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Abstract

We investigate how distributed denial-of-service (DDoS) attacks and other disruptions affect the

Bitcoin ecosystem. In particular, we investigate the impact of shocks on trading activity at the lead-

ing Mt. Gox exchange between April 2011 and November 2013. We find that following DDoS

attacks on Mt. Gox, the number of large trades on the exchange fell sharply. In particular, the distri-

bution of the daily trading volume becomes less skewed (fewer big trades) and had smaller kurto-

sis on days following DDoS attacks. The results are robust to alternative specifications, as well as

to restricting the data to activity prior to March 2013, i.e., the period before the first large apprecia-

tion in the price of and attention paid to Bitcoin.
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Introduction

The recent rise in digital currencies, led by the introduction of

Bitcoin in 2009 [1], creates an opportunity to measure information

security risk in a way that has often not been possible in other con-

texts. Digital currencies (or cryptocurrencies) aspire to compete

against other online payment methods such as credit/debit cards and

PayPal, as well as serve as an alternative store of value. They have

been designed with transparency in mind, which creates an opportu-

nity to quantify risks better. While Bitcoin’s design provides some

safeguards against “counterfeiting” of the currency, in practice the

ecosystem is vulnerable to thefts by cybercriminals, frequently tar-

geting intermediaries such as wallets or exchanges.

In this article, we investigate how one such risk, distributed denial-

of-service (DDoS) attack, affects the Bitcoin ecosystem. While denial-

of-service attacks have been launched on a wide range of Bitcoin serv-

ices, from gambling sites to mining pools [2, 3], we focus our investi-

gation on how DDoS attacks affected the Mt. Gox exchange. We do

so for several reasons. First, prior research has established that Mt.

Gox has been targeted by DDoS attacks far more than any other

Bitcoin service [2]. Second, DDoS attacks on currency exchanges have

the potential to be financially lucrative to its proponents as well as

extremely disruptive: preventing others from buying or selling creates

an unfair financial advantage for the perpetrator at the expense of

ordinary participants. Third, following Mt. Gox’s collapse, a dump of

millions of transactions was publicly disclosed, creating a unique

opportunity to quantify the impact of DDoS attacks on trading.

Finally, as Fig. 1 shows, Mt. Gox was by far the leading Bitcoin

exchange during most of the 2.5-year period for which we have data.

While we cannot know for certain what has motivated the spate

of DDoS attacks on Bitcoin currency exchanges, there are several

plausible explanations for why someone might do so. First, there is

considerable competition among currency exchanges, along with

high turnover in terms of which platforms dominate. Figure 1 shows

evidence of this: while Mt. Gox was the dominant exchange in

2011, a series of four new entrants emerged in 2012 and 2013 to

overtake Mt. Gox. While one cannot conclude that the 34 reported

DDoS attacks on Mt. Gox caused it to shed market share to new

entrants, it remains a distinct possibility since frequent service inter-

ruptions might drive wary customers to alternative platforms. While

there is no evidence that the new entrants were behind the DDoS

attacks on Mt. Gox, they certainly would have stood to gain from

doing so. The lawless nature of Bitcoin during this period, combined
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with scores of new exchanges fighting for market share, might have

led one or more of the smaller exchanges to target their biggest rival.

Second, profit-motivated traders might also launch DDoS attacks

to create favorable trading conditions. This could happen both when

prices rise and fall. As prices rise, DDoS attacks could slow that rise

by preventing traders who want to buy from being able to do so. For

instance, a trader who is trying to buy bitcoin on its way up might put

in a large order at a smaller exchange while blocking access to the

larger Mt. Gox exchange. His lower bid might be accepted by sellers

who temporarily cannot sell on the larger platform. Alternatively, if

the attacker holds bitcoin, he might be able to ask for a higher price

on a smaller exchange when buyers are blocked from participating on

Mt. Gox. As prices fall, DDoS attacks might slow a decrease by limit-

ing the completion of sell orders that drive the price downwards. An

attacker who holds bitcoin but is concerned that its value may fall

could be tempted to launch a DDoS attack.

