatory cytokine production [106].
Moreover, the abortive infection of monocytes may introduce viral proteins into the CNS,
resulting in neuroinflammation by microglial NLRP3 inflammasome activation.
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Additionally, COVID-19 survivors have a broad spectrum of neurological symptoms,
including headache, impaired concentration, fatigue, hyposmia and myalgia long after
infection as a constellation referred to as the PASC or Long COVID [107–109]. Symptoms
of Long COVID also include fatigue, encephalitis, cerebrovascular disease, mental health
disorder, cognitive problem, neuropathies and muscular disorders (Figure 1) [108]. The
Long COVID symptoms were more severe in older persons with comorbidities than in
young, healthy adults [110]. More severe symptoms were also observed in people with Long
COVID who have a preexisting neurological syndrome or developed because of COVID-19,
such as stroke or encephalitis [111]. Considering these factors, it is worth mentioning that
conditions with PLWH, especially with HAND, may lead to double jeopardy [112]. The
following section delineates the syndemic effects of SARS-CoV-2/HIV-1 and their impact
on neurological manifestations.

5. Impact of COVID-19 on PLWH

In addition to its devastating impact on the world population, the COVID-19 pandemic
leads to double jeopardy for PLWH, especially those who have progressed to HAND [112].
Despite the contradictory views regarding the enhanced risk of SARS-CoV-2 infection in
PLWH [13], it has been confirmed that the PLWH are at paramount risk of mortality and
morbidity compared to HIV-negative people [113–115]. In PLWH, comorbidity, age, sex
and ethnicity are detrimental risk factors for SARS-CoV-2 infection and COVID-19 severity
that may lead to increased mortality and morbidity [113–115].

5.1. Risk Factors Associated with COVID-19 in PLWH

In the current cART era, PLWH with controlled viremia are living an almost normal
daily life with similar life expectancies comparable to HIV-1-negative people [50,65,116–120].
However, the restricted cART penetration into the CNS through the BBB resulted in per-
sistent low-grade viral replication in the brain. The residual HIV-1 replication and viral
neurotoxic proteins mediated chronic immune activation and persistent inflammation
leading to the development of HAND. As most PLWH are older people, who are often bur-
dened with comorbidities, including autoimmune disease as risk factors, further boosting
SARS-CoV-2 infection and COVID-19 severity. It was found that immune system dysregu-
lation imparts a higher risk of COVID-19 severity in PLWH than in non-PLWH [20,121].
Intriguingly, the risk factors influencing SARS-CoV-2 infection and COVID-19 severity are
complex and determined by target cell ACE2/TMPRSS2 expression and environmental
exposure [122]. Listed below are the diverse risk factors associated with SARS-CoV-2
infection and COVID-19-imposed exacerbation of HAND,

i. Age: It is well known that older people are more susceptible to the COVID-19 pan-
demic. At the beginning of the pandemic, biological age was recognized as a sig-
nificant risk factor. Several studies revealed that older people are more likely to
become infected with SARS-CoV-2 and COVID-19-related hospitalization and mor-
tality. According to the Centers for Disease Control and Prevention (CDC), people
aged 85 or older have a 13-fold higher risk of hospitalization and 630-fold death than
those aged 18–29. However, people between 50 and 85 are at a 4–8-fold higher risk
of hospitalization and 30–220-fold of death [122,123]. As a result of stringent cART
regiments, half of PLWH in the United States are 50 or older [118,119,124]. These older
PLWH with several age-related comorbidities and compromised immune systems
are at increased risk of COVID-19 complications. They usually experience physical
and cognitive impairments, chronic immune activation and multimorbidity even
without COVID-19 at ages younger than HIV-1 negative people [125–129]. Thus,
aging and age-associated comorbidity make PLWH succumb to SARS-CoV-2 infection
and COVID-19 severity [130]. Since COVID-19 also causes neurological syndromes,
SARS-CoV-2 may imply a cumulative effect on preexisting HAND or may lead to
the development of HAND. Nonetheless, investigating the impact of COVID-19 on
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aged PLWH with HAND is imperative in order to mitigate the devastating impact of
the syndemic.

