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ABSTRACT 

 

The Impact of Deciduous Shrub Dominance on Phenology, Carbon Flux, 

and Arthropod Biomass in the Alaskan Arctic Tundra 

Shannan Kathlyn Sweet 

 

Arctic air temperatures have increased at two to three times the global rate over the past 

century. As a result, abiotic and biotic responses to climate change are more rapid and 

pronounced in the Arctic compared to other biomes. One important change detected over the past 

several decades by satellite studies is a lengthening of the arctic growing season, which is due to 

earlier onsets and/or delayed ends to growing seasons. A handful of studies also suggest the peak 

green season (i.e. when the tundra is at maximum leaf-out and maximum carbon uptake 

potential) is starting earlier in the arctic tundra. The vast majority of studies detecting shifts in 

the growing season suggest this is due to increasing spring and fall air temperatures, which lead 

to earlier spring snowmelt and later fall snowfall. Less well understood is how indirect 

consequences of arctic warming, such as ongoing changes in plant community composition, may 

also be contributing to these satellite signals. For instance, there is mounting evidence that 

deciduous shrubs are expanding into previously non-shrub dominated tundra in several parts of 

the Arctic. Deciduous shrubs may alter tundra canopy phenology and contribute to the regional 

shifts in timing of phenological events being detected by satellites.  

Concurrently, in many areas where deciduous shrubs are expanding they are also 

becoming taller. As taller shrubs become increasingly dominant, arctic landscapes may retain 

more snow, which could lengthen spring snow cover duration, and offset advances in the start of 

the growing season that are expected as a result of earlier spring snowmelt. As a consequence, 

deeper snow and later snowmelt in taller shrub tundra could delay plant emergence, and shorten 

the period of annual carbon uptake. Thus greater dominance of taller stature deciduous shrubs in 

the Arctic may actually delay the onset of the growing season, which would suggest that 

increasing deciduous shrub dominance may not be contributing to satellite signals of an earlier 

start to the growing season. To contribute to satellite-detected shifts in the onset of the growing 

and peak seasons, tall deciduous shrubs would need to have accelerated leaf development to 

compensate for deeper snow packs and later spring snowmelt relative to surrounding tundra. 



 

Understanding the drivers of shifts in tundra phenology is important since longer (or shorter) 

growing and peak green seasons would increase (or decrease) productivity and the period of 

carbon uptake, which will have implications for landscape-level carbon exchange, and ultimately 

global carbon balances. 

Given the rate and magnitude of changes occurring in the face of acute arctic warming, 

there is a need to monitor, understand, and predict ecological responses over large spatial and 

temporal scales. However, compared to more southern environments, the arctic tundra is 

characterized by considerable heterogeneity in vegetation distribution, as well as a short and 

rapid growing season. In addition, the arctic tundra is relatively vast and inaccessible. These 

characteristics can make it difficult to monitor and study changes in the Arctic, and make it 

difficult to develop landscape-level models able to predict changes in ecosystem dynamics and 

tundra vegetation. The use of airborne and satellite sensors has at least partially fulfilled these 

needs to monitor, understand, and predict change in the Arctic. The normalized difference 

vegetation index (NDVI) acquired from these sensors, for instance, has become a widely adopted 

tool for detecting and quantifying spatial-temporal dynamics in tundra vegetation cover, 

productivity, and phenology. This suggests that remote sensing technology and vegetation 

indices may be similarly applied to characterizing patterns of primary and secondary consumers 

(e.g. arthropods), which would be enormously useful in a region as vast and remote as the Arctic. 