It is worth noting that even if these attacks do not have the

intended effect of artificially raising or lowering prices as the perpe-

trators intend, they still could be launched in expectation that they

could work. The low cost of launching DDoS attacks combined

with a very low likelihood of being caught could drive miscreants to

experiment with strategies regardless of whether or not they actually

succeed in making money.

Using an event study design, we find that following DDoS

attacks on Mt. Gox, there was a significant reduction in the number

of large trades on the exchange. In particular, the distribution of the

daily trading volume becomes less skewed (fewer big trades) on days

following DDoS attacks. The results are robust to alternative specifi-

cations and to restricting the data to the period March 2013, i.e.,

the period before the big appreciation in the price of Bitcoin.

The question is important because exchanges are critical institu-

tions in the Bitcoin ecosystem. In the exchanges, sellers benefit from

a larger number of buyers, and buyers benefit from a larger number

of sellers (so-called positive cross-side network effects). An exchange

is an example of a platform; in order for an exchange to succeed, it

must build up trust among its users, since a loss of confidence in an

exchange can quickly lead to a downwards spiral in which buyers

and sellers quickly cease trading on the platform.

The market for cryptocurrency exchanges is very vibrant. The

exchanges considered to be the major players changed significantly

over time. New ones appeared, and existing ones were pushed out of

the market. The Mt. Gox failure in February 2014 showed that even

a large exchange may suddenly exit the market.

Related work

The popularity of Bitcoin, especially when compared to prior cryp-

tocurrencies, has spawned a huge amount of research activity.

Bonneau et al. [4] review the (primarily) technical research, ranging

from vulnerabilities in the implementation and operation to the

development of alternative systems aiming to improve on Bitcoin’s

design. Böhme et al. [5] discuss Bitcoin’s design, risks, and open

challenges geared toward a social science audience. Taken together,

these articles offer a baseline understanding of key issues facing

cryptocurrencies identified by scholars.

A growing number of researchers have leveraged Bitcoin’s trans-

parency to study user behavior and attacks. Some have mined the

blockchain, the public ledger of completed transactions. Meiklejohn

et al. conducted a large-scale investigation of the blockchain in part

to trace transactions back to popular Bitcoin service providers, such

as currency exchanges [6]. Ron and Shamir constructed a graph of

Bitcoin transactions from the blockchain to identify suspicious

transaction chains [7]. Several studies mine the blockchain to docu-

ment the prevalence of undesirable activity, including money laun-

dering [8], mining botnets [9], scams such as Ponzi schemes [10],

and stolen “brain” wallets [11].

Currency exchanges have been recognized to play a central role in

the Bitcoin ecosystem. Moore and Christin reported that by early

2013, 45% of Bitcoin currency exchanges had closed, and that many

are plagued by frequent outages and security breaches [12]. Vasek

et al. [10] documented reports of denial-of-service attacks targeting a

range of Bitcoin services, including 58 attacks on exchanges.

These disruptions may reflect the volatility of today’s Bitcoin

ecosystem, but they might also represent something more sinister.

People could deliberately introduce shocks to Bitcoin exchanges to

profit financially (e.g. by preventing others from buying to bid up

low prices). A denial-of-service attack might introduce enough insta-

bility for a malevolent actor to exploit. We hope to explore this issue

in future work. In this article, we conduct the first econometric

Figure 1. Distribution of market share among Bitcoin currency exchanges by reported trade volume, April 2011 to November 2013 (Source: bitcoincharts.com).
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study of the impact of denial-of-service attacks on trading activity at

Bitcoin exchanges.

Methodology

We first describe the data sources used, then explain how the regres-

sion model is designed.

Data sources
We collected two principal types of data: on exchange activity and

shock events.

Exchange activity

Shortly after filing for bankruptcy in early 2014, a trade history of

Mt. Gox transactions was publicly leaked. The leaked data includes

transaction time, user identifier (numeric, apparently for internal

use only), currency converting to/from bitcoins, transaction amount,

and exchange rate. These data offer much finer granularity than is

typically available, since most buy and sell transactions are recorded

only by the exchange and never appear on the blockchain. The data

can be leveraged to monitor changes in user participation as well as

overall transaction volume at times surrounding shocks. In total,

nearly 18 million matching buy and sell transactions are reported

between April 2011 and November 2013.

