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Abstract—The outbreak of Covid-19 changed the world as well
as human behavior. In this paper, we study the impact of Covid-
19 on smartphone usage. We gather smartphone usage records
from a global data collection platform called Carat, including the
usage of mobile users in North America from November 2019 to
April 2020. We then conduct the first study on the differences
in smartphone usage across the outbreak of Covid-19. We
discover that Covid-19 leads to a decrease in users’ smartphone
engagement and network switches, but an increase in WiFi
usage. Also, its outbreak causes new typical diurnal patterns of
both memory usage and WiFi usage. Additionally, we investigate
the correlations between smartphone usage and daily confirmed
cases of Covid-19. The results reveal that memory usage, WiFi
usage, and network switches of smartphones have significant
correlations, whose absolute values of Pearson coefficients are
greater than 0.8. Moreover, smartphone usage behavior has the
strongest correlation with the Covid-19 cases occurring after
it, which exhibits the potential of inferring outbreak status. By
conducting extensive experiments, we demonstrate that for the
inference of outbreak stages, both Macro-F1 and Micro-F1 can
achieve over 0.8. Our findings explore the values of smartphone
usage data for fighting against the epidemic.

Index Terms—Smartphone usage, Covid-19, correlations, out-
break stage inference.

I. INTRODUCTION

At the beginning of 2020, Covid-19 was identified and has

spread globally [1]. The outbreak of Covid-19 has changed

people’s lives significantly. Countless efforts have been made

to study the world after Covid-19 from different perspectives,

ranging from world economy [2], personal mental health [3],

to human mobility [4]. Meanwhile, since the first iPhone was

released in 2007, smartphones have become a necessity in

daily lives [5]. The number of smartphone users worldwide

today has surpassed three billion [6]. However, up to now, the

understanding of the impact of Covid-19 on smartphone usage

is still inadequate. Specifically, studying how Covid-19 affects

users’ smartphone usage behavior can bring two-fold benefits.

First, understanding smartphone usage differences across the

Covid-19 outbreak is critical for the industry, e.g., smartphone

manufacturers and network service providers, to dynamically

adjust market strategies and enhance user experience. Second,

smartphones are embedded with a set of sensors recording user
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activities in both cyber and physical spaces [7]. By exploring

the impact, we can use such rich behavioral data to infer

different Covid-19 outbreak stages and further contribute to

the fight against Covid-19.

Meanwhile, some previous studies have introduced mo-

bile sensing data to the public health field. For example,

Yarkoni [8] proposed the concept of Psychoinformatics, using

tools and techniques from information sciences to improve

psychological research. Insel [9] and Baumeister et al. [10]

introduced digital phenotyping that leverages digital behavior

data logged on smartphone sensors to detect psychological

states. Further, Markowetz et al. [11] proposed to explore

big data technologies and conduct digital phenotyping on a

large-scale. The above studies showed the correlation between

smartphone usage and the psychological states of users. The

Covid-19 pandemic represents a global health crisis, which

will severely change psychological burdens and physical ac-

tivities of individuals [12]. Such changes may be conveyed to

and reflected in smartphone usage [13]. In this way, we are

motivated to investigate how the outbreak of Covid-19 affects

smartphone usage behavior.

In this work, we make an effort towards understanding the

impact of Covid-19 on smartphone usage and explore the

potential of smartphone usage data to fight against Covid-19.

More specifically, we study the following research problems.

1) Does the outbreak of Covid-19 affect users’ smartphone

usage, and how?

2) Can we use smartphone usage data, e.g., CPU usage,

memory usage, and network connections, to infer the

outbreak stages of Covid-19?

To answer the above two questions, we reveal the correla-

tions between smartphone usage and the outbreak of Covid-19

from both statistics and dynamic patterns. We first collect a

large-scale smartphone usage dataset by leveraging a global

crowdsourcing platform called Carat. The dataset covers users

in North America and their smartphone usage records for

six months from November 2019 to April 2020 (Section II).

Next, we use the dataset to make a statistical analysis. The

results demonstrate that the outbreak of Covid-19 has indeed

impacted significantly on users’ smartphone usage behavior in

terms of CPU usage, memory usage, WiFi usage, and network

switches. In our case, CPU and memory usage describe how

much of the processor’s and memory’s capacity is in use,

respectively. WiFi usage indicates the percentage of records

under WiFi connection. Network switch refers to the change

of network connection from WiFi to cellular network and vice

versa. Specifically, the CPU usage and memory usage reflect

the intensity of smartphone engagement of users. The WiFi

usage and network switches reveal users’ mobility intensity.
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TABLE I
SAMPLES OF THE COLLECTED SMARTPHONE USAGE DATA, WHERE LTE AND UTMS ARE SPECIFIC MODES OF CELLULAR NETWORK. USER IDS HAVE

BEEN ANONYMIZED.