ii. Sex: There are gender biases recorded for SARS-CoV-2 infection and COVID-19-
mediated disease severity. It was found that SARS-CoV-2-infected men aged between
40 and 70 years proceed to COVID-19 severity with double the risk of mortality than
the same age group of women [131–134]. The sex-biasedness in the risk of SARS-CoV-2
infection and COVID-19-induced disease severity is most likely due to sex-based dif-
ferential immune responses and immunomodulatory effectors such as sex hormones
and sex-specific comorbidity [135]. The sex-based biases are possibly due to male-
induced nonclassical monocytes and increased cytokines (IL-8 and IL-18) production
in contrast to women-induced robust CD8+T cell response [136]. Additionally, lesser
vulnerability and COVID-19 severity in women may be associated with enhanced
neutrophil activity and increased type I interferon (IFN-I), generating robust innate
immune response via TLRs [137]. Additionally, in males, the ACE2 and TMPRSS2
responsible for SARS-CoV-2 infection and pathogenesis were elevated compared to
females [89,138,139]. Both ACE2 and TMPRSS2 are androgen-responsive [140–143].
Men with lower testosterone levels were found to be associated with severe COVID-
19 outcomes [140–143]. The lower testosterone levels in men were also linked to
higher proinflammatory cytokine [144]. Thus, androgen deficiency and testosterone
dysregulation could modulate ACE2 and TMPRSS2 expression, further influencing
COVID-19 outcomes in PLWH [145]. In contrast, the impact of COVID-19 in PLWH
was the opposite regarding sex bias, with increased morbidity and mortality recorded
in women than in men [146,147]. Such a discrepancy could be due to stronger immune
activation and increased inflammatory markers in women, despite similar viral sup-
pression among men and women under strict cART regimens [148]. Although these
initial studies have concluded the opposite incidence of SARS-CoV-2 infection and
COVID-19 outcomes in PLWH, the sex-biased differential impact warrants further
investigation and critical interpretation.

iii. Comorbidities: As mentioned above, older people are at higher risk of COVID-19
severity; this may be due to the presence of comorbidities in people of this age
group. PLWH are often with several comorbidities, including dysregulated immunity,
chronic diseases in the lung, kidney and liver, and obesity, diabetes, hypertension,
hyperlipidemia, cardiovascular disease and other health issues, which may exacerbate
the COVID-19 severity [21,22,149–153]. PLWH with multiple comorbidities are victims
of disease severity and possess an increased chance of mortality [154,155]. However,
studies have revealed that PLWH adhering to cART, with adequate CD4+T cell count,
viral suppression and without comorbidities do not have a higher risk of COVID-
19 severity and mortality than non-PLWH [156]. Future studies are warranted to
delineate how these comorbidities affect COVID-19 severity and mortality in PLWH
and PLWH with impaired neurocognitive function.

iv. Immunity: The role of the immune system is to protect us from infections and dis-
eases. Any alteration or dysregulation in the immune system makes us vulnerable
to infection and severe disease outcomes. People with compromised immunity are
at higher risk of SARS-CoV-2 infection and COVID-19 severity. In PLWH, the im-
mune system is dysregulated despite the cART regimen due to a lack of immune
reconstitution or loss of immunological memory [157–159]. In a recent study, the
cART regimen exhibited potential protective effects on the incidence and severity
of COVID-19 in PLWH [160]. However, after clinical trials of several antiretrovirals
used to treat HIV-1, only partial protection was observed, and more clinical trials may
provide us with a better understanding of using antiretrovirals to treat SARS-CoV-2
infection [161]. Another study on PLWH showed that neither HIV-1 plasma viral load
nor CD4+T cell count at the time of diagnosis determined COVID-19 outcomes [121],
despite SARS-CoV-2 and HIV-1 infection-mediated T cell lymphopenia [46]. On
the contrary, recent studies presented on CROI 2022 reported the worst COVID-19
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clinical outcomes in PLWH with recent CD4+T cell counts of <200. More dedicated
meta-analysis is required to evaluate the effects of antivirals on SARS-CoV-2 infection
and COVID-19 severity. Viruses can inhibit T cell receptor signaling and immune
response, resulting in immune system dysregulation and imposing severe outcomes
of COVID-19 in PLWH. Furthermore, the emergence of SARS-CoV-2 variants make
PLWH who are immunocompromised more susceptible to accumulating mutations
during viral replication. These immunocompromised individuals may harbor viruses
for a longer time, providing an opportunity for variant emergence. HIV may “trigger”
the emergence of SARS-CoV-2 variants reported by a study carried out in South Africa
because of the high number of PLWH in this region [44,162].

v. Socioeconomic inequalities: In this world, millions of people suffer from the risk
of the social determinants of health inequalities, including the economic conditions
for affordable healthcare due to poverty [163]. PLWH are often with socioeconomic
burden due to health conditions and loss of income sources. Poor people with financial
burdens are unhealthy due to poor diet and inability to afford appropriate healthcare;
thus, the people in this group are more vulnerable to infection and disease progression
to severity. The living hygiene condition deteriorates with food insecurity and the
absence of proper care. Further, the economic uncertainty is disproportionate and
evident in some communities, such as the black and Hispanic populations, and
people in these communities represent most sufferers of these conditions. There
are several worldwide studies on determination of socioeconomic factors that affect
disease progression and related mortality. It is believed that socioeconomic burden
disproportionately impacts the risk of SARS-CoV-2 infection and disease severity.
Thus, poor people with socioeconomic disadvantage are in the high-risk category for
SARS-CoV-2 infection and disease severity due to their poor health conditions and
immunocompromised status.