We supplemented these data with daily transaction volumes

reported by the bitcoincharts.com website for all monitored Bitcoin

exchanges, in addition to Mt. Gox. Because some entries obtained from

bitcoincharts.com included missing values, we also gathered weekly

transaction data from bitcoinity.org to validate the gathered data.

Dataset validation. While it is impossible to directly ascertain the

validity of the Mt. Gox transaction data, we did conduct a few san-

ity checks to ensure that the data are consistent. As a first check, we

verified that the total buy transactions are matched in number and

aggregate value for the sell transactions.

Upon delving deeper into the Mt. Gox leaked data, we identified

that there are many duplicate entries in the dump file. We have

found that the Mt. Gox registry sometimes had multiple entries for

transactions with the same user ID, transaction time, transaction

type (buy/sell), and transaction amount. We considered two forms

of de-duplication. The more conservative approach is to treat each

(user ID, timestamp, transaction type, amount in BTC, amount in

Japanese Yen) tuple as unique (de-duplication strategy 1). Removing

such duplicates narrows the data from �18 million to 14 million

transactions. (Note that each completed transaction has both a buy

and sell record, which means that the total number of unique com-

pleted transactions is 7 million.) A more aggressive de-duplication

strategy is to consider “user id, timestamp, transaction type, amount

in BTC” tuples as unique (de-duplication strategy 2). Using this

strategy, transactions that are reported at the same time but at dif-

ferent exchange rates are treated as duplicates.

As a further sanity check, we compared the de-duplicated data

with other data reported by others. To that end, we compared the

Mt. Gox transaction volumes to the daily totals reported on bitcoin-

charts.com to the leaked dataset. Both de-duplicated datasets are

more consistent with the daily totals found on bitcoincharts.com

than original leaked data.

Figure 2 plots the daily differences in transaction between leaked

dataset and totals reported by bitcoincharts.com. Differences are

normalized as a fraction of the leaked daily volume. Positive num-

bers indicate that the leaked data reported higher volume. Note that

some difference is expected, particularly if the time zones used in the

leaked data and on bitcoincharts.com differ. Also, note that there

were a few gaps in when data were reported by bitcoincharts.com

(e.g. in mid-2012 and January 2013). These gaps only affect the

comparisons between datasets, not the subsequent analysis.

Overlaid on the graph is a red dotted line on days where DDoS

attacks are reported at Mt. Gox, and a blue dashed line for other

shocks. From this we can see that data are available during the

shocks, and there does not appear to be any increase in the disparity

between sources on days where shocks occurred.

The top graph reports on de-duplication strategy 1. We can see

that the transaction volume is always the same or higher in the

leaked data. The difference, while volatile, increases somewhat as

time passes. The bottom graph reports on de-duplication strategy 2.

During 2011, bitcoincharts.com reports higher volumes than Mt.

Gox tracked internally, but this changed as time progressed, and the

overall trend lines are similar in both graphs.

Finally, we note that we have communicated with multiple Mt.

Gox users, who confirmed that their own transactions were accu-

rately reported in the leaked data.

From this analysis, we conclude that the de-duplicated leaked

data appears robust enough to provide a reliable signal of the true

levels of trade activity at Mt. Gox. We use de-duplication strategy 1

for the subsequent analysis in the article, but we note that the results

remain consistent regardless of the de-duplication strategy used

(including even when not removing any duplicates).

Ethical considerations. We elected to use the leaked Mt. Gox data in

our research because the data had already been publicly disclosed by

others. Consequently, our examination of the data does not add to

any existing harms imposed by the dataset’s initial publication.

In fact, by analyzing the transactions for a prominent closed

exchange, we hope to shed light on how denial-of-service attacks

might impact today’s exchanges.

Shocks to Mt. Gox and expected effects of the shocks

We are primarily interested in measuring the impact of denial-of-

service attacks targeting the Mt. Gox exchange. We expect that the

attacks will affect the different types of traders on Mt. Gox in different

ways. In particular, we expect that an attack will lead to a temporary

reduction in “large volume” trades on Mt. Gox following the attacks.