The research presented in this dissertation provides useful insight into the influence 

vegetation community composition, particularly increasing deciduous shrub dominance, has on 

phenology, carbon flux, and canopy arthropod biomass in the arctic foothills region of the 

Brooks Range, Alaska. Findings in Chapter one suggest that delayed snowmelt in areas 

dominated by taller shrubs may have a short-lived impact on the timing of leaf development, 

likely resulting in no difference in duration of peak photosynthetic period between tall and short-

stature shrubs. Findings in Chapter two suggest that greater deciduous shrub dominance not only 

increases carbon uptake due to higher leaf area relative to surrounding tundra, but may also be 

causing an earlier onset of, and ultimately a net extension of, the period of maximum tundra 

greenness and further increasing peak season carbon sequestration. Findings in Chapter three 

suggest that measurements of the NDVI made from air and spaceborne sensors may be able to 

quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional     

scales in the arctic tundra.       



 i 

Table of Contents 

 

NOMENCLATURE AND ACRONYMS .................................................................................  iv  

LIST OF TABLES ........................................................................................................................ v 

LIST OF FIGURES ....................................................................................................................  vi 

LIST OF EQUATIONS ............................................................................................................  viii 

ACKNOWLEDGEMENTS .......................................................................................................  ix 

 

INTRODUCTION......................................................................................................................... 1

          

CHAPTER ONE: Tall Deciduous Shrubs Offset Delayed Start of Growing Season  

Through Rapid Leaf Development in the Alaskan Arctic Tundra ..................................... 14 

1.1  Introduction ...................................................................................................................... 15                         

1.2  Methods............................................................................................................................ 17 

1.2.1  Study Sites and Study Areas ...................................................................................... 17 

1.2.2  Snow Depth and Melt ................................................................................................ 21 

1.2.3  Timing of Leaf Development..................................................................................... 21 

1.2.4  Leaf Nutrient Content ................................................................................................ 22 

1.2.5  Statistical Analysis ..................................................................................................... 23 

1.3  Results .............................................................................................................................. 23 

1.3.1  Snow Depth and Melt ................................................................................................ 23 

1.3.2  Timing of Leaf Development..................................................................................... 25 

1.3.3  Leaf Nutrient Content ................................................................................................ 29 

1.4  Discussion ........................................................................................................................ 33 

 

CHAPTER TWO: Greater Deciduous Shrub Abundance Extends Tundra Peak Season  

and Increases Modeled Net CO2 Uptake ............................................................................... 36 

2.1  Introduction ...................................................................................................................... 37 

2.2  Methods............................................................................................................................ 39 

2.2.1  Study Sites ................................................................................................................. 39 

2.2.2  Percent Vegetation Cover .......................................................................................... 41  



 ii 

2.2.3  Canopy Phenology ..................................................................................................... 42 

2.2.3.1  Spectral Reflectance Measurements and Calculation of NDVI ........................ 42 

2.2.3.2  Determination of Phenological Metrics ............................................................ 44 

2.2.4  Leaf Area Index Model .............................................................................................. 47  

2.2.5  Net Ecosystem Exchange Model ............................................................................... 49 

2.2.6  Model Sensitivity Analysis ........................................................................................ 51 

2.2.7  Statistical Analysis ..................................................................................................... 52 

2.3  Results .............................................................................................................................. 53 

2.3.1  Canopy Phenology ..................................................................................................... 53 

2.3.2  Leaf Area Index Model .............................................................................................. 57 

2.3.3  Net Ecosystem Exchange Model ............................................................................... 57 

2.3.4  Model Sensitivity Analysis ........................................................................................ 59 

2.4  Discussion ........................................................................................................................ 61 

2.4.1  Deciduous Shrubs Lengthen the Period of Peak Canopy Greenness ......................... 61 

2.4.2  Deciduous Shrubs Lengthen the Period of Maximum Carbon Uptake ...................... 62 

2.4.3  Modeling Tundra Carbon Exchange .......................................................................... 63 

 

CHAPTER THREE: NDVI as a Predictor of Canopy Arthropod Biomass in the       

Alaskan Arctic Tundra ............................................................................................................ 65 

3.1  Introduction ...................................................................................................................... 66 

3.2  Methods............................................................................................................................ 68 

3.2.1  Study Sites and Observational Setup ......................................................................... 68 

3.2.2  Spectral Reflectance and NDVI ................................................................................. 70 

3.2.3  Sweep Net Sampling and Canopy Arthropod Biomass ............................................. 71 

3.2.4  Data Analysis ............................................................................................................. 72 