vi. Substance abuse: Early in the COVID-19 pandemic, a steep rise in substance abuse,
drug overdose and mental health challenges was reported [164]. Among PLWH, drug
abuse is common, further burdening COVID-19 severity and mortality as COVID-19
imposed social isolation resulting in mental health deterioration and strained PLWH
toward substance use disorders (SUDs) [165]. People with SUD (PWSUD) might have
greater exposure and health challenges leading to higher susceptibility to SARS-CoV-
2 infection [166]. PWSUD are poor in adhering to social distancing and following
COVID-19 guidelines; this may be due to sharing syringes for substance use, especially
in large congregate settings [167–169]. People with previously diagnosed SUDs have
an 8-fold higher possibility of SARS-CoV-2 infection than people without SUD [170].
Thus, it is evident that PWSUD have a higher possibility of SARS-CoV-2 infection
and COVID-19 severity. Different SUD types also determine exposure and illness,
such as people with opioid use disorders (OUD) and cannabis use disorder (CAUD),
who are at 10.2% and 5.3% higher likelihood of SARS-CoV-2 infection and COVID-19
outcomes [170]. In addition, alcohol use disorder (AUD) and Methamphetamine
(MA) use disorder also increased due to the lockdown and stay home policy. There is
an increased incidence of COVID-19 diagnosis, hospitalization and fatal outcomes
in PWSUD compared to people without SUD [170,171]. Some PWSUD may have
dysregulated immune responses and comorbidities, including HIV-1 infection, which
can further exacerbate COVID-19-mediated complications [172]. There are reports of
psychiatric association with SUD and increased incidence of COVID-19-related hospi-
talization and extended hospital stay [173]. Overall, PWSUD have higher vulnerability
for SARS-CoV-2 infection and COVID-19 outcomes.
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Among PWSUD, MA abusers were linked to immune dysfunction in men who have
sex with men (MSM) [174]. In MSM, immune dysfunction exacerbates the transmission of
HIV-1 and other sexually transmitted infections (STIs) compared to heterosexual men [174].
A study reported that MA abuse was found to cause neuronal mental health issues in MSM
and develops neurocognitive impairments [175]. Frequent MA abuse in MSM provokes
avoidance of COVID-19 preventive measures, culminating in an enhanced risk of SARS-
CoV-2 infection [176]. Therefore, PLWH with drug abuse are at paramount risk of SARS-
CoV-2 infection and COVID-19-induced severe outcomes. Managing or controlling MA
abuse among PWSUD with appropriate measures and treatment may provide proper ways
to avoid the disease and COVID-19-associated severity.

5.2. SARS-CoV-2 Infection and COVID-19 Severity in PLWH

According to a report from the joint United Nations Programme on HIV/AIDS (UN-
AIDS), PLWH are at higher risk of contracting SARS-CoV-2 infection but have less access to
the COVID-19 vaccine [17]. Despite several studies, there is no clear consensus whether
PLWH are at higher risk of contracting COVID-19 or protected from SARS-CoV-2 infec-
tion due to antiretroviral therapy against HIV-1 [177]. It is contemplated that PLWH are
more vulnerable to SARS-CoV-2 infection [177]. Several cohort studies on PLWH have
demonstrated that PLWH are among the high-risk group for contracting SARS-CoV-2
infection [16,178–180]. PLWH are more likely to be infected with SARS-CoV-2 due to
immunocompromised status owing to HIV-1 infection-induced dysregulated immune re-
sponse/immune suppression and underlying comorbidities [130,181]. Moreover, there
was complex immune dysregulation observed with higher levels of IFNα/β and T-cell
activation in coinfected people than in healthy controls [182,183]. Low CD4+T counts with
superimposed lymphopenia may have an adverse effect on PLWH due to COVID-19 and
worsen the disease outcomes [183]. However, more studies are needed to explain no signifi-
cant increase in mortality in PLWH due to COVID-19 reported in some studies [184–186]. It
has been demonstrated that COVID-19 patients admitted to ICU were found to have signif-
icantly lower CD8+T and CD4+T counts, and these parameters were negatively correlated
with survival [187]. In addition, dysregulated immunity and age-related comorbidities
exacerbate COVID-19 outcomes in PLWH and increase mortality and morbidity.

