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Abstract
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the
whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed
batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes.
Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst
whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial
metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition,
the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed.
Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting
as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data
suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer
cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer
development.
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The human colon harbours about 1013 micro-organisms and
over 1000 species of bacteria and is considered the most meta-
bolically active site in the human body(1). These intestinal
microbiota have been shown to play a prominent role in main-
taining gut health and affecting the aetiology and pathogenesis
of a wide range of disease and disorders, including inflam-
matory bowel disease, diarrhoea and colorectal cancer(2).
Identifying dietary regimens and components that can benefi-
cially modify the gut microbiota represents a possible strategy
for reducing the risk of the development of such diseases(3).
Much research in this regard has focused on ‘prebiotics’,
and in particular the ability of certain types of dietary fibre,
especially indigestible oligosaccharides, to stimulate the growth

of and/or activity of beneficial gut bacteria such as bifidobac-
teria and lactobacilli leading to a concomitant positive effect on
colonic health(3,4). Recent work has focused on prebiotics and
other fibre-rich foods that may be fermented by the lower gut,
and insoluble compounds(5–11) and polyphenols(12–17) that
modify the gut ecology and increase beneficial types of bac-
teria. Indeed, a large number of human intervention studies
have indicated that foods rich in fibres(18–25) and polyphe-
nols(26–28) and/or rich in both compounds(29) have an impact
on the gut microbiota, including cocoa(26), pomegranate(14),
wine(28), blueberries(27), whole-grain cereal(18), maize-derived
whole grain(22), artichoke(19,20) and apples(29). The effects of
such foods are likely to be dependent on both the dietary

Abbreviations: DDE, digested date extract; DPE, date polyphenol extract; FISH, fluorescence in situ hybridisation; FOS, fructo-oligosaccharide; SRB, sulforhodamine B.
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fibres and polyphenols that they contain, and it has been sug-
gested that such foods may be an effective strategy for the
maintenance of a beneficial gut microbial ecology, leading to
better gastrointestinal health(30).
Date fruit (Phoenix dactylifera L.) contains high levels of both

dietary fibre and polyphenols. Although an important food in
the Middle East and North Africa, dates are also cultivated
and consumed to an increasing degree in some parts of the
USA, in particular Southern California, Arizona and
Texas(31). Dates are rich in energy and carbohydrates, mainly
fructose, glucose and sucrose, which are absorbed in the
upper gut, but also contain relatively high amounts of dietary
fibres (6·4–11·5 %). The latter exist mainly as insoluble fibre
with smaller amounts of soluble fibre(32). Previously, we
have shown that dates also contain significant amounts of
polyphenols including phenolic acids (gallic, protocatechuic,
hydroxybenzoic, vanillic, isovanillic, syringic, caffeic, ferulic,
sinapic, p-coumaric, isoferulic), flavonoid glycosides (quer-
cetin, luteolin, apigenin and kaempferol) and anthocyani-
dins(33). Furthermore, polyphenol levels were observed to
vary depending on cultivar type and degree of ripening:
kimri (unripe), khalal (full-size, crunchy), rutab (ripe, soft)
and the final tamr stage (ripe, reduced moisture)(34). The
Ajwa variety of date, a common cultivar grown in Saudi
Arabia, has been observed previously to exhibit anti-
inflammatory and antioxidant potentials(35). In our previous
work, Ajwa dates were considered to be the richest in polyphe-
nols, specifically anthocyanidins, in comparison with other var-
ieties, such as Barni and Khalas; however, polyphenols content
reduce dramatically at the last stage of ripening(33). As well as
investigating the impact of the whole date fruit on gut micro-
biology, the present study aimed to assess the potential of
these polyphenols to exert effects on the gut microbiota.
Polyphenols are usually poorly absorbed from the small intes-
tine and hence reach the colon where they are subject to exten-
sive biodegradation by the resident microbiota(36,37), although
the effects of this metabolism on the growth of the microbiota
is less well understood. Furthermore, date polyphenols and
their metabolites, generated by interaction with the gut bac-
teria, may also favour the colonic epithelium, via their potential
to inhibit proliferation of human colon cancer cells. The pre-
sent study was designed to assess the impact of whole date
fruit and date polyphenol extracts (DPE) on the faecal micro-
biota, using pH-controlled, mixed faecal batch cultures. In
addition, bacterial metabolites, such as SCFA and phenolic
metabolites, were also measured. The secondary aim was to
assess the potential of both whole date and DPE to inhibit
colon cancer cell growth using Caco-2 cells.

Materials and methods

Collection of dates

Ajwa date fruit were harvested at the tamr stage from
Al-Gudaibi farm (Al-Qaseem, Saudi Arabia) 1 week before
transportation to the UK. Date fruits were transported to
the UK in polyethylene boxes at 4°C. Samples were then
stored at –20°C before extraction and digestion.