There are two reasons for this. First, large traders probably have better

and more up-to-date information than small traders. Second, large

traders may struggle to find sufficient depth in the market to complete

large-volume trades immediately following a DDoS attack.

Dataset D1: Reported DDoS attacks. We combine three sources of

reported DDoS attacks affecting Mt. Gox: user reports in the bit-

cointalk.org forum, user reports in the/r/bitcoin Reddit sub-forum,

and public announcements by Mt. Gox in the press and on social

media.

In [2], Vasek et al. measure the prevalence of DDoS attacks on a

range of Bitcoin services by inspecting posts on the popular bitcointal-

k.org discussion forum. We use the data published by the authors

(available from doi: 10.7910/DVN/25541), which reports the day

that a thread describing a reported DDoS attack on Mt. Gox is

started. The authors in [2] used a keyword-based classifier to identify

candidate threads discussing DDoS attacks, then manually inspected

all threads to ensure that a purported DDoS attack is in fact being dis-

cussed (as opposed to a general discussion of DDoS attacks or their
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hypothetical impact). Reports were gathered between February 2011

and October 2013, with 34 attacks reported on Mt. Gox.

The/r/bitcoin forum on Reddit is another popular discussion

forum. We inspected historical posts using the Reddit API, following

the same procedure as the authors in [2]. In all, we found eight

reported DDoS attacks on Mt. Gox discussed on Reddit, reported

between April and November 2013. Three of these attacks were also

reported on bitcointalk.org.

Of course, what’s being measured here are reported DDoS attacks,

not confirmed events. It is possible that some of the outages experi-

enced by users were caused by other reasons than a DDoS attack.

Mt. Gox frequently issued press releases via its website and

social media whenever outages occurred. Sometimes the outages

were directly attributed to DDoS attacks. Unfortunately, after Mt.

Gox collapsed, most of these pages were deleted, and so their

public statements have been lost forever. (We even checked archi-

ve.org, which did not preserve the pages with public statements.) In

a few cases, however, reports could be obtained from third-party

websites or Gox’s Googleþpage (that was seemingly forgotten

when the other social media accounts were deleted). In total, we

found direct acknowledgment of DDoS attacks by Mt. Gox on nine

occasions.

Some of the attacks were reported in more than one source.

Across all three data sources, DDoS attacks were reported on 37

days.

D2: Additional security shocks. DDoS attacks were far from the

only adverse event afflicting Mt. Gox while operating. The exchange

faced pressure from regulators, thefts from users, and self-inflicted

IT outages. We have documented 10 publicly-available shocks by

examining statements from Mt. Gox obtained from news reports,

press releases, and social media. The events are described in Table 1.

D3: Confirmed DDoS attacks. Because we cannot be certain that all

DDoS attacks reported on the discussion forums actually transpired,

we also examine a narrow subset of nine DDoS attacks that Mt.

Gox directly acknowledged.

While the possibility false negatives (i.e. shock events that tran-

spired but we did not observe) cannot be eliminated, we are confi-

dent that most events affecting Mt. Gox are included. By scouring

public reports from the two most popular discussion forums and

direct acknowledgments by the company, we believe that the num-

ber of missing events is likely quite small.

Table 1. Additional shocks, other than DDoS, affecting Mt. Gox

Date Description

2011-06-19 Security breach causes BTC fall to 0.01 USD

2012-02-21 Kernel panic triggers outage

2012-06-23 Invalid trading causes outage

2012-09-05 Unplanned trading outage

2013-02-22 Dwolla AML efforts cancel USD transfers

2013-03-11 Blockchain fork glitch

2013-04-09 Outage reportedly caused by high trade volume

2013-05-14 DHS seizes cash in court action

2013-06-20 Suspends USD withdrawals

2013-08-05 Announces significant losses due to early crediting

Figure 2. Daily differences in transaction volume between leaked dataset and totals reported by bitcoincharts.com. Differences are normalized as a fraction of the

leaked daily volume. Positive numbers indicate that the leaked data reported higher volume.
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Model
We now describe the regression models used. “Transaction volume

and large trades” section describes a first attempt, using transaction

volumes and large trades as the dependent variable, while

“Endogeneity” section describes the more robust dependent varia-

bles of skewness and kurtosis of daily transaction volumes.