It has been noticed that PLWH are more vulnerable to COVID-19, at least in part
due to the disproportionate distribution of PLWH in the world, with higher numbers in
the African subcontinent superimposed by lower COVID-19 vaccine availability [177].
Additionally, COVID-19-related restrictions in social activities, including gathering and
traveling, etc., have an unprecedented disruption in daily lives, HIV-1 testing and healthcare
delivery [188–190]. There have been tremendous changes to global healthcare systems to
prioritize the fight against the COVID-19 pandemic [191,192]. These changes have imposed
adverse consequences on PLWH, and even they have difficulty in refilling antiretrovirals
or availing cART [191,192]. This disruption in healthcare services may severely affect
PLWH as the viral load rebounds and increase the chance of other opportunistic infections,
including an increased risk of SARS-CoV-2 infection [193]. It was noticed that PLWH were
in a compromised state of psychological and emotional well-being in addition to physical
well-being during the COVID-19 pandemic due to difficulty in obtaining cART and proper
care/support from society and family [12,192]. This psychosocial issue of PLWH must be
immediately addressed to avoid severe adverse outcomes [12].

5.3. COVID-19 Imposed Neurological Outcomes on PLWH

The COVID-19 pandemic impacts the global population, and numerous studies have
reported various neurological implications associated with the disease [37,194,195]. SARS-
CoV-2-mediated neuroinflammation is associated with neurological manifestations ob-
served clinically. During the COVID-19 and HIV syndemic, a large global population
(38.4 million) is HIV-1-infected, with the maximum burden on the African subcontinent
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(25.7 million) [196,197]. Thus, monitoring COVID-19-induced neurological outcomes on
PLWH and neurocognitively impaired PLWH is contextual.

SARS-CoV-2 induces immune dysregulation, causing a surge in proinflammatory
cytokine secretion called cytokine storm syndrome (CSS). These excessively released cy-
tokines damage the BBB and infiltrate SARS-CoV-2 infected cells into the CNS, causing
increased neuroinflammation [198,199]. SARS-CoV-2-mediated immune dysregulation
occurs due to the induction of oxidative stress and proinflammatory genes, resulting in
inflammatory stress and cytokine storm [200–202]. In the CNS, SARS-CoV-2 causes the
excessive release of proinflammatory cytokines (IL-1β and IL-6) by glial cells, producing
CSS-like conditions [203]. Further, SARS-CoV-2 activates CD4+ T cells in the CNS and
induces macrophages to secrete IL-6 by producing GM-CSF [204]. Though SARS-CoV-2 is
in its infancy, studies on other coronaviruses have confirmed that SARS-CoV-2 can augment
CNS inflammation [37].

PLWH, especially those with HAND, are characterized by altered neuroinflamma-
tion with dysregulated inflammatory markers [205–207]. The immune system in HAND
patients is compromised, with dysregulated peripheral and CSF IL-6 levels [208–210]. In
advanced stages of HIV-1 infection, the serum and CSF IL-6 and GM-CSF levels were
elevated, demonstrating dysregulated immune responses at systemic as well as at CNS
levels [208,209,211]. In addition, the dysregulation of alternative markers such as CRP
and VGEF in HAND and an increased level of VGEF were associated with the HAND
severity [210,212]. In COVID-19, CSS was found to be a common phenomenon, and IL-6
was a predominant cytokine [213–215]. The onset of CSS dysregulates the IL-6 pathway
and plays a pivotal role in COVID-19 pathophysiology [213–215]. An elevated level of IL-6
in COVID-19 was correlated with disease severity and mortality and used as a tool for
disease prognosis and clinical profile [215]. It was postulated that SARS-CoV-2-induced
higher IL-6 in the CSF could negatively impact neuronal health in PLWH. Both HIV-1
and SARS-CoV-2 can cause the production of IL-6, resulting in a synergistic effect on neu-
roinflammation. The synergistic impact may promote and prolong neuroinflammation.
It has been reported that CSS causes compromised neurological presentations, such as
altered levels of consciousness with increased levels of IL-6 and CRP [216]. Dysregulated
levels of CRP and VEGF were also reported in patients with COVID-19 and were used as
biomarkers for disease prognosis [94,217,218]. These parameters were found to be altered
in patients with HAND as well [210,212]. It is conceivable that a cumulative effect may
amplify hyperinflammation and BBB dysfunction in coinfected individuals.