Preparation of extracts

Date polyphenol extracts. Dates (100 g) were pitted, weighed
and homogenised in 300 ml methanol–water (4:1; v/v)
containing 10 % NaF (1 M) to inhibit polyphenol oxidase(31).
Extracts were stirred for 2 h at 20°C and then filtered
through a sintered funnel (porosity = 1) to remove solids.
Aqueous methanol extracts were concentrated under vacuum
using a rotator vacuum evaporator (ORME Scientific Ltd)
and the remaining residue was diluted in acidified water (pH
2; HCl). Sugars were removed by adding 3 g of the extract
to a XAD-16 resin packed column (50 cm length х 2·2 cm
diameter) (Sigma Aldrich)(38). Elution of sugars was achieved
by the addition of 100 ml of acidified water (pH 2; HCl),
followed by 300 ml of distilled water at a constant rate
(0·5 ml/min) using a diaphragm-metering pump (STEPDOS;
Scientific Laboratory Suppliers). The Fehling test was carried
out to ascertain the presence of sugars in the water
extracts(39). Following removal of all sugars, elution of
phenolics was achieved by the addition of 400 ml of
methanol at a flow rate of 0·5 ml/min. The eluent collected
was concentrated using a rotator vacuum evaporator at 40°C
and the concentrated extract stored at –80°C until analysis.
The 100 g of dates contained 1500 mg of polyphenols by
weight. The polyphenol profile has been characterised in
prior experiments, which was published in our previous
study(33).

Digested date extracts. Date fruits were pitted and 60 g of
sample were added to 150 ml distilled water and mixed in a
stomacher for 2 min. The solution was then mixed with
α-amylase (20 mg) in CaCl2 (1 mM; 6·25 ml) and incubated
at 37°C for 30 min on a shaker, which is called the oral
digestion phase. In the following gastric phase of digestion,
pepsin (2·7 g) was dissolved in HCl (0·1 M; 25 ml) and then
the mixed sample was added. The pH was adjusted to
2 using HCl (6 M) and incubated at 37°C for 2 h on a
shaker. The last digestion was the small-intestinal phase
where pancreatin (560 mg) and bile (3·5 g) were dissolved in
NaHCO3 (125 ml) and the sample added. pH was adjusted
to 7 using NaOH (6 M) and incubated at 37°C for 3 h on a
shaker. Samples were transferred to cellulose dialysis
membranes (1 kDa molecular weight), purchased from
Cheshire Biotech, to be dialysed against NaCl (0·01 M; 5°C)
to remove low-molecular mass digestion products. After
15 h, the dialysis fluid was changed and dialysis continued
for an additional 2 h. Afterwards, samples were freeze dried
(5 d) and were ready to be used in in vitro fermentation. All
chemicals were purchased from Sigma Aldrich.

Faecal sample preparation

Faecal samples were obtained from three healthy volunteers,
who had not consumed any antibiotics for at least 6 months
before the study and had no history of gastrointestinal disease.
Volunteers were not regular consumers of probiotic/prebiotic
supplements. Samples were prepared on the day of the experi-
ment and within 1 h of production were diluted (1:10, w/v) in

2

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
14

.1
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2014.16


an anaerobic phosphate buffer (0·1 M; pH 7·4). Faecal samples
were then homogenised in a stomacher for 2 min, then sieved,
forming faecal slurries from each volunteer used in three dif-
ferent batch culture experiments.

Preparation of fermentation vessels

Basal nutrient medium was prepared before the experiment,
by adding peptone water (2 g/l), yeast extract (2 g/l), NaCl
(0·1 g/l), K2HPO4 (0·04 g/l), KH2PO4 (0·04 g/l), NaHCO3

(2 g/l), MgSO4.7H2O (0·01 g/l), CaCl2.6H2O (0·01 g/l),
Tween 80 (2 ml/l), haemin (50 mg/l), vitamin K1 (10 ml/l),
L-cysteine (0·5 g/l), bile salts (0·5 g/l), resazurin (1 mg/l)
and distilled water. The autoclaved medium was aseptically
added to the batch-culture vessels. Vessels were sparged over-
night with O2-free N2 at a rate of 15 ml/min. Before inocula-
tion, pH of the medium was adjusted to 6·8, using both basic
(1 M-NaOH) and acidic (1 M-HCl) solutions, which were mon-
itored and modulated by a pH controller.