Transaction volume and large trades

A security shock increases the probability of a failed trade, and in

some reported incidents entire value of the transaction can be lost.

Therefore, it would seem reasonable for users to refrain from

buying or selling Bitcoins on an exchange after witnessing attacks.

To measure the effect of those shocks on the Bitcoin ecosystem,

we turn to transaction volume, the most common indicator of

user activity. We aggregate the daily transactions listed in the Mt.

Gox leaked data set and use this daily sum as our dependent

variable.

Before we run any regressions, it is important to examine the

raw data. Figure 3 clearly shows that there are fewer large transac-

tions on days following a DDos attack. It is nice that this appears

clearly in the raw data. We now will examine whether this effect is

significant in a regression model.

We start by looking at the effect of reported events from the D1

and D2 data sets on the transaction volume. This time series has a

positive trend that is highly correlated with the sharp appreciation

in the price of Bitcoin that occurred between April and October

2013. Assuming a linear time trend, we first estimate the following

regression equation:

TransactionVolumet ¼ b0 þ b1D1t þ b2D2t þ b3Timet þ �t: (1)

Transaction volume is the daily volume of trade in Japanese Yen

(JPY). D1 is a dummy variable that takes on the value one the day

following a DDoS attack and zero otherwise. D2 is a dummy varia-

ble that takes on the value one on the day following the other 10

shocks as described above. The variable “Time” is a time trend, and

e is the error term. The subscript t indicates that the data we employ

are daily observations.

Since the hypothesis is that there is a drop in relatively large

transactions following a DDoS attack, we also can use the daily

highest transaction (denoted Max. Transaction) as an independent

variable and check weather there is indeed a substantial change on

the day after the attack. For the same reasons noted above, we

employ a time trend and will estimate the following regression

equation:

Max:Transactiont ¼ b0 þ b1D1t þ b2D2t þ b3Timet þ �t: (2)

Since testing the size of the biggest daily transaction can only shed a

bit of light on the effect of a shock, we also compute the daily num-

ber of very large transactions and use that as our independent varia-

ble. The threshold is of course debatable, but we have found similar

results with all the definitions we tried. In the results section, we

present results for large transactions defined as those exceeding

1000 USD, taking into account the exchange rate to JPY, the cur-

rency Mt. Gox had used for its internal storage. Again, we employ a

regression with the same dependent variables:

LargeTransactionst ¼ b0 þ b1D1t þ b2D2t þ b3Timet þ �t: (3)

Endogeneity

Since the data set is composed of daily aggregates listed in a chrono-

logical order, we must deal with problems that might arise when

using time series data. Prior work has shown that attempted attacks

are correlated with the volume of Bitcoins traded [2], aning it is

more likely the attacks will occur in periods with high liquidity and

larger volume of transactions. This important finding means that

high volumes of trade can lead to an increased likelihood of a DDoS

attacks. In such a case, the regressions described above in Equations

(1–3) would all suffer from endogeneity bias. We report results from

Equations (1–3) above in Table 2, but because of the potential endo-

geneity, the parameter estimates from these OLS regressions are

likely biased.

Skewness and kurtosis

One way to address endogeneity is to employ instrumental variables.

Ideal instrumental variables are cost-shifters. But no instruments

exist in our setting. Hence to address the potential endogeneity, we

will employ kurtosis and skewness as dependent variables. Using the

skewness and kurtosis of the daily transaction distribution as

dependent variables is important for several reasons.

• First, there is no significant time trend in skewness and kurtosis;

the data show that while the volume of trade to grow over time,

the distribution of daily trades (in the form of kurtosis and skew-

ness) does not change at all.

Figure 3. Distribution of transactions by amount in JPY on days following a

reported DDoS attack (in red) and on all other days (in black).