It is worth emphasizing that a more significant threat for PLWH could exist as immune
dysregulation induced by SARS-CoV-2 infection may lead to the reactivation of HIV-1
viral reservoirs in the CNS. Thus, the SARS-CoV-2-induced HIV-1 surge may expand
the reservoir size and inflammatory profile, enforce accelerated cognitive disorder and
worsen HAND. Such viral reservoir reactivation-induced diseases were also found in viral
infections other than HIV-1 [219,220]. The viral reservoir can also be activated by mRNA
vaccine against COVID-19, the BNT162b2 [219,220]. Because of this, the COVID-19 vaccine-
induced HIV-1-reservoir reactivation may have unforeseen consequences and generate the
concern of vaccine hesitancy among PLWH. Therefore, it is time to critically evaluate the
long-term safety of the SARS-CoV-2 vaccines in PLWH.

In addition to the aberrant neuroimmune response, widespread vascular dysfunc-
tion has been reported in COVID-19 [26]. The COVID-19-induced vascular dysfunctions
include cerebrovascular events and contribute to neurological complications [26]. COVID-
19-induced system-wide vascular dysfunction predicts disease severity and contributes to
organ failure [221]. These cerebrovascular events and brain tissue damage may adversely
impact the CNS and lead to severe neurological outcomes. A recent study using a high
magnetic resonance of brain tissue found that microvascular damage was associated with
COVID-19 [222]. This study further indicated that the microscopic brain damage may
underlie COVID-19-associated neurological manifestations [222]. In some cases, the dam-
age may lead to short-term post-infection complications. However, in other cases, such
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COVID-19-induced vascular brain damage may lead to a lingering syndrome known as
PASC or Long COVID [26,109,222]. COVID-19-induced PASC or Long COVID appears
with persistent myriad neurological and psychiatric illnesses [26,109,222]. The PASC symp-
toms include difficulty in concertation, loss of memory creating brain fog with confusion,
headache, intractable fatigue and inability to accomplish daily activities, delirium and
many others [223]. To characterize the long-term neurological outcomes of COVID-19, a
cohort study was conducted post-12 months following acute SARS-CoV-2 infection, and
the results showed an array of neurologic incidences [108]. The COVID-19-induced neuro-
logic sequelae include ischemic and hemorrhagic stroke, memory and cognition disorder,
migraine, seizures, sensory and mental health disorder, musculoskeletal and movement
disorder, encephalitis and Guillain–Barre syndrome (Figure 1) [108]. Thus, it is evident
from the study regarding the enhanced risk of long-term neurologic syndrome in people
who succumbed to COVID-19. Therefore, COVID-19 introduces a cumulative threat to
PLWH and people with HAND, with a significant risk incidence for PASC or Long COVID.
To date, there is a paucity of studies on PASC in PLWH and HAND patients. Therefore,
it is urgent to study the HIV-1/SARS-CoV-2 syndemic in order to gain insight into the
adverse impact of COVID-19 on PLWH. An attempt to characterize PASC in PLWH infected
with SARS-CoV-2 revealed that a dysregulated adaptive immune response was responsi-
ble for these long-term effects [224]. An analysis of PLWH recovering from SARS-CoV-2
infection concluded that the high levels of inflammation and dysregulated inflammatory
markers contributed to PASC [224]. COVID-19 severity and the requirement for emergency
hospitalization in PLWH were due to PASC [225,226].

PASC or Long COVID is partially due to ongoing or residual immune activation and
inflammation as the consequence of SARS-CoV-2 infection [224,227]. As PLWH under
the cART regimen is immunocompromised with persistent chronic immune activation
and inflammation [228–230], additional immune perturbation induced by SARS-CoV-2
sequelae could enhance the severity of PASC. Long-COVID could be further exacerbated
in PLWH with autoimmune disease, comorbidities, microvascular dysfunction, localized
tissue inflammation, and reinfection or opportunistic infections [231–234]. Therefore, PASC
or Long-COVID may be debilitating and life-threatening in PLWH, especially those with
cognitive impairment. However, a recent study reported complete protection against CNS
infection and brain damage by SARS-CoV-2 in animals vaccinated with modified vaccinia
virus Ankara expressing SARS-CoV-2 S-protein (MVA-CoV-2-S) [235]. Hence, there is
hope that vaccines against COVID-19 may protect from neurological syndromes. Thus,
people with HAND may benefit if vaccinated and protected prior to SARS-CoV-2 infection
or at least from COVID-19-mediated ARDS. It is worth noting here a recent finding that
observed higher levels of plasma and CSF NfL and MMP-2 in the acute phase of COVID-
19 with ARDS compared to non-ARDS [99]. NfL and MMP-2 are biomarkers of CNS
damage and BBB integrity, and higher levels indicate the stimulation of neuroinflammatory
processes that may worsen preexisting HAND or may initiate HAND in PLWH. Therefore,
as mentioned above, COVID-19 vaccination may reduce the chances of ARDS, and patients
may be protected from CNS damage and BBB disruption. Future studies on animal
models and humans using the vaccine against SARS-CoV-2 may provide better insight into
CNS protection. Given that COVID-19 vaccination has such an impact on CNS infection,
PLWH are strongly suggested to be vaccinated without hesitancy to protect from adverse
neurological outcomes. Thus, vaccine awareness programs must be encouraged worldwide
in order to obtain herd immunity against SARS-CoV-2.