Inoculation of substrate in the batch culture

At the start of the experiment, 15 ml of faecal slurry (1:10, w/v)
and substrates were added to each batch-culture vessel. The
first experiment consisted of three vessels: (1), containing
the DPE (1·5 g of date fruit contained 150 mg/ml of polyphe-
nols and other small molecular weight components extracted
by XAD-column chromatography; these are expected to
reach the human colon); (2), fructo-oligosaccharide (FOS)
(1 %, w/v, 1·5 g Raftilose P95) purchased from Orafti
(1 %, w/v); and (3), a control vessel (without a substrate).
For the second experiment, three vessels were run: (1), con-
taining digested date extract (DDE) (1·5 g, containing poly-
phenols and dietary fibres); (2), FOS (1 %, w/v, 1·5 g
Raftilose P95); and (3), a control vessel (without a substrate).
The concentrations chosen in this experiment reflect the
amounts that would reach the colon after consumption
(1·5 g containing 150 mg of polyphenols in the culture
model is approximately equivalent to 100 g of dates giving
1500 mg/1500 ml, which is consuming about seven to ten
pieces of date fruit). Both experiments (batch cultures were
carried out in triplicates) were run under anaerobic conditions
for 48 h and 7 ml of sample collected at five time points (0, 5,
10, 24 and 48 h) analysed for bacterial count using fluores-
cence in situ hybridisation (FISH) analysis, metabolites using
HPLC and cancer cell inhibition using the sulforhodamine B
(SRB) assay.

Bacterial enumeration using fluorescence in situ hybridisation

This method has been described by Daims et al.(40) where fer-
mented samples were prepared, fixed and hybridised to be
ready for counting. Batch-cultured samples were removed at
different time points (0, 5, 10 and 24 h) and suspended to con-
centrate the bacterial cells. Fixation took place by adding the
batch cultures in 4 % (w/v) paraformaldehyde. Samples
were incubated for 3 to 12 h at 4°C without freezing, and
then centrifuged at 15 000 g for 5 min to remove residual

paraformaldehyde. Cells were resuspended in PBS–ethanol
and stored at –20°C until FISH analysis. For FISH analysis,
samples were diluted with PBS/SDS (sodium dodecyl sul-
phate) diluents and applied to six-well slides for hybridisation.
Dilutions were chosen, according to the each fluorescent-
labelled 16S rRNA-targeted oligonucleotide probe. These
probes are labelled with the fluorescent dye Cy3 to enumerate
bacterial cells in samples. FISH analysis was conducted using
six different probes: Bif164 for Bifidobacterium(41); Lab158 for
Lactobacillus–Enterococcus(42); ATO for Atopobium–Coriobacterium
group(43); Erec482 for Clostridium coccoides–Eubacterium rectale(44);
Chis150 for Clostridium subgrp. histolyticum(45); Bac303 for
Bacteroides–Prevotella(42); and EUB338 for total bacteria(46).
Then 20 µl of the diluted samples were added to each well
of the six-well slides. Lysosyme was added with certain types
of probes, such as, Lab158, to ensure sufficient permeability
of the cell envelope, and allowing the probes to enter cells effi-
ciently. Slides were then dehydrated in 50, 80 and 96 %,
respectively, and hybridisation mix was added to the wells.
Hybridisation was set to the appropriate temperature, accord-
ing to the type of probe used. Once the hybridisation mix was
added to all the wells, slides were added in an oven for 4 h.
Slides were removed after the incubation period, and placed
in a washing solution to remove any residuals. Then 20 µl of
DAPI (4′,6′-diamino-2-phenylindole) were added to the wash-
ing solutions, which allowed the cells in the samples to be eas-
ily found under the microscope. Antifade (5 µl; Sigma Aldrich)
was added to all the wells when slides were dried and a cover-
slip was placed on them to be ready for microscopic enumer-
ation. Slides were stored in an opaque closed box in the fridge.
The number of bacterial cells was counted using fluorescence
microscopy (Nikon Eclipse E400; Nikon), which had an
appropriate filter for the DAPI stain (excited at 359 nm and
emits at 461 nm) and Cy3 dye (excited at 550 nm and emits
at 565 nm). Fifteen to twenty fields were counted for each
well in each six-well slide (Tekdon Inc.).

Identification and quantification of bacterial metabolites

Phenolic compounds. DDE were centrifuged at 13 000 g for
5 min to remove all particulate matter and filtered through
0·45 µm acrodisc filters before injection (50 µl) onto the
HPLC system. HPLC analysis was performed using an
Agilent 1100 Series linked to diode array detector.
Separation of compounds was achieved using a C18 Nova
Pak® column (250 mm× 4·6 mm internal diameter, 5 µm
particle size), fitted with a guard column (C18 NovaPak®;
Waters Ltd). The mobile phase consisted of A: 5
M-hydrochloric acid (0·1 %) in 5 % aqueous methanol; and
B: 5 M-hydrochloric acid (0·1 %) in aqueous acetonitrile
(1:1) and was pumped through the column at 0·7 ml/min.
Samples (50 µl) were injected and separated using the
following gradient system (min/% B): 0/5, 5/5, 40/50, 55/
100, 59·9/100 and 60/5 for the detection of all compounds.
The eluent was monitored by photodiode array detection at
254, 280, 320, 370 and 520 nm and spectra of products
obtained over the 220–600 nm range. Phenolic compounds
were characterised by their retention time and by
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comparison with known phenolic standards (0–100 µM; R >
0·995). All data were analysed using ChemStation® software.
For identification of phenolic compounds, we used different
standards, such as phenolic compound standards including
gallic, protocatechuic, p-hydroxybenzoic, vanillic, isovanillic,
caffeic, syringic, p-coumaric, ferulic, isoferulic and sinapic
acids, (+)-catechin, (−)-epicatechin, rutin, myricetin, quercetin,
luteolin, naringenin, kaempferol, isorhamnetin, apigenin and
petunidin (Sigma Aldrich).