User ID Timestamp
CPU

usage (%)
Active

memory (KB)
Free

memory (KB)
Network

Battery
level (%)

Timezone MCC

1 2019-11-05 05:48:48 0.6992 3528 1875820 WiFi 66 America/Denver us
2 2019-11-13 07:51:11 51.5152 429632 1746900 LTE 79 America/New York us
3 2019-11-16 12:31:51 53.1807 1006248 2853892 UTMS 94 Europe/Helsinki fi

Further, we extend our analysis to dynamic patterns, i.e.,

diurnal patterns of smartphone usage. The results unveil how

the outbreak of Covid-19 affects usage behavior during the

time of one day. We also examine the correlations between

smartphone usage and daily confirmed cases (Section III).

Moreover, we investigate smartphone usage data’s inference

ability for Covid-19 outbreak stages using both statistical and

deep learning methods. By comparing the performance and

conducting importance analysis, we select the most potent

smartphone usage features for the outbreak stage inference

(Section IV).

Among the many insightful results and observations, the

following are the most prominent.

• The outbreak of Covid-19 causes a decrease in users’

smartphone engagement in terms of both CPU usage and

memory usage. However, it has different impacts on CPU

and memory usage according to their diurnal patterns.

Specifically, it leads to a new typical diurnal pattern of

memory usage while it only changes the proportion of

existing patterns of CPU usage.

• The outbreak of Covid-19 makes an increase in WiFi

usage and a decrease in network switches, implying that

users reduce their mobility intensity. Also, similar to

memory usage, a new typical diurnal pattern of WiFi

usage has emerged after the outbreak.

• Memory usage, WiFi usage, and network switches have

significant correlations with the number of daily con-

firmed cases of Covid-19. Also, the correlation between

smartphone usage behavior and Covid-19 daily cases has

a time delay. Smartphone usage changes earlier than the

number of cases. That is because the smartphone data

can reflect the outbreak status in real-time. However, such

reflection cannot be immediately expressed in daily cases

due to the diagnosis delay.

• By using smartphone usage data to infer Covid-19 out-

break stages, we can achieve over 0.8 for both Macro-F1

and Micro-F1, which presents a promising application of

smartphone usage data on fighting against Covid-19.

II. DATASET OVERVIEW

A. Data Collection

We leverage a crowdsourcing platform called Carat to

collect smartphone usage data. Carat is a cross operating

system mobile app, including both iOS1 and Android2, which

can record users’ smartphone usage traces automatically. Carat

can monitor and record the working status of smartphones in

1https://apps.apple.com/us/app/carat/id504771500
2https://play.google.com/store/search?q=carat

(a) (b)

Fig. 1. This figure shows (a) The cumulative distribution function (CDF) of
the number of records per month for each unique user. (b) The daily average
number of collected records of users.

detail. In practice, Carat informs of all data collection items in

the End-user License Agreement (EULA) when users install

Carat to alleviate user privacy concerns. Also, Carat users

are anonymized, and the app does not collect any personal

information. It is worth noting that Carat is live. Up to now,

Carat has been downloaded over 100 thousand times. The

number of downloads and installations is increasing every day.

Specifically, Carat applies an event-triggered collection

scheme, gathering a data sample every time the battery

level changes by 1%. Each data sample contains a list of

smartphone hardware status, including CPU, memory, battery,

and network. Each sample also has several other features,

including a user-specific identifier, timestamp, timezone, and

mobile country code (MCC). The MCC is obtained from

the cellular network and automatically converted to a two-

character country code. Table I presents samples of collected

smartphone usage data to show the data format.

B. Basic Analysis

Since we focus on studying the impact of Covid-19, we

select the records from November 2019 to April 2020. Also,

we principally consider samples collected from North Amer-

ica. In total, we have 452 users with over 7,517,494 records.

Since users involved may uninstall and reinstall Carat during

the data collection period, the number of active users changes

over time, i.e., November 2019 (293 users), December 2019

(295 users), January 2020 (251 users), February 2020 (224

users), March 2020 (198 users), and April 2020 (158 users).

In our case, we use both timezones and MCC to determine

the users’ country, which increases the reliability of detection.

Table II summarizes the dataset.

Next, we depict basic statistics to illustrate the quality and

representativeness of the collected smartphone usage dataset.

Fig. 1(a) presents the cumulative distribution function (CDF)

of the number of records per month for each unique user. We

observe that the involved users kept a high activeness level

https://apps.apple.com/us/app/carat/id504771500
https://play.google.com/store/apps/details?id=edu.berkeley.cs.amplab.carat.android
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TABLE II
SUMMARY OF THE COLLECTED DATASET FROM THE USA.