6. Mechanisms of COVID-19-Induced Neurological Manifestations in PLWH

The COVID-19 pandemic enormously impacts the world population, specifically peo-
ple with comorbidities [23]. SARS-CoV-2/COVID-19 not only affects the respiratory and
immune systems but also attacks the nervous system, producing neurological consequences.
How SARS-CoV-2/COVID-19 impacts PLWH is not fully understood. It is well-known
that HIV-1 infection induces a hyperactive immune response causing systemic inflam-
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mation and neuroinflammation. Introducing another virus on top of HIV-1 may further
dysregulate the immune system. Thus SARS-CoV-2/HIV-1 coinfection may result in cumu-
lative enhancement of neuroinflammation, leading to the exacerbation of neurogenerative
conditions and HAND via various mechanisms.

6.1. Inflammasome Activation

The immune system is continuously working with high priority to protect us from
infectious diseases and injury. As a first line of defense, the innate immune system plays
a pivotal role in saving us fromCOVID-19. The activation of innate immune sensors by
pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular
patterns (DAMPs) provides defense against pathogens or host-assaulted injury. Stringent
regulation of immune responses is a fundamental requirement to keep us healthy, and
their dysregulation may result in serious outcomes. Among these protective sensors,
inflammasomes are prominent in innate immune regulation for viral infections. The NLRP3
inflammasome is one of the most studied and well-explored/characterized innate immune
complexes involved in COVID-19. SARS-CoV-2 modulates the NLRP3 inflammasome,
especially in COVID-19/AIDS syndemic [236–238]. SARS-CoV-2 and HIV-1 activate the
inflammasome in many organs and cells, including lungs, monocytes/macrophages and
microglia [239–246]. To date, few studies have investigated NLRP3 in SARS-CoV-2-infected
PLWH (SARS-CoV-2/HIV-1 syndemic). Mechanistically, SARS-CoV-2-induced NLRP3
inflammasome activation imposes neurological syndromes, PASC/Long COVID, and
exacerbates neurocognitive impairments in PLWH.

In Figure 2, we attempt to extrapolate and hypothesize the plausible mechanisms in-
volved with the neurological sequelae resulting from SARS-CoV-2/HIV-1 coinfection. HIV-1
infects the CNS early during infection and replicates in the macrophage and microglia [247].
The discovery of the CNS as an HIV-1 reservoir where the viral genome integrates into
the microglial/astrocyte genome has a profound consequence regarding reservoir reactiva-
tion [61]. In addition to systemic inflammation, HIV-1 infection and viral proteins cumula-
tively prolong the inflammatory environment in the CNS [245,246,248–250]. Despite cART,
the chronic neuroinflammatory environment is prevalent due to low-grade viral replication
and immune dysregulation in PLWH. In parallel, SARS-CoV-2 infection also causes immune
dysregulation and widespread cytokine storm [251,252]. In addition to this systemic pertur-
bation, SARS-CoV-2 also induces neuroinflammation [35,253,254]. SARS-CoV-2-mediated
neuroinflammation is the direct effect of viral neuroinvasion and substandard effect by
shaded protein-induced inflammasome activation and the BBB-disruption [35,253,254].
SARS-CoV-2 and HIV-1 generate an inflammatory environment in the CNS by activating
the NLRP3 inflammasome in microglia and monocytes/macrophages [35,239,245]. The
NLRP3 inflammasome activation increases the production of neurotoxic proinflammatory
cytokines [35,239,245]. In the SARS-CoV-2/HIV-1 syndemic, both viruses cumulatively
activate the NLRP3 inflammasome, and such a synergistic effect may lead to a prolonged
chronic proinflammatory and immune-dysregulated milieu. Thus, synergistic neural hyper-
inflammation induced by both viruses may further exacerbate preexisting HAND and/or
initiate the HAND phenotype in PLWH (Figure 2). Indeed, the overactivation of NLRP3
inflammasome has been observed in aged people [255]. The overactivation of NLRP3 in-
flammasome in the macrophages of aged people is attributed to an increased mitochondrial
reactive oxygen species (mtROS), mitochondrial DNA (mtDNA) and impaired mitochon-
drial functioning [255]. The inflammasome hyperactivation results in an increased secretion
of IL-1β, a neurotoxic cytokine [255]. Since approximately half of the PLWH are above age
50 or more and with multimorbidity [50], old age, multimorbidity, SARS-CoV-2 and HIV-
1 coinfection cumulatively mediate NLRP3 inflammasome overactivation, exacerbating
immune dysfunction in PLWH.
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6.2. Neurotoxic Activities of SARS-CoV-2 Proteins