Liquid chromatography–electrospray ionisation–MS/MS
analysis. Methanol extracts were also analysed by liquid
chromatography–MS/MS utilising electrospray ionisation.
This consisted of an Agilent 1200 HPLC system equipped
with a binary pump, degasser, autosampler, thermostat,
column heater; photodiode array detector and an Agilent
1100 Series LC/MSD mass trap spectrometer. Separation of
samples was achieved using a Zorbax SB C18 column
(2·1 × 100 mm; 1·8 µm; Agilent) and HPLC conditions were
as follows: injection volume, 5 µl; column temperature, 25°C;
binary mobile system, (A) 0·1 % aqueous formic acid and
(B) 0·1 % of formic acid in acetonitrile; flow rate, 0·2 ml/
min. A series of linear gradients were used for separation
(min/%B): 0/10, 3/10, 15/40, 40/70, 50/70 and 65/10.
MS was performed in the negative ion mode (scan range,
m/z 100–800 Da; source temperature, 350°C). All solvents
used were of liquid chromatography–MS grade.

SCFA. DDE were centrifuged at 13 000 g for 5 min to remove
all particulate matter and supernatant fractions were filtered
through 0·2 µm acrodisc filters before injection (20 µl)
onto the HPLC system (MERCK) equipped with refractive
index (RI) detection. Separation of compounds was achieved
using an ion-exclusion REZEX-ROA Organic acid column
(Phenomenex) maintained at 85°C. Sulfuric acid in HPLC-
grade water (0·0025 mmol/l) was used as an eluent and the
flow rate was maintained at 0·5 ml/min. Quantification
of the samples was obtained through calibration curves
of lactic, acetic, propionic, butyric and valeric acids in
concentrations between 12·5 and 100 mM.

Caco-2 cancer growth

DDE and DPE were tested for the percentage growth inhib-
ition of Caco-2 cells before and after pH-controlled batch cul-
ture fermentation at 0 and 10 h, relative to untreated cells.
Samples were centrifuged at 13 000 g for 10 min to remove
all particulate matter and supernatant fractions were filtered
through 0·22 µm acrodisc filters. Caco-2 cells European
Collection of Cell Cultures (ECACC) (http://www.ecacc.
org/)) were cultured in Dulbecco’s modified Eagle’s medium,
supplemented with 20 % heat-inactivated bovine serum, 2
mM-L-glutamine, 1 % non-essential amino acids, 100 U/ml
penicillin and 100 µg/ml streptomycin (PAA Cell Culture
Company). Anti-proliferative ability was assessed using the
SRB assay. Cells were seeded in twenty-four-well plates at
low confluence (5 × 104 per well) and exposed to all extracts

(0·2 mg/ml). Cells were harvested following 24, 48 and 72 h
in culture and fixed by the addition of 125 µl ice-cold TCA
(10 % final concentration; 4°C; 1 h). After fixing, the medium
was removed, cells were washed and total biomass determined
using SRB (500 µl of 0·4 % SRB; 0·5 h) (Sigma Aldrich).
Unincorporated dye was removed by washing with 1 % acetic
acid, whilst cell incorporated dye was solubilised using Tris–
base (10 mM). Dye incorporation, reflecting cell biomass, was
measured at 492 nm, using a GENios microplate reader
(TECAN).

Statistical analysis

DDE and DPE were tested in two different pH-controlled
batch-culture experiments, using three different donors in
three separate experiments. Changes in both bacterial counts
(log10) and SCFA (mM) were expressed relative to the control
and standard deviation. Changes in the percentage growth
inhibition in Caco-2 cells were measured relative to untreated
cells. One-way ANOVA was applied to show significant dif-
ferences among different time points of fermentation (0, 5,
10, 24 and 48 h). Significant differences between times points
were detected using least significant difference (LSD) tests.
SPSS software, version 18·0, was used (IBM).
Dietary fibre were analysed by Campden BRI Laboratories

(AOAC method 991·43); Ajwa total fibre content is 6·85–
7·9 g/100 g (6·15–7·2 g insoluble fibre).