# Users # Records Attributes Date Area

452 7,517,494
User ID, timestamp, CPU usage, Memory usage,

network status, battery level, timezone, MCC
11/2019 - 04/2020 North America

during the data collection period. For each month, more than

20% of users have over 1,800 records. Moreover, we plot how

the average number of users’ records changes every day in

Fig. 1(b). We can witness that there are around 220 records

every day per user on average. Although there are some

fluctuations, the curve is relatively stable. Such a high number

of records per user demonstrates our dataset’s effectiveness in

capturing the smartphone usage behavior of users involved

covering the entire six months, i.e., from November 2019

to April 2020. Also, the continuity of the data collection

guarantees the representativeness of our study.

C. Ethical Considerations

We are very aware of the privacy issues when using the

collected data for research. We have taken adequate actions

to safeguard the privacy of the involved mobile users. First,

we do not collect any personal information from users. A

user-specific identifier is randomly generated when the user

first installs Carat. We only have users’ country information

rather than sensitive location information, like GPS data.

Also, the data-gathering part of Carat is open-source3. Users

can examine it easily. The users involved are informed of

the data collection and management procedures in the End-

user License Agreement (EULA) and grant their consent

from their devices. In the EULA, we also point out that

the data we collect may be used to improve products or for

research purposes. Second, the dataset is stored in a secure

local server protected by strict authentication mechanisms

and firewalls. All researchers are regulated by a strict non-

disclosure agreement to access the data. Finally, this work

has received approval from all the authors’ local institutions.

III. DIFFERENCES IN SMARTPHONE USAGE

In this section, we aim to solve the first research problem,

i.e., whether and how the outbreak of Covid-19 affects users’

smartphone usage behavior. Specifically, we explore the im-

pact on CPU usage, memory usage, and network status from

statistical and dynamic pattern analysis. The data processing

and analysis was conducted in Helsinki.

A. Differences in Number and Distributions

To determine whether the outbreak of Covid-19 changes

users’ mobile engagement, first of all, we need to determine

the outbreak date in North America. Fig. 2 shows the cu-

mulative number of confirmed cases in North America from

February 2020 to April 2020 and the governmental policies

on the same timescale. The dashed curve is in the linear

scale, while the solid curve depicts the cumulative number

3The code is available at https://github.com/carat-project/carat/.

Fig. 2. The cumulative number of confirmed cases changes over time. The
federal government issued an emergency declaration on March 13, 2020. Most
states issued school closure rules and restaurant restrictions by April 7, 2020.

in the logarithmic scale. Notably, the propagation of Covid-

19 is in exponential growth. Therefore, using the logarithmic

scale curve makes it more accessible to detect the phase

change of increase trend and determine the outbreak date

accordingly [14]. In terms of Fig. 2, we can observe an

apparent step-up around March 1, 2020, as denoted by the

red point. Hence, we regard March 1, 2020, as the outbreak

date of Covid-19 in North America.

We then begin the analysis by comparing the distributions

of smartphone usage variables before and after the outbreak of

Covid-19. In Fig. 3, we use box-plots to depict the distributions

of the percentages of CPU usage, memory usage, WiFi usage,

and network switches, respectively. Specifically, the ‘Before’

set contains the samples from November 1, 2019, to February

29, 2020, while the ‘After’ set contains the samples from

March 1, 2020, to April 30, 2020. The box-plots describe

data distribution through quartiles. The candlesticks represent

the minimum and the maximum values, while the boxed area

contains the values between 25% and 75% quartiles. The

horizontal line denotes the median, while the green upper

triangle indicates the mean.

There is an apparent difference in smartphone usage across

the outbreak in terms of all hardware variables. The mean

values of CPU and memory usage drop from 7.36% and 3.93%

to 6.87% and 3.47%, respectively. Their differences across the

outbreak are significant under a two-sided t-test [15] with p

values of 5.239·10−5 ≪ 0.001 and 7.383·10−18 ≪ 0.001. The

decreases imply that users’ smartphone engagement becomes

less active after the outbreak, i.e., March 1, 2020. Meanwhile,

the WiFi usage percentage grows dramatically, where the mean

value rises from 56.95% to 64.06%. The distribution difference

is also significant under a two-sided t-test with a p value of

2.585 · 10−19 ≪ 0.001. Since WiFi access points are usually

deployed indoors, we can conclude that people have more time

to stay indoors instead of going outside after the outbreak of

Covid-19. Moreover, we also notice that the percentage of

network switches drops remarkably. The mean value declines

from 3.98% to 2.85%, and the distribution difference is

significant, with p value 1.526 · 10−23 ≪ 0.001. Similar to

https://github.com/carat-project/carat/
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(a) The distributions of the percent-
age of CPU usage, p = 5.239 ·

10
−5.

(b) The distributions of the percent-
age of memory usage, p = 7.383 ·

10
−18.

(c) The distributions of the percent-
age of WiFi usage, p = 2.585 ·

10
−19.

(d) The distributions of the percent-
age of network switches, p = 1.526 ·

10
−23.

Fig. 3. The differences in smartphone usage before and after the outbreak of
Covid-19.

TABLE III
CORRELATIONS BETWEEN MEMORY USAGE AND WIFI USAGE ACROSS

DIFFERENT TIME PERIODS.