Table 2. Transaction volume and large trades

(1) (2) (3)

Variables Transaction

volume

Max. Transaction Large

transactions

D1 �2.826eþ07 �700, 953 �104.6

(1.306eþ08) (1.265eþ06) (277.3)

D2 1.588eþ08 1.559eþ06 311.4

(1.963eþ08) (1.901eþ06) (416.8)

Time 1.053eþ06*** 13, 140*** 2.246***

(76, 263) (738.5) (0.162)

Constant �2.334eþ08*** �2.215eþ06*** �537.5***

(4.064eþ07) (393, 531) (86.28)

Observations 924 924 924

Adjusted R2 0.171 0.255 0.172

Standard errors in parentheses. ***P < 0.01; **P < 0.05; *P < 0.1.
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• Second, the variables skewness and kurtosis captures the very

essence of the hypothesis we are interested in testing, namely that

DDoS attacks might affect different types of trades (large and

small) in different ways.
• Finally and most important, there is no potential endogeneity;

that is, changes in kurtosis and skewness are not likely to lead to

an increased likelihood of a DDoS attack. That is, changes in

these variables will not lead to DDoS attacks and there is no

endogeneity issue; our OLS regressions (with robust standard

errors) are fine.

Both kurtosis and skewness are higher when the distribution has

heavy tails. In the case of trades at Mt. Gox, in general, most of the

trades are for small amounts and there are a smaller number of

trades involving larger amounts. Hence, if the DDoS attacks lead to

a reduction in the number and/or size of the large trades, the kurto-

sis and skewness will fall. We use the natural log of kurtosis and

skewness as the dependent variables, but the results are robust to

using levels of these variables.

Although in theory, kurtosis and skewness can be negative, the

distribution of trades is highly skewed, so that (i) there is more in

the tails than the normal distribution and (ii) the right tail is longer

so that the mass of the distribution is concentrated on the left part of

the distribution. Thus, in our data set (and other similar data sets)

kurtosis and skewness are always positive. (We report summary sta-

tistics in the Appendix Table A1.) Hence, there is no problem

employing the natural log of kurtosis and skewness in the analysis.

The key independent variable is the incidence of DDoS attacks.

The variable D1 takes on the value one if an attack occurred the pre-

vious day and zero otherwise. In a few cases, a DDoS attack lasted

for more than 1 day. In such a case, we considered two alternatives:

(i) define D1 as the day after the end of the continuous attack and

(ii) define D1 to also include day two and three etc. of the attack as

“days after an attack.” Our results are robust to either of these spec-

ifications. (When we add a dummy variable for the day the attack is

taking place, our results are qualitatively unchanged, i.e., there is

reduced volume the day following the attacks and the coefficients on

the lagged variables are essentially the same.)

Other independent (control) variables include the number of

users on the exchange, the total volume of the exchange, and a time

trend. While the number of unique users (denoted users) and the

transaction volume are co-determined in the system, there is no rea-

son why there should be correlation between these variables and the

error term when the dependent variable is either skewness or kurto-

sis. Hence, there is no bias introduced by including these measures

as explanatory variables. (We also ran regressions without these var-

iables and the results are very similar and extremely robust.) Thus

ordinary least squares (OLS) regressions are appropriate. (Our

results with kurtosis and skewness as the dependent variables are

robust to whether or not we include a time trend.) However, we do

want to control for the possibility that the errors are not identically

and independently distributed. Hence, we run the regressions using

robust standard errors. Our main results come from the following

regression equations:

lnðskewnessÞt ¼ b0 þ b1D1t þ b2D2t þ b3lnðTransactionVolumeÞt
þ b4Userst þ b5Timet þ �t:

(4)
lnðkurtosisÞt ¼ b0 þ b1D1t þ b2D2t þ b3lnðTransactionVolumeÞt

þ b4Userst þ b5Timet þ �t:
(5)

Results

Looking first at the effects of D1 and D2 events on the transaction

volume and large trades on the Mt. Gox, the regression results are

inconclusive. From the regression results in Table 2, the sign of the

estimated coefficient on D1 is negative as we hypothesized, but the

estimates are not significant. This may be because of the endogene-

ity bias discussed above, which would lead to upper-ward biased

estimates. The estimated coefficient on D2 is positive, but again

insignificant. These estimates may also be biased upwards.