Results

Effects of digested date extract and date polyphenol extract in
specific bacterial groups

Selected bacterial groups were assessed by FISH following
faecal batch-culture fermentation experiments using DDE
and DPE. Results indicated that both were capable of indu-
cing significant modulation in the growth of specific bacter-
ial groups at different time points (Tables 1 and 2). DDE
significantly increased bifidobacteria (P < 0·05) at 5 and
10 h, and also a change in bacteroides at 24 h (P < 0·05),
along with changes in total bacterial counts (P < 0·05)
(Table 1). In contrast, DPE significantly increased bifido-
bacteria at 5 h (P < 0·05), whereas a decrease in bacteroides
at 48 h (P < 0·05) was seen. Overall, DPE exhibited a
weaker impact on bifidobacteria counts. In comparison
with the prebiotic FOS, even though both DDE and
DPE exhibited a bifidogenic effect, it was significantly smal-
ler than FOS at different time points. DDE was much clo-
ser to FOS in its impact on bacterial composition change
than DPE, where polyphenols have been shown to reduce
bacteroides counts.

Changes in bacterial metabolites

To investigate how different bioactive compounds in date
fruits (polyphenols and fibres) were metabolised by the faecal
microbiota, we utilised HPLC analysis to analyse SCFA after
DDE fermentation and polyphenols after DPE fermentation.
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With regards to DDE fermentation, there were increases in
acetate, propionate, butyrate and lactate among time points
in comparison with 0 h. However, a significant increase
(P< 0·05) was only observed with acetate concentrations at
48 h fermentation (Table 3). With regards to DPE fermenta-
tion, there were significant reductions in luteolin at 10 h
(P< 0·05), 24 h and 48 h and quercetin (P< 0·01) concentra-
tions in comparison with 0 h whereas apigenin and petunidin
were significantly reduced (P < 0·05) at 5 h fermentation
(Table 4). The current batch culture confirms the presence

of petunidin at a higher level, in comparison with other agly-
cones as seen in previous work(33).

Caco-2 cell proliferation

We also assessed the ability of DDE, DPE and metabolites
generated by fermentation to inhibit colon cancer cell prolifer-
ation (Fig. 1). Here, both extracts induced significant antipro-
liferative action before and following bacterial fermentation.
Specifically, DDE had a significantly (P < 0·05) greater ability

Table 1. Faecal bacterial numbers in three pH-controlled batch cultures over 48 h periods†
(Mean values and standard deviations)

Probe. . . Bif164 Lab158 Ato291 Bac303 Erec482 Chis150 Eub I-II-III

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

FOS (0 h) 7·88 0·30 6·01 0·79 7·50 0·11 8·21 0·07 8·44 0·01 5·56 0·01 9·18 0·24
FOS (5 h) 8·09* 0·33 6·69* 0·45 7·69 1·04 8·12 0·19 8·67 0·37 6·15 0·08 9·00* 0·16
FOS (10 h) 8·53** 0·21 6·13 0·98 7·70 1·20 8·06 0·46 8·81 0·41 5·76 0·00 9·38* 0·11
FOS (24 h) 8·34* 0·16 5·98 0·74 7·72 0·80 8·23 0·17 8·66 0·39 5·55 0·02 9·27 0·05
FOS (48 h) 8·47* 0·05 6·07 0·57 7·74 0·98 8·08 0·21 8·82 0·36 5·55 0·02 9·44** 0·14
DDE (0 h) 7·83 0·36 6·11 0·10 7·28 0·49 8·09 0·43 8·27 0·23 5·56 0·01 9·06 0·20
DDE (5 h) 8·24* 0·20 6·15 0·75 7·59 0·97 7·73 0·23 7·91 0·66 5·56 0·01 8·92 0·34
DDE (10 h) 8·21* 0·20 6·25 0·86 7·71 1·16 7·90 0·44 8·56 0·46 5·56 0·01 9·15 0·26
DDE (24 h) 8·22 0·32 5·75 0·59 7·86 0·80 8·20* 0·07 8·66 0·28 5·55 0·02 9·40* 0·03
DDE (48 h) 8·28 0·53 6·19 0·74 7·81 0·74 7·96 0·20 8·54 0·53 5·55 0·02 9·41* 0·12
FOS, fructo-oligosaccharides; DDE, digested date extract.

Mean value was significantly different from that at 0 h fermentation: *P < 0·05, **P < 0·01 (one-way ANOVA and least significant difference (LSD) test).

† Bacterial counts in fermented faecal samples were determined by fluorescence in situ hybridisation and are expressed as log10 cells/g faeces.