3.3  Results .............................................................................................................................. 73 

3.3.1  Seasonal Patterns of NDVI and Arthropod Biomass ................................................. 73 

3.3.2  NDVI-Arthropod Biomass Relationships .................................................................. 75 

3.3.3  Arthropod Biomass Models ....................................................................................... 76 

3.4  Discussion ........................................................................................................................ 76 

 



 iii 

CONCLUSIONS ......................................................................................................................... 80 

Catch-up in Leaf Development Minimizes Effect of Later Snowmelt ................................... 80 

Deciduous Shrubs Lengthen Peak Season and Increase Carbon Uptake ................................ 81 

Potential to Estimate Arthropod Biomass from Air and Spaceborne Sensors ........................ 82 

 

REFERENCES ............................................................................................................................ 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

NOMENCLATURE AND ACRONYMS 

 

α  empirical model parameter 

ß  empirical model parameter 

C  carbon 

CO2  carbon dioxide 

df  degrees of freedom 

DOY  day of year 

DS  deciduous shrub 

DST  dwarf/deciduous shrub tundra 

E0 initial slope of light response 

curve; ‘quantum yield’ (mol 

CO2 fixed mol-1 photons 

absorbed) 

EG  evergreen/graminoid 

EST  erect shrub tundra 

F  F-ratio 

FLB  first leaf bud 

FLE  first leaf expanded 

FLO  first leaf opening 

FLV  first leaf visible 

g  gram 

GPP gross primary production 

(mol CO2 m
-2 s-1) 

I irradiance (W m-2, mol PAR 

m-2 ground s-1) 

k Beer’s law extinction 

coefficient (m-2 ground m-2 

leaf)  

LAI leaf area index (m2 leaf m-2 

ground) 

m  meter 

mg  milligram 

MTT  moist tussock tundra 

NEE  net ecosystem exchange 

  (mol CO2 m
-2 s-1) 

NDVI normalized difference 

vegetation index 

nm  nanometer 

NPP  net primary production 

P  P-value 

PAR photosynthetically active 

radiation (mol m-2  s-1) 

PmaxL light saturated photosynthetic 

rate (mol m-2 leaf s-1) 

RE total (autotrophic + 

heterotrophic) respiration 

(mol CO2 m
-2 s-1 ) 

R0 basal respiration rate (mol 

CO2 m
-2 leaf s-1) 

RX  soil respiration (mol CO2 

m-2 ground s-1) 

RST  riparian shrub tundra 

s  second 

SEM  standard error of the mean 

T  air temperature (°C) 

µmol  micromole 



 v 

LIST OF TABLES 

Table 1.1  Topographic elevation of three study sites .................................................................. 20 

Table 1.2  Snow-free dates for Betula nana and Salix Pulchra in graminoid- and deciduous 

shrub-dominated tundra ............................................................................................................. 25 

Table 1.3  Statistical output of comparisons between graminoid- and deciduous shrub-dominated 

tundra of leaf development for Betula nana and Salix pulchra ................................................. 29 

Table 1.4  Statistical output of comparisons between graminoid- and deciduous shrub-dominated 

tundra of leaf nitrogen in developing leaves of Betula nana and Salix pulchra ........................ 32  

 

Table 2.1  Parameters used in leaf area index model  ................................................................... 49 

Table 2.2  Comparisons of graminoid/evergreen- and deciduous shrub-dominated canopies 

phenology dates, green-up rates, and season lengths from two modeling methods  ................. 55  

Table 2.3  Comparisons of graminoid/evergreen- and deciduous shrub-dominated canopies green 

and peak season total net ecosystem exchange  ......................................................................... 58 

Table 2.4  Comparisons of canopy green and peak season total net ecosystem exchange under 

varying season lengths ............................................................................................................... 59  

 

Table 3.1  Descriptions of vegetation communities at four study sites ........................................ 70 

Table 3.2  Model parameters and errors of prediction for normalized difference vegetation index-

arthropod biomass models ......................................................................................................... 73  

 

 

 

 