(The relatively high values of adjusted R2 are due to the extremely

significant time trend in the data.) For the reasons discussed above,

the endogeneity bias is a severe handicap in identifying what

exactly happens after users realize that a DDoS attack has

occurred.

As noted above our preferred models have kurtosis and skweness

as dependent variables. In Table 3, we report results from the regres-

sions that examine the effect of D1 and D2 events on the Skewness

and Kurtosis of the transaction distribution. We use the natural log-

arithm of both Skewness/Kurtosis, but qualitatively similar results

obtain with levels of these variables.

The results in Table 3 show that a DDoS attack changes both

Skewness and the Kurtosis in the days following the attack. In fact,

we see a significant drop of 56% in the Kurtosis and 28% in the

Skewness following a DDoS attack. The sign of the coefficient esti-

mate associated with D2 is now negative as expected, but it is not

statistically significant in either of the regressions in Table 3. This

suggests that DDoS attacks had more serious effects than other types

of shocks Mt. Gox incurred. (We also ran the regressions with a var-

iable that is the interaction between D1 and time. Our main results

are qualitatively unchanged, namely that following DDoS attacks,

there are fewer large trades. Interestingly, the coefficient on the

interaction term is positive and “borderline significant at the 10 per-

cent level.” This suggests that, over time, large traders became

slightly less sensitive to the attacks.)

The estimated effect of the (natural logarithm of the) daily trans-

action volume is as expected positive and significant in both equa-

tions. This variable is primarily included as a control variable.

Excluding transaction volume has no effect on our main results,

namely that DDoS attacks lead to a significant drop in both Kurtosis

and Skewness.

Table 3. Skewness and kurtosis

(1) (2)

Variables ln(Skewness) ln(Kurtosis)

D1 �0.276** �0.560***

(0.094) (0.184)

D2 �0.0766 �0.160

(0.146) (0.289)

Users �0.000144*** �0.000247***

(1.97e-05) (3.84e-05)

ln(Transaction Volume) 0.327*** 0.640***

(0.0280) (0.0538)

Time �0.000889*** �0.00167***

(0.000113) (0.000214)

Constant �2.358*** �4.192***

(0.435) (0.834)

Observations 924 924

Adjusted R2 0.17 0.20

Standard errors in parentheses. We employ robust Standard errors.

***P < 0.01; **P < 0.05; *P <0.1.
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Robustness analysis
In this section, we want to examine whether the regression results

we reported in Table 3 are robust. Hence four robustness regressions

are shown in Table 4. In the first two regressions, we reestimate

Equations (4) and (5) and include the variable D3, which takes on

the value one for DDoS attacks Mt. Gox acknowledged. In these

regressions, the variable “D1– without– D3” only includes the

attacks not acknowledged by Mt. Gox. Hence, the DDoS attacks are

split between attacks not acknowledged by Mt. Gox (D1 – without

– D3) and attacks acknowledged by Mt. Gox (D3). The regressions

show that attacks not acknowledged by Mt. Gox lead to significant

reductions of skewness (by 37%) and kurtosis (by 74%). Attacks

acknowledged by Mt. Gox lead to reductions of skewness and kur-

tosis, but this effect is not significant. (This may be because there are

a very small number of attacks acknowledged by Mt. Gox.)

In the third and forth regressions in Table 4, we we reestimate

Equations (4) and (5) using the alternative definition for D1, namely

that in the case of a continuous attack, all days except for the first

day of the attack have the variable “D1– alt– withoutD3” equal to

one. Of course, for the day following each attack (D1– alt– without–

D3) takes on the value one. The results in these regressions show

that our findings are robust to this alternative definition as well.

Finally, our results from estimating Equations (4) and (5) are

extremely robust in general. In particular they are robust to the

following:

• Including or excluding a time trend.
• Including or excluding transaction volumes and the number of

users.
• Estimating (4) and (5) in levels and not logarithms.
• All combinations of the above. (For ease of presentation, these

regressions are not shown in the article.)

Discussion

Additional analysis – user activity
Since our main hypothesis is that there is a significant drop in large

trades following an attack, it could worth investigating how the

composition of users change in response to a DoS security shock.