Over complete time window Before outbreak After outbreak

-0.0689 0.3205 -0.3240

WiFi usage, network switches also reflect the movement of

mobile users. Since the WiFi network is commonly deployed

indoors and limited by its coverage, network switches usually

occur when mobile users go from indoors to outside and from

outside to indoors. Consequently, the percentage of network

switches can reveal the mobility intensity of smartphone users.

In this way, the decreasing trend of network switches suggests

users have less mobility after the outbreak.

As a result, based on the differences in number and distribu-

tions, we can conclude that the outbreak of Covid-19 causes a

decrease in smartphone engagement in terms of both CPU and

memory usage. Meanwhile, the outbreak causes an increase

in users’ intensity staying indoors in terms of WiFi usage.

Further, we depict the correlation between WiFi usage and

memory usage to investigate smartphone usage intensity when

people stay indoors. Table III shows the correlations across

different time periods, i.e., over the complete time windows,

before the outbreak, and after the outbreak. As depicted in

Table III, WiFi usage and memory usage have a weak positive

correlation before the outbreak, which follows the commonly-

held intuition. However, after the outbreak, the correlation

becomes weak negative. We infer that the longer time to

stay at home after the outbreak may cause such differences.

When people have more time at home, they will prefer to

use their computers and laptops for entertainment instead of

smartphones.

B. Differences in Diurnal Patterns

In terms of the above statistical analysis, we can conclude

that the outbreak of Covid-19 has affected users’ smartphone

usage behavior. Next, we delve into the dynamic analysis,

i.e., revealing the differences in diurnal patterns. The diurnal

pattern depicts how users’ smartphone usage behavior unfolds

over the time of the day, which is an essential temporal pattern

studied by many previous studies [16], [17].

We define each day’s diurnal pattern by averaging the usage

data over the day’s active users. In our case, we evenly divide

one day into 48 time-slots, where each time-slot represents half

an hour. Therefore, each diurnal sequence is of 48 dimensions.

Next, we compute smartphone usage data for each time-slot.

In practice, as for CPU usage and memory usage behavior,

we take the averages in that time slot. For WiFi usage, we

calculate the proportion of WiFi connection records in that

time slot. Besides, for network switches, we calculate the

proportion of network type changes in the time slot. By doing

so, given one day, each type of smartphone usage behavior

will have a diurnal sequence with 48 dimensions. In total, we

have 728 diurnal sequences, i.e., 182 (# of days) × 4 (# of

usage types).

After obtaining the diurnal sequences, we use the t-SNE

transformation [18] to visualize them, as shown in Fig. 4.

t-SNE is a commonly used data transformation method that

projects high-dimensional data to a low-dimensional space

while keeping the similarity across objects. In Fig. 4, blue

points represent the dates before the outbreak, while orange

points represent the dates after the outbreak. We can observe

that excluding CPU usage, the other types of smartphone

usage behavior appear to be nicely separated by the outbreak.

This shows the existence of differences in diurnal patterns of

smartphone usage before and after the outbreak of Covid-19.

Based on the t-SNE visualization results, we propose a

hypothesis that the outbreak of Covid-19 will lead to a new

diurnal pattern for smartphone usage. In our case, the new

pattern means that it does not or rarely appears before the

outbreak but is popular on the dates after the outbreak. To

test the hypothesis, we apply K-means to cluster diurnal

sequences of the entire 182 days for each type of smartphone

usage behavior and examine whether the cluster results can be

distinguished by the outbreak date of Covid-19. Since there

are only two situations for any date, i.e., before or after the

outbreak, we set the number of clusters to two. The clustering

results are presented in Fig. 5∼8, where the cluster A and B

refer to the two-cluster output of K-means. Also, we regard

the centroid as the typical diurnal pattern of the cluster.

Diurnal patterns of CPU usage. As shown in Fig. 5(a),

the obtained two typical diurnal patterns of CPU usage have

the same trend but different values. Both of them decrease

during the night and increase during the day, while cluster

B’s centroid is of lower numerical values. Fig. 5(b) shows

that, compared to cluster A, cluster B accounts for a higher

proportion of the dates after the outbreak, consistent with the

dropping trend observed in Fig. 3(a). We also observe that

Covid-19 only affects the proportion of two cluster labels, and

both typical patterns frequently appear on the dates before the



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3073864, IEEE Internet of

Things Journal

5

(a) t-SNE representation of CPU us-
age patterns.

(b) t-SNE representation of memory us-
age patterns.

(c) t-SNE representation of WiFi usage
patterns.

(d) t-SNE representation of network
switch patterns.

Fig. 4. t-SNE representation of diurnal sequences of smartphone usage, projecting high-dimensional data to a 2-dimensional space while keeping the similarity
across objects.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 5. Cluster results of CPU usage diurnal patterns.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 6. Cluster results of memory usage diurnal patterns.

outbreak. In other words, the outbreak did not create a new

typical diurnal pattern of CPU usage. The t-SNE visualization

in Fig. 4(a) also verifies this.