The SARS-CoV-2 genome encodes four structural proteins and additional accessory
proteins [256,257], including spike (S), nucleocapsid (N), envelope (E) and membrane (M)
proteins and several accessory proteins (such as ORF3a) that are neurotoxic molecules [254].
These proteins primarily exert neurotoxic activities through inflammasome activation,
specifically the NLRP3 inflammasome, leading to the excessive release of proinflammatory
cytokines (Figure 2) [34,35,258]. A recent study using transgenic mice expressing human
ACE2 showed that SARS-CoV-2 drives NLRP3 inflammasome activation in human mi-
croglia via spike protein [35]. Another study using macrophages derived from COVID-19
patients showed spike protein-induced inflammasome activation and the release of mature
IL-1β [259]. In addition, SARS-CoV-2 spike protein subunit S1 was reported to exaggerate
cytokine production in human PBMC [260]. Mechanistically this innate immune modu-
lation by S1 occurs via the NFkB pathway and ROS generation, as seen in the cases of
other coronaviruses [260–262]. S1-induced neuroinflammation was also observed in BV-2
microglial cells, where the treatment of BV-2 cells with S1 induced an increased production
of IL-1β, TNF-α, IL-6 and iNOS/NO [34]. Additionally, the study showed that S1-induced
neuroinflammation occurred via NFkB and p38 MAPK by increasing NLRP3 and TLR4
levels [34]. The SARS-CoV-2 spike S1 subunit was also found to induce neuroinflamma-
tory, microglial and behavioral sickness responses via PAMPs-like mechanisms [263]. The
administration of S1 protein into the mouse hippocampus induced cognitive deficit and
anxiety-like behavior via IL-1β induction, illustrating its neurotoxic property [264].

In addition to S-protein N, E and ORF3a proteins are found to play crucial roles
in modulating monocyte/macrophage activities and microglial NLRP3 inflammasome
activation [242,243,258]. The SARS-CoV-2 nucleocapsid (N-protein) mechanistically binds
to NLRP3 and modulates inflammasome activation [242]. The N-protein–NLRP3 interaction
promotes NLRP3 binding with ASC and NLRP3 inflammasome assembly, resulting in
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NLRP3 activation and the induction of hyperinflammation [242]. A study using mice
demonstrated that the N-protein-induced NLRP3 inflammasome activation led to the
induction of IL-1β and IL-6 [242]. The NLRP3-specific inhibitor MCC950 and caspase-1
inhibitor Ac-YVAD significantly blocked the N-protein-induced NLRP3 inflammasome
induction, suggesting the therapeutic potential of these inhibitors against COVID-19 [242].
N-protein was also found to be associated with the linker region of gasderminD (GSDMD)
and hindered its cleavage by caspase-1, resulting in the inhibition of pyroptosis [265]. It was
shown that N-protein has dual roles in regulating the host’s innate immune response. At a
low dose, it suppresses IFN-1 signaling and inflammatory cytokine production. In contrast,
it promotes IFN-1 signaling and inflammatory cytokine production at a higher dose [266].
These effects were achieved by regulating the phosphorylation and translocation of IRF3,
STAT1 and STAT3 [266]. Interestingly, at a low dose, N-protein can bind to TRIM25 and
suppress ubiquitination and the activation of RIG-I [266]. Further studies are needed
to reveal how this protein modulates neuroinflammation and neurodegeneration. In
comparison with the N protein, much less is known about the SARS-CoV-2 E protein. It
was reported to differentially regulate the NLRP3 inflammasome response and promote the
activation and release of increased IL-1β and IL-18 at the advanced stage of the disease [243].

ORF3a (viroporin) is another SARS-CoV-2 protein. It activates the NLRP3 inflam-
masome, leading to the expression of IL-1β via the NFkB pathway [258]. Mechanisti-
cally, this ORF3a-mediated activation of NLRP3 occurs via modulation of the potassium
ion efflux [258]. ORF3a induces the oligomerization of NLRP3 and NEK7 in either an
ASC-dependent or independent mode [258]. The application of NLRP3-specific inhibitor
MCC950 resulted in the blockade of inflammasome activation [258], suggesting that NLRP3-
specific inhibitors may be used to treat innate immune overactivation and the devastating
consequences of HAND due to the SARS-CoV-2/HIV-1 syndemic [258,266]. In addition to
NLRP3-specific inhibitors, IL-1β inhibitors, such as anakinra and canakinumab, may be
considered an alternative to combat the severe effects of SARS-CoV-2 on HAND [267].