Our Mt. Gox leaked data set gives us a unique opportunity to see

how different users response to an attack, or more precisely a

reported attack. It is reasonable to suspect that not all users are even

aware that an attack has occurred and are not a part of the forum

communities that we have monitored in this research. If this is true,

it would be reasonable to expect different responses for different

subgroups of users. So, a deeper look into patterns of trade by differ-

ent type of users could shed some light on the observed change in

the distribution of transactions. We intend to address this issue in

future work.

Additional analysis – effect on other exchanges
Since Mt. Gox was by far the dominant exchange during this period,

it would be interesting to examine whether DDoS attacks on Mt.

Gox led users to conduct more trades on other exchanges. We will

also address this issue in future work.

Conclusion

In this article, we have conducted the first econometric study meas-

uring the impact of DDoS attacks on Bitcoin currency exchanges.

We gathered evidence of reported DDoS attacks from two popular

Bitcoin discussion forums, finding attacks targeting Mt. Gox on 37

days between April 2011 and November 2013. We also investigated

the impact of 10 additional shocks affecting Mt. Gox during the

period, such as security breaches and unplanned outages. We com-

pared these data sets against transaction data obtained from Mt.

Gox >2.5 years.

We constructed a series of regressions to measure the effect of

shocks on transaction volume. Unfortunately, using the transaction

volume directly as the dependent variable in the regressions is prob-

lematic, due to endogeneity issues and the rising trend in transaction

volume over time. Consequently, we selected skewness and kurtosis

of the daily transaction volume, which does not suffer from the

same problems as measuring transaction volume directly. With these

measures, we find that on days where DDoS attacks or other shocks

Table 4. Robustness analysis

(1) (2) (3) (4)

Variables ln(Skewness) ln(Kurtosis) ln(Skewness) ln(Kurtosis)

D1-without-D3 �0.365*** �0.742***

(0.086) (0.165)

D1-alt-without-D3 �0.241** �0.497**

(0.092) (0.177)

D2 �0.0663 �0.140 �0.0789 �0.165

(0.148) (0.292) (0.146) (0.288)

D3 �0.0535 �0.150 �0.0208 �0.0825

(0.243) (0.453) (0.246) (0.460)

Users �0.000147*** �0.000252*** �0.000145*** �0.000248***

(2.0e-05) (3.9e-05) (2.0e-05) (3.9e-05)

ln(TransactionVolume) 0.328*** 0.644*** 0.327*** 0.641***

(0.0282) (0.0540) (0.0282) (0.0539)

Time �0.000890*** �0.00167*** �0.000885*** �0.00166***

(0.000113) (0.000214) (0.000113) (0.000214)

Constant �2.383*** �4.242*** �2.363*** �4.202***

(0.436) (0.836) (0.436) (0.835)

Observations 924 924 924 924

Adjusted R2 0.17 0.20 0.17 0.20

Standard errors in parentheses. We employ robust Standard errors. ***P < 0.01; **P <0.05; *P < 0.1.
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occur, both the skewness and kurtosis decrease. In other words, the

distribution of daily transaction volume shifts so that fewer

extremely large transactions take place when shocks occur.

In future work, we plan to carry out similar analysis on crypto-

currency exchanges active today, as well as on other Bitcoin services.

Furthermore, the analysis presented here has only measured the

direct impact of DDoS attacks on transaction volume. Our eventual

goal is to measure any effect of active manipulation by profit-

motivated cybercriminals who can leverage the manipulation in

financial markets afforded by these shocks.
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Table A1. Descriptive statistics

(1) (2) (3) (4) (5)

Variables Obs Mean Std. Dev. Min Max

vol_skew 925 19.91137 13.08789 1.925792 104.4759

vol_kurt 925 791.3124 1163.691 6.54137 12386.96

D1 925 .0248649 .1557974 0 1

D2 925 .0108108 .1034674 0 1

users_ds 925 1522.066 1489.602 29 10339

Trans_Vol 925 2.55eþ08 6.76eþ08 318906.5 7.79eþ09

Note that there are 925 observations in the data set, but only 924 in the

regression because we use a “lagged variable.”
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