Diurnal patterns of memory usage. As depicted in

Fig. 6(a), similar to CPU usage, two typical diurnal patterns

obtained are also with the same trend but different numerical

values. In terms of Fig. 6(b), over 80% of the dates before the

outbreak belong to cluster A. Meanwhile, more than 65% of

the dates after the outbreak belong to cluster B. Therefore, we

can conclude that the cluster results can be distinguished by

the outbreak date. Also, cluster B’s centroid can be regarded

as a new typical diurnal pattern because it rarely appears

before the outbreak and becomes common after the outbreak.

In summary, Covid-19 leads to the appearance of a new typical

diurnal pattern of memory usage, corresponding to the t-SNE

visualization in Fig. 4(b).

Diurnal patterns of WiFi usage. Fig. 7 displays the

cluster results of WiFi usage. Unlike CPU and memory usage,

apart from numerical differences, the centroids of WiFi usage

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 7. Cluster results of WiFi usage diurnal patterns.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 8. Cluster results of network switch diurnal patterns.

clusters also have different changing trends. As depicted in

Fig. 7(a), the centroid of cluster B has a higher percentage

of WiFi usage throughout the day. Instead of a cliff-like drop

shown in cluster A, cluster B has a slow-down after 6 am.

This indicates that users need less mobile network support on

the dates in cluster B. Moreover, similar to memory usage, the

dates after the outbreak have a dominating cluster, i.e., cluster

B. Therefore, Covid-19 also brings a new diurnal pattern of

WiFi usage, leading users to use more WiFi connections.

Diurnal patterns of network switches. We exhibit the clus-

tering results of network switch patterns in Fig. 8. As discussed

in Section III-A, network switches can reflect the mobility

intensity of smartphone users. In Fig. 8(a), the centroid of

cluster A presents two peaks in the morning and evening rush

hours, which verifies the above discussion. We notice that less

than 18% of the dates after the outbreak belong to cluster

A, indicating that users’ mobility intensity drops significantly.

Alternatively, cluster B has fewer network switches throughout

the day and without bimodal patterns, indicating that users
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(a) CPU usage and cumulative con-
firmed cases.

(b) CPU usage and new confirmed
daily cases.

(c) Memory usage and cumulative
confirmed cases.

(d) Memory usage and new confirmed
daily cases.

(e) WiFi usage and cumulative con-
firmed cases.

(f) WiFi usage and new confirmed
daily cases.

(g) Network switches and cumula-
tive confirmed cases.

(h) Network switches and new con-
firmed daily cases.

Fig. 9. The daily patterns of smartphone usage and the number of daily confirmed cases of Covid-19.

TABLE IV
PEARSON CORRELATIONS BETWEEN SMARTPHONE USAGE AND COVID-19 CASES.

Delay
(day)

CPU usage Memory usage WiFi usage Network switch

Cumulative
(log)

New
confirmed

Cumulative
(log)

)
New

confirmed
Cumulative

(log)
New

confirmed
Cumulative

(log)
New

confirmed

0 -0.0632 -0.2670 -0.8163 -0.8119 0.8364 0.8053 -0.7649 -0.7809

1 -0.0383 -0.2339 -0.8119 -0.8091 0.8754 0.8253 -0.7838 -0.8234

2 -0.0541 -0.2444 -0.8315 -0.8369 0.8667 0.8263 -0.7830 -0.8369

3 -0.0240 -0.2081 -0.8277 -0.8399 0.8523 0.8312 -0.7772 -0.8430

have less mobility on the dates in that cluster. Although cluster

B dominates the dates after the outbreak, it also frequently

appears before the outbreak. As a result, similar to CPU usage,

Covid-19 only changes the proportion of different network

switch patterns but does not trigger the appearance of new

patterns.

Consequently, the outbreak of Covid-19 also profoundly af-

fects diurnal patterns of smartphone usage behavior, implying

that the diurnal sequences of smartphone usage can be used

to reflect the outbreak status.

C. Correlations Between Smartphone Usage and Covid-19

Daily Cases

We then analyze the correlations between smartphone usage

and Covid-19 daily cases. Specifically, we take the average

over the active users of each day and plot both the daily

sequences of smartphone usage and the number of daily

confirmed cases of Covid-19 in Fig. 9, from February 1,

2020 to March 30, 2020. For the figures of CPU usage,

memory usage, and network switches, we inverse the y-axis

for better visualization. From the results, we can observe that

memory usage, WiFi usage, and network switches have strong

correlations with both cumulative and new confirmed daily

cases. That is because smartphone usage behavior reflects

users’ physical activities, e.g., staying at home and mobility

intensity. Meanwhile, users’ physical activities will influence

and be affected by Covid-19. Therefore, smartphone usage

behavior can indirectly reveal Covid-19 trends. Moreover, in

Fig. 9(f) and Fig. 9(h), we discover a delay in the changing

trends between smartphone usage behavior and new confirmed

cases. In other words, smartphone usage changes earlier than

the number of cases.