6.3. Other

One of the mechanisms behind the impact of COVID-19 on PLWH and HAND is
emotional and psychological sequela, leading to neurocognitive disorder and mental health
disorders [108,268]. To prevent COVID-19 from spreading, worldwide restriction measures
of lockdown and social distancing were put in place [269]. With these COVID-19-imposed
measures, the world population was facing loneliness, anxiety and depression [269]. As
PLWH, especially PLWH with HAND, are already in compromised emotional and mental
health, COVID-19-induced social restrictions may further exacerbate their mental health
conditions. This psychological/emotional parameter is understudied and warrants further
attention to cope with the pandemic. As COVID-19/PLWH patients can obtain information
frequently from social media about the emergence of new variants with greater transmission
efficiency as well as the severe outcome, this information and/or misinformation may make
COVID-19/PLWH people, especially seniors, more frustrated. Therefore, social well-being,
job security, economic support and other measures can help us deal with the current
situation of the SARS-CoV-2/HIV-1 syndemic.

7. SARS-CoV-2/HIV-1 Syndemic Challenges

The SARS-CoV-2/COVID-19 pandemic has had a catastrophic impact on the world
population. The COVID-19 pandemic overlaps with the preexisting HIV/AIDS epidemic,
leading to COVID-19/HIV/AIDS syndemic. PLWH, especially those who have progressed
to AIDS, with dysregulated/impaired immune systems, are assailable to SARS-CoV-2
infection and COVID-19 severity. The COVID-19/HIV/AIDS syndemic generated new
challenges in terms of the prevention, diagnosis and treatment of these infectious dis-
eases. Several studies showed that the current cART regimen for HIV/AIDS has some
protective effects in terms of SARS-CoV-2 infection and COVID-19 severity, but it had no
effects in other studies [160,270,271]. Hence, it is necessary to explore the effect of cART
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on PLWH to overcome the SARS-CoV-2/HIV-1 syndemic-associated neuroinflammation
as SRAS-COV-2 and/or viral proteins-induced systemic inflammation may exacerbate
dysregulated neuroinflammation in PLWH [122]. Nevertheless, SARS-CoV-2/COVID-19
and HIV-1/AIDS syndemic impose challenges on PLWH worldwide, including but not
limited to the following:

(a). Fear among PLWH for SARS-CoV-2 infection has decreased their engagement in care.
They are even scared to visit pharmacies to collect cART. This fear is heightened
in the SARS-CoV-2/HIV-1 syndemic, and individuals remain unaware of how the
future changes due to COVID-19 may impact the ongoing antiretroviral treatment
against HIV-1.

(b). Broad-scale COVID-19-imposed lockdown measures to contain the SARS-CoV-2 in-
fection culminated in restrictions to movements and the suspension of public and
private transportation. These restrictions have hindered engagement with HIV testing
services and access [272].

(c). Employment loss among migratory workers who return to their original places, pri-
marily rural areas, is another challenge with a dual impact on PLWH. Thus, imposing
a loss of contact with their primary clinic and economic losses hinders these people
from availing healthcare support [273,274].

(d). The COVID-19 pandemic has overwhelmed the worldwide healthcare system. The
high demand and shortage of healthcare workers enforced the engagement of HIV-
1 physicians in COVID-19 care, resulting in a lack of care and routine testing for
PLWH [275].

(e). The diversion of healthcare workers and facilities disrupted testing and the identi-
fication of drug resistance and opportunistic infections. This unavailability of care
and enforced disruption in cART furthers the emergence of drug resistance due to the
accumulation of mutations and leads to death due to opportunistic infections [36].

(f). It was speculated from multiple mathematical models that the disruption of cART
may increase HIV-1/AIDS-related deaths [276].

(g). HIV-1 vaccine discovery is severely hindered due to the COVID-19 pandemic. The
lockdowns, restrictions and emergency regulations owing to the pandemic clinical
trials of HIV-1 vaccines are derailed, resulted in a delay in reduction ofHIV-1 vac-
cine discovery.

(h). The issue of vaccine hesitancy among PLWH is a primary concern. Unvaccinated
people are at higher risk of SARS-CoV-2 infection and COVID-19 severity, which
may worsen HAND [277]. There must be awareness and priority to vaccinate PLWH.
Additionally, a lower level of anti-SARS-CoV-2 spike protein antibody was reported
in PLWH compared to non-PLWH control after vaccination with mRNA-1273 or
BNT126b2 [278]. The suggestion is that higher dosages and frequent booster dosages
are essential for PLWH to maintain long-term immunity at the level of an average person.
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