Table 2. Faecal bacterial numbers in three pH-controlled batch cultures over 48 h periods†
(Mean values and standard deviations)

Probe. . . Bif164 Lab158 Ato291 Bac303 Erec482 Chis150 Eub I-II-III

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

FOS (0 h) 8·34 0·23 6·06 0·49 7·75 0·09 8·33 0·17 8·18 0·23 5·59 0·07 8·96 0·05
FOS (5 h) 8·53 0·31 6·55 0·60 7·90 0·08 8·08 0·38 7·82 0·43 5·79 0·53 9·05 0·24
FOS (10 h) 8·55 0·31 6·86* 0·43 8·23* 0·08 8·18 0·36 8·11 0·24 6·21 0·72 9·20* 0·03
FOS (24 h) 8·55 0·26 7·04* 0·42 7·72 0·30 7·99 0·36 8·25 0·08 5·47 0·15 9·43** 0·03
FOS (48 h) 8·69* 0·16 7·02* 0·49 8·16* 0·04 7·90 0·34 7·99 0·29 5·53 0·17 9·33 0·19
DPE (0 h) 8·13 0·10 5·98 0·61 7·95 0·27 8·27 0·22 8·29 0·18 5·85 0·63 9·11 0·11
DPE (5 h) 8·24* 0·15 6·22 0·47 7·70 0·44 7·94 0·14 8·03 0·18 5·77 0·38 9·15 0·19
DPE (10 h) 8·20 0·13 6·35 0·42 7·77 0·18 8·03 0·12 7·97 0·21 5·84 0·39 9·24 0·05
DPE (24 h) 8·32 0·15 6·34 0·63 7·71 0·37 7·94 0·26 8·03 0·26 5·60 0·32 9·26 0·12
DPE (48 h) 8·18 0·24 6·42 0·62 7·54 0·21 7·83* 0·31 7·86 0·08 5·53 0·17 9·24 0·18
FOS, fructo-oligosaccharides; DPE, date polyphenol extract.

Mean value was significantly different from that at 0 h fermentation: *P < 0·05, **P < 0·01 (one-way ANOVA and least significant difference (LSD) test).

† Bacterial counts in fermented faecal samples were determined by fluorescence in situ hybridisation and are expressed as log10 cells/g faeces.

Table 3. SCFA concentrations in three pH-controlled batch cultures over 48 h periods†
(Mean values and standard deviations)

Time. . . 0 h 5 h 10 h 24 h 48 h

Mean SD Mean SD Mean SD Mean SD Mean SD

Lactate (mM) 2·10 3·64 6·17 10·69 7·94 13·75 11·47 12·06 6·24 5·47
Formate (mM) 9·44 10·44 14·46 11·93 5·73 5·54 5·18 5·00 5·16 5·00
Acetate (mM) 13·26 12·47 25·01 17·73 22·96 17·89 45·77 13·60 45·35* 1·40
Propionate (mM) 6·38 1·69 9·07 2·34 12·82 10·79 11·64 4·86 9·97 3·76
Butyrate (mM) 3·99 3·5 4·98 2·30 5·15 5·81 7·51 5·31 10·41 2·99
Valerate (mM) 1·44 2·49 1·51 2·59 1·66 2·88 1·03 1·78 0·49 0·86
* Mean value was significantly different from that at 0 h fermentation (P < 0·05; ANOVA and least significant difference (LSD) test).

† Metabolite counts in fermented faecal samples were determined by HPLC.

5

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
14

.1
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2014.16


to reduce the growth of Caco-2 cells than DPE, inducing
about 90 % of inhibition at 48 h of exposure. Fermentation
was observed to decrease overall cancer cell growth inhibition,
only achieving a 30 % inhibition with DPE and 70 % inhib-
ition with DDE after 48 h fermentation.

Discussion

The present study has provided evidence that both DDE and
DPE derived from Ajwa dates are able to significantly increase
the growth of beneficial bacteria, such as bifidobacteria in
human faecal batch cultures. Such changes in the growth of
these bacteria may play a role in enhancing colon health, by
inhibiting the growth of pathogens and increasing the produc-
tion of acetate and lactate(47). Previous studies have indicated
that malvidin-3-glycoside (200 mg/l) may induce significant
increases in bifidobacteria, lactobacilli and total bacteria(15), fit-
ting well with our observation in that the Ajwa dates used are,
unlike other dates, rich in anthocyanins(33). With regards to
other bacterial groups tested, lactobacilli and C. histolyticum
did not change with either of the treatments. Such data indi-
cate a selective effect on the growth of specific bacteria,

something that is commonly seen with prebiotics such as
FOS(15). The number of bacteroides, on the other hand, was
significantly increased at 24 h of exposure to DDE, but was
decreased when exposed to DPE. Bacteroides are considered
a dominant bacterial group in the large intestine and are
known to produce propionate when they ferment dietary fibres
from oats and barley(8). In previous studies, limited changes
have been found with bacteroides after polyphenol- and/or
fibre-rich foods. In the present study, the decrease in
bacteroides seen with DPE fermentation may be due to
the use of pure polyphenol extracts, where polyphenols
exhibit the ability to bind to bacterial cells membranes,
thus inhibiting their growth. Differences between polyphe-
nols’ antimicrobial activities depend also on the bacterial
lipid bilayer, which may have a greater affinity to inhibit
Gram-negative bacteria, such as bacteroides(48). On the
other hand, with DDE, the presence of fibres, and cleaved
sugars from polyphenol glycosides should interfere with the
selectivity of bacterial growth, where bacteroides and total
bacteria were seen to be increased.
The whole Ajwa dates (DDE) were also observed to induce