Further, to better explore the delay phenomenon, we put

a set of delays on the daily sequences of smartphone usage

behavior from 0 to 3 days. Then, we compute the Pearson

correlation between shifted smartphone usage and Covid-19

sequences. The results are illustrated in Table IV. From the

results, we discover that different smartphone usage features

have various correlations with daily confirmed cases. Gener-

ally, memory usage, WiFi usage, and network switches have

significant linear correlations with Covid-19 daily confirmed

cases. The absolute values of their Pearson coefficients are

greater than 0.8. However, CPU usage has a weak Pearson

correlation, only around -0.26, with new confirmed cases of

Covid-19. These observations are consistent with the findings

in Section III-B. Moreover, when we delay usage behavior,

it will have a higher correlation with Covid-19 cases, which

corresponds to the observation that smartphone usage changes

earlier than Covid-19 cases. Also, different smartphone usage

variables show different typical time delays. In summary, the
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(c) Performance with Xgboost classifier.

Fig. 10. Covid-19 outbreak stage inferences with different time delays.

correlations between smartphone usage behavior and daily

confirmed cases present a high potential of using smartphone

usage for daily outbreak stage inference of Covid-19.

IV. INFERENCE OF OUTBREAK STAGES

In this section, we study the second research problem, i.e.,

whether we can use smartphone usage data, e.g., CPU usage,

memory usage, and network connections, to infer the outbreak

stages of Covid-19. The outbreak stages reflect different

severities of the pandemic. Specifically, we try to determine

two points, i.e., the typical time delay of stage inference

using smartphone usage data and the performance of different

smartphone usage features in Covid-19 stage inference. Also,

to further improve inference performance, we propose an

embedding mechanism to fuse different smartphone usage

behavior features.

A. Inference Settings

Recalling Fig. 2, we can witness that the outbreak of Covid-

19 has shown three stages from March 1, 2020, to April 30,

2020. First, the dates from February 1, 2020, to March 1,

2020, are the early stage of Covid-19, with only a few cases

appearing. Second, during the dates from March 1, 2020, to

April 1, 2020, the daily confirmed cases increased dramati-

cally. Third, on the dates after April 1, 2020, the increasing

trend of Covid-19 cases is stable. Therefore, we label Covid-

19 outbreak stages with three classes, i.e., early, dramatic,

and stable. By doing so, the inference problem is converted

into a 3-class classification problem. Specifically, we infer the

outbreak stages of one day by using its diurnal sequences of

different smartphone usage behavior, including CPU usage,

memory usage, WiFi usage, and network switches. Also, to

evaluate the performance, we use Macro-F1 and Micro-F1 as

metrics. Macro-F1 treats all classes equally, computing the

F1-score independently for each class and then taking the

average. Alternatively, Micro-F1 aggregates the contributions

of all classes to compute the average F1-score. The higher the

value of Macro-F1 and Micro-F1, the better the performance.

For all experiments, we obtain the results by employing a five-

fold cross-validation policy on our dataset.

B. Delay Analysis of Stage Inference

As we have discussed in Section III, users’ smartphone

usage behavior can reflect their physical activities and the

outbreak stages of Covid-19. However, the reflection may

not be immediately expressed by the daily cases of Covid-19

due to the incubation period and diagnosis delay. Hence, we

explore the typical time delay of stage inference. Specifically,

we infer the outbreak stage of one day by utilizing the smart-

phone usage features of the days before it. We use inference

performance to evaluate the correlations between smartphone

usage and Covid-19 trends. In other words, better performance

indicates a higher correlation. Notably, different from the Pear-

son correlation, the task of inference can also reveal nonlinear

correlations. In practice, we conduct the inference with the

three most commonly used classification algorithms, logistic

regression (LR) [19], support vector machine (SVM) [20] and

Xgboost [21]. We infer the outbreak stages of one day by

concatenating all behavior types’ diurnal sequences, including

CPU usage, memory usage, WiFi usage, and network switches.

We show the results in Fig. 10. The LR classifier has poor

performance, and F1 scores fluctuate on different delays. That

is because the LR classifier only uses a logistic function to

model the correlation, which is more susceptible to outliers

tampering with the performance. Therefore, it is hard to

capture the relations between smartphone usage features and

Covid-19 outbreak stages with the LR classifier using the real-

word dataset that might have noisy data points. Alternatively,

as shown in Fig. 10(b) and Fig. 10(c), SVM and Xgboost

classifiers have better performance. Also, we can observe that

F1 scores achieve the highest value under a delay of 2 or 3

days. This observation confirms that the reflection of users’

smartphone usage behavior will emerge in Covid-19 trends

with a time delay of a few days, further validating our analysis

in Section III-C.

C. Performance of Different Usage Features

Next, we evaluate the performance of different smartphone

usage features and their combinations for the Covid-19 out-

break stage inference. Specifically, we explore four types of

smartphone usage features, i.e., CPU usage (CPU), memory

usage (Mem), WiFi usage (WiFi), and network switches (Net).

We combine a set of features by concatenating them together.

We perform the inference with the Xgboost classifier. The

performance of different combinations of features is shown

in Table V.

For the inference with a single feature, the performance

of using network switches is the best, indicating that users’

mobility intensity is most relevant to the Covid-19 status.

Meanwhile, WiFi and memory usage achieve relatively good

performance, implying that WiFi and memory usage also
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TABLE V
INFERENCE PERFORMANCE WITH DIFFERENT FEATURES.

Features Macro-F1 Micro-F1

CPU 0.590 0.584

Mem 0.702 0.697

WiFi 0.713 0.708

Net 0.757 0.753

CPU+Mem 0.666 0.663

CPU+WiFi 0.722 0.719

CPU+Net 0.609 0.685

Mem+WiFi 0.683 0.674

Mem+Net 0.735 0.730

WiFi+Net 0.707 0.696

CPU+Mem+WiFi 0.716 0.708

CPU+WiFi+Net 0.715 0.707

Net+Mem+WiFi 0.739 0.730

CPU+Mem+Net 0.766 0.764

CPU+Mem+Net+WiFi 0.733 0.721

GRU GRU GRU…

Smartphone 

Usage

Embedding

GRU GRU GRU…
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Encoder Decoder

z

… …

Fig. 11. Seq2Seq model for smartphone usage embedding.

reflect crucial human behavior related to Covid-19. In contrast,

the CPU usage feature is less related and with the lowest

inference performance. These inference results are consistent

with our findings in Section III. As for the inference with

multiple features, the performance is not simply a superpo-

sition of single features’ performance. In terms of Table V,

the best performance is achieved by using CPU, memory,

and WiFi usage. However, it only achieves the F1 score of

around 0.76, slightly higher than when merely using network

switches. Also, most cases of using multiple features have

lower performance than simply using network switches. These

results reveal that simple concatenation is insufficient to fuse

different behavior data, motivating us to develop a better fusion

mechanism to explore different features effectively.

D. Smartphone Usage Behavior Embedding

In this section, we propose an embedding model to fuse

different smartphone usage behavior effectively. Given a day,

we first construct a diurnal smartphone usage feature sequence

{ui}
48

i=1
, where ui is a vector containing all four usage features

in the i-th timeslot of the day. We then utilize a Seq2Seq [22]

model to learn an embedding from the diurnal sequence. As

shown in Fig. 11, the model consists of an encoder and a

decoder, which are implemented with a GRU network [22].

The sequence {ui}
48

i=1
is fed into the encoder to obtain an
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Fig. 12. Outbreak stage inferences with embeddings.

encoding vector of z. Then, z and a shifted usage sequence

{ui}
47

i=0
are fed into the decoder to reconstruct the original

sequence, where u0 is a vector that contains all 1. Moreover,

to encode comprehensive information in vector z, we engage

z in the reconstruction. Formally, the i-th unit of the decoder

takes ui−1 as input and outputs hidden state ĥi , we infer ûi

as,

ûi = σ(W [ĥi, z] + b), (1)

where [, ] is the concatenating operation, σ is the sigmoid

activating function, W and b are trainable parameters. Finally,

we train the model by minimizing the reconstruction loss,

L =
48∑

i=1

|ûi − ui|
2. (2)

In our experiment, we train the model with the Adam

optimizer with a learning rate of 0.0001. The batch size is set

as the number of sequences, and we train the model for 200

epochs. By doing so, we obtain a usage embedding vector for

each day. To evaluate whether the embedding fuses different

usage features better, we conduct the inference on the original

features (Raw) and the original features concatenated with the

learned embeddings (Raw + Embedding). We again use the

Xgboost classifier as the inference model.

We compare the performance with embeddings, as shown in

Fig. 12. We can observe that, by combining with embeddings,

we improve the entire performance under different delay

settings. Especially when the delay is set as two days, the per-

formance of raw features combined with embeddings reaches

around 0.87 for both Macro-F1 and Micro-F1, which has an

over 20% improvement compared with the best performance

of only using raw features. These results demonstrate that the

learned embeddings fuse multiple features more effectively

indeed.

V. DISCUSSION AND LIMITATION

In this paper, we have investigated the impact of Covid-19

on smartphone usage based on a real-world dataset. However,

the number of users involved in our dataset is not very

large, i.e., covering 425 users, which is a limitation of our

work. The limited number of users involved may threaten the

representativeness of our conclusion. To alleviate the influence

caused by a limited number of users, we have taken several

adequate measures in our work. For example, we compared the

distribution of variables instead of the average and median. We

also used the p-value to verify statistical significance.
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Fig. 13. A potential causality diagram of smartphone usage and Covid-19
cases.