an increased trend in the Atopobium–Coriobacterium group at all
time points, which is something previously observed with oat
and barley fermentation, containing similar amounts of insol-
uble fibres(8). Atopobium spp. have recently been reported as
being capable of modulating caspase-9 and caspase-3 in a
manner known to induce apoptosis and inhibiting Caco-2 can-
cer growth in vitro(49). In addition, an increased trend in the
growth of C. coccoides–E. rectale with DDE was also observed.
This bacterial group is believed to produce butyrate, which is
considered protective with respect to effects on colon can-
cer(50) and ulcerative colitis(51). Furthermore, some species of
the Coccoides–Eubacterium group are thought to reduce cancer
risks due to butyrate production(52), again through an inhib-
ition of apoptosis(53). Previously, most interest has focused
on the potential of established prebiotics to increase the
growth of bifidobacteria and lactobacilli, with little interest in
the growth of other types of bacteria such as Atopobium
spp., E. rectale spp. and Roseburia that may be capable of exert-
ing anti-cancer abilities(49). Costabile et al. revealed an increase
in Atopobium spp. following the consumption of inulin
extracted from artichokes in human subjects(19), and butyrate-
producing bacteria via polydextrose consumption(54).
Therefore, our findings must be tested in a larger number of
volunteers to ascertain such changes.

Table 4. Aglycone concentrations in three pH-controlled batch cultures over 48 h periods‡
(Mean values and standard deviations)

Time. . . 0 h 5 h 10 h 24 h 48 h

Mean SD Mean SD Mean SD Mean SD Mean SD

Myricetin (mM) 0·21 0·07 0·19 0·06 0·25 0·05 0·21 0·06 0·21 0·03
Luteolin (mM) 0·32 0·04 0·16† 0·02 0·15* 0·02 0·00** 0·00 0·00** 0·00
Quercetin (mM) 0·30 0·03 0·18† 0·02 0·18 0·07 0·00** 0·00 0·00** 0·00
Apigenin (mM) 0·00 0·00 0·31* 0·12 0·14 0·29 0·00 0·00 0·00 0·00
Petunidin (mM) 0·95 0·29 0·37* 0·11 0·43 0·19 0·33 0·185 0·30 0·19
* Mean value was significantly different from that at 0 h fermentation: *P < 0·05, **P < 0·01 (one-way ANOVA and least significant difference (LSD) test).

† Mean value was borderline significantly different from that at 0 h fermentation (P > 0·05; one-way ANOVA and least significant difference (LSD) test).

‡ Polyphenol compound counts in fermented faecal samples were determined by HPLC.

Fig. 1. Caco-2 growth inhibition percentages measured in pH-controlled batch

cultures over 48 h periods: ■, before fermentation; □, 10 h fermentation; ,

48 h fermentation. Percentages were measured by spectrophotometer at

570 nm. Values are means, with standard deviations represented by vertical

bars. * Mean values for date polyphenol extract (DPE) were significantly differ-

ent from those for digested date extract (DDE) (P < 0·05; one-way ANOVA and

least significant difference (LSD) test).
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The present study shows a bifidogenic effect with both
whole date extracts and polyphenol extracts(6,11), where a pos-
sible potential is worth testing in human subjects. The effects
of polyphenols on the growth of the gut microbiota appear to
depend on their structure. For example, no changes in the
growth of lactobacilli or bacteroides were observed after
exposure to catechins(12) and proanthocyanidins(16), whereas
with wine phenolic extracts(13), and flavanol-3-ols present in
grape seed, significant increases were observed(17). Rather,
our data show that there was a selective shift in the bacterial
population of the large intestine, with whole date fruit
(DDE), but still considered a weak bifidogenic impact when
compared with cereals(6,8). A fraction of such impact should
be due to the presence of polyphenols, where bifidobacteria
have been seen to be significantly increased via inoculation.
Questions remain as to the extent to which polyphenols
have the ability to modulate the gut microbiota towards a
healthier state, with PCR, DNA sequencing, metabonomics
and metabolomics required to fully understand the mecha-
nisms involved in polyphenol fermentation(55) and whether
there may be synergetic actions of both polyphenols and
dietary fibres on bacterial growth in the large gut. In order
to exert such effects in the large intestine, date polyphenols
and fibres must escape metabolism in the upper gastrointes-
tinal tract, thus reaching the colon intact where they may
exhibit functional properties within. Previous studies have sug-
gested that up to 80 % of polyphenols similar to those identi-
fied in dates(33) may reach the colon(37), where they are then
hydrolysed by bacteria and further metabolised to smaller
molecular-weight phenolic endproducts(36,56). According to
Tzounis et al.(12), HPLC chromatograms showed that 50 %
of flavanol monomers are metabolised by the gut bacteria,
with (+)-catechin being converted to (+)-epicatchein. Date
fruits are known to contain high amounts of phenolic acids,
procyanidins and flavonoid glycosides(31,33). In the present
study, myrecitin, luteolin, quercetin and apigenin and the
anthocyanidin petunidin were all detected, presumably follow-
ing cleavage of their corresponding glycoside to the aglycone.
Previously, it has been suggested that flavonoid glycosides and
anthocyanins undergo rapid hydrolysis by various gut bacteria,
such as E. ramulus, to produce aglycones and other endpro-
ducts via the actions of microbial glycosidase leading to flavon-
oid ring fission(48), and/or the action of Bifidobacterium lactis(57).
The more rapid metabolism of polyphenols in the DPE, rela-
tive to the whole date, is expected to be due to matrix effects,
with polyphenols needing initial release in the whole fruit
before any bacterial metabolism can take place(15). In the pre-
sent data, we observed the rapid formation of aglycones, prob-
ably as a result of specific bacterial enzymes that cleave the
3-glycosidic linkage, and the later production of phenolic
acids, such as syringic acids, p-coumaric acids and gallic
acids, as seen with malvidin glycosides in batch cultures(58).
In another study, peonidin-3-glycoside and cyanidin-3-
glycoside degradation by the gut mircobiota resulted in the
production of vanillic acids and protocatechuic acids(59).
Such compounds have been seen in previous work to induce
apoptosis in colon cancer cell lines and interfere with the cel-
lular signalling(60).