Although we have examined the correlation between smart-

phone usage behavior and Covid-19 cases, their causality

relationship still needs further exploration. In Fig. 13, we

depict a potential causality diagram of smartphone usage and

Covid-19 cases. People mobility and psychological state serve

as a confounder and mediator connecting smartphone usage

and Covid-19 cases, respectively. Smartphone usage is directly

affected by mobility and can act as a mobility indicator.

Also, smartphone usage is still affected by the psychological

states of users [13]. Meanwhile, the causation between people

mobility and Covid-19 cases is bidirectional. On the one hand,

frequent people mobility will trigger new Covid-19 cases. On

the other hand, Covid-19 will affect people’s mobility through

governmental policies and their psychological states. There-

fore, the causation between smartphone usage and Covid-

19 cases might be complex. As for checking the potential

causality diagram we proposed, we leave it to future work.

VI. RELATED WORK

Many previous studies have focused on characterizing

smartphone usage behavior. Shafiq et al. [23] presented the

diurnal pattern of smartphone network usage from various

granularities, i.e., bytes, packets, flows, and users. Peltonen et

al. [24] collected a one-year smartphone usage dataset from

25,323 users distributed in 44 countries. They then studied

how cultural features affect users’ smartphone usage behavior.

Srinivasan et al. [25] indicated that smartphone usage behavior

profoundly depends on contextual information. For example,

users use more WiFi connections at home. Moreover, Van

Canneyt et al. [26] exhibited that the occurrence of special

events, e.g., New year’s day, UEFA European Championship,

will disrupt users’ normal smartphone usage patterns. These

existing studies demonstrate that users’ smartphone usage

behavior will be sensitively impacted by diverse contextual

factors, including time, locations, and big events, which in-

spired us to investigate how the outbreak of Covid-19 affects

the smartphone usage behavior.

Also, some studies pointed out the strong link between

smartphone usage behavior and users’ physical attributes and

activities. Zhao et al. [27] analyzed one month of smartphone

usage data collected from 106,762 users. They then discovered

382 distinct types of users based on their usage behavior.

Also, they gave each cluster a meaningful label, such as night

communicators, evening learners, and financial users. Do et

al. [28] represented users’ smartphone usage traces in one day

as a bag-of-words, where one word refers to a smartphone

usage record with time features. They then applied an author-

topic model to infer the underlying structure of users’ physical

activities. Similarly, Li et al. [29] leveraged smartphone app

usage data to identify users’ daily activities. These studies

demonstrated that users’ physical activities profoundly shape

smartphone usage behavior, which shed light on using smart-

phone usage data to reflect human activities and further infer

Covid-19 outbreak stages.

Smartphone usage behavior is still affected by users’ psy-

chological states. For example, Saeb et al. [30] explored

smartphone sensors’ data, like accelerometer, screen, GPS,

and WiFi, which help estimate the depression and anxiety

of users. Their methods can also be applied to our dataset,

allowing us to detect the depression of users. During the

Covid-19 crisis, we need to pay more attention to mental

health in the population. Covid-19 may trigger psychiatric

disorders of people [31]. Elhai et al. analyzed gaming disorder

severity [32] and anxiety symptoms [33] during Covid-19.

Moreover, Montag et al. [13] pointed out that we can leverage

smartphone data to detect population mental states in real-time

to help fight the Covid-19 pandemic. They also developed

an app [34] for social scientists, which tracks smartphone

usage data by combining self-report data with objectively

recorded data. In practice, conducting population-scale digital

phenotyping might be challenging due to the lack of sufficient

labeled data. In that case, label-less learning should be a

helpful technology. For example, Chen et al. [35] proposed

a label-less learning for emotion cognition on a large-scale.

Some studies also analyzed physical activities during Covid-

19 by using smartphone app usage and sensory data. Nor-

bury et al. [36] discovered a positive relation between social

app usage and total footsteps (obtained from sensory data)

during the lockdown due to Covid-19. Couture et al. [37]

investigated county-to-county movements based on the GPS

data collected from smartphones. Unlike the above studies,

our work directly investigates the relation between smartphone

usage and the Covid-19 outbreak.

VII. CONCLUSION

We conduct the first comprehensive study of the impact

of Covid-19 on smartphone usage. Specifically, our analysis

covers the mobile users in North America with six-month

smartphone usage records from November 2019 to April 2020.

Overall, our findings indicate that users’ smartphone usage

indeed changes across the outbreak of Covid-19. However,

the outbreak has different effects on different usage behavior

in terms of changing trends, diurnal patterns, and correlations.

Also, we demonstrate the potential of using smartphone usage

data to infer the outbreak stages, achieving over 0.8 for

both Macro-F1 and Micro-F1. Our findings provide a novel

application of smartphone usage data and explore their values

for fighting against the epidemic.
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