SCFA are also produced as a result of saccharolytic metab-
olism of gut microbiota in the large intestine(4). HPLC analysis
was used to identify and quantify the main SCFA produced in
batch cultures, indicating a significant increase in acetate con-
centrations, seen at 48 h, which was mostly associated with the
increase in bifidobacteria numbers. Previous investigations
have demonstrated a direct relationship between changes in
bifidobacteria and acetate when pomegranate by-products
were inoculated in batch cultures, whereas when punicalagins
(pomegranate ellagitannins) were added no effects were
detected in bacteria or in SCFA production, which indicates
that modifications in the gut ecology were mostly due to
other bioactive compounds, such as insoluble fibres(14). The
extent of degradation and metabolism of dietary components
by bacterial enzymes depends on the different composition of
bacteria within different volunteers, something that will con-
tribute to the bioavailability and production of metabolic end-
products. In the present study, the increase in butyrate was not
significant, which is mainly associated with butyrate-producing
bacteria, C. coccoides–E. rectale that was not significantly affected
following their exposure to DDE. The explanation behind the
relatively slow production of SCFA following exposure to
whole date fruit could again be the complex matrix(48). In add-
ition, donor diets may play crucial roles in colon metabolism,
where the presence of other foods ingredients, such as pro-
teins, could be involved in bacterial fermentation. As a result
of bacterial hydrolysis, other by-products, such as bile acids
and ammonia, could also interfere with the gut ecology(61).
SCFA such as butyrate are thought to be involved in colon
cancer inhibition(62). Changes in the colonic microflora,
together with the production of metabolic products (SCFA
and phenolic acids) may work together to exhibit an
anti-cancer effect in the colon, thus enhancing gut health.
There is still debate as to whether foods rich in polyphenols

and dietary fibres may prevent colon cancer in humans, as clin-
ical data remain inconclusive(63,64). However, the fact that we
observed the potential of date polyphenols to induce apoptosis
even after metabolism by the microbiota suggests that date
intake may be capable of exerting anti-carcinogenic activity.
Previously, polyphenols extracted from olive oil have also
been shown to exert strong anti-proliferative effects in
Caco-2 cell lines, along with changes in cellular signalling(65,66).
This anti-cancer effect was dose dependent and still apparent
after bacterial metabolism of the original polyphenols in the
extract. In the pure extracts, the presence of phenolic acids,
flavonoid glycosides and anthocyanins contributed to a strong
inhibition in Caco-2 cell lines, whereas with fermentation,
inhibition was weaker due to the loss of phenolic acids and
other possible unidentified compounds, which do not reach
the colon. What was detected with the fermented extracts is
more similar to the human dietary intake, which needs to be
proved in human trials.
The present paper represents an early investigation into the

influence of date fruit and date polyphenols on the growth of
large-intestinal bacteria and related metabolites. The whole
date fruit extract was capable of larger effects on bacterial
growth than that seen with the date polyphenols alone, due
to the presence of insoluble fibres, where polyphenols
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themselves showed a weaker ability to modify bacterial counts.
Furthermore, these data were paralleled by changes in bacterial
metabolic products; both SCFA and phenolic acids following
incubation with the faecal microbiota were shown to inhibit
colon cancer cell growth. The present results suggest that
the synergistic action of both date polyphenols and insoluble
fibres could enhance colonic health.
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