 

 

 

 

 

 

 



 vi 

LIST OF FIGURES 

Figure 1  Global and Arctic air temperature since 1880 ................................................................. 1 

Figure 2  Arctic peak season greening and summer warming ........................................................ 2 

Figure 3  Location of two transect in Arctic Alaska ....................................................................... 3 

Figure 4  Vegetation cover along two transects in Arctic Alaska................................................... 3 

Figure 5  Trends in peak NDVI in along two transects Arctic Alaska ........................................... 4 

Figure 6  Photographic evidence of shrub expansion in the Alaskan Arctic .................................. 4 

Figure 7  Climatic feedback loops in the Alaskan Arctic ............................................................... 5 

Figure 8  Photographic evidence of shrub impact on snow depth in the Arctic ............................. 6 

Figure 9  Arctic tundra snow-shrub-soil-microbe feedback loop ....................................................6 

Figure 10  Potential feedbacks from increasing shrub dominance to ecosystem processes ........... 7 

Figure 11  Potential feedbacks from increasing shrub dominance to vegetation communities ...... 8 

Figure 12  Shifts in vegetation dominance under climate change scenarios .................................. 9 

Figure 13  Changes in snow-cover duration in the Arctic  ........................................................... 11 

Figure 14  Changes in start, end, and length of growing seasons in the Arctic ............................ 11 

Figure 15  Changes in peak green season in the Arctic ................................................................ 12 

 

Figure 1.1  Location of three study sites on North Slope of Brooks Range, Alaska .................... 18 

Figure 1.2  Air temperature in 2011 and 2012 at three study sites ............................................... 19 

Figure 1.3  Images of study sites and study areas -- graminoid-dominated and deciduous shrub-

dominated tundra ....................................................................................................................... 20 

Figure 1.4  Images of leaf development stages monitored for Betula nana and Salix pulchra .... 22 

Figure 1.5  Snow depth in graminoid- and deciduous shrub-dominated tundra ........................... 24 

Figure 1.6  Timing of leaf development stages for Betula nana .................................................. 26 

Figure 1.7  Timing of leaf development stages for Salix pulchra ................................................ 28 

Figure 1.8  Relationships between snow-free dates and two leaf development stages of Betula 

nana and Salix pulchra .............................................................................................................. 30 

Figure 1.9  Nitrogen in buds and developing leaves of Betula nana and Salix pulchra ............... 31 

 

Figure 2.1  Location of two study sites on North Slope of Brooks Range, Alaska ...................... 40 



 vii 

Figure 2.2  Growing season daily air temperature and photosynthetically active radiation at two 

study sites ................................................................................................................................... 40 

Figure 2.3  Percent vegetation cover in graminoid/evergreen- and deciduous shrub-dominated 

tundra ......................................................................................................................................... 41 

Figure 2.4  Example of equipment assemblages used in study..................................................... 42 

Figure 2.5  Relationship between the normalized difference vegetation index derived from high 

and low spectral resolution sensors ............................................................................................ 45 

Figure 2.6  Quadrat-level piecewise linear regression and threshold analysis modeling canopy 

phenology ................................................................................................................................... 48 

Figure 2.7  Seasonal canopy phenology of graminoid/evergreen- and deciduous shrub-dominated 

canopies from two phenology modeling methods ..................................................................... 54 

Figure 2.8  Relationship between percent deciduous shrub cover and canopy phenology metrics 

and seasonal net ecosystem exchange ........................................................................................ 56 

Figure 2.9  Seasonal leaf area, respiration, gross primary production, and net ecosystem 

exchange of graminoid/evergreen- and deciduous shrub-dominated canopies ......................... 58 

Figure 2.10  Sensitivity of peak season net ecosystem exchange to changes in NEE model 

parameters .................................................................................................................................. 60 

 

Figure 3.1  Location of four study sites on North Slope of Brooks Range, Alaska ..................... 68 

Figure 3.2  Seasonal normalized difference vegetation index and canopy arthropod biomass in 

four vegetation communities from 2010-2013 .......................................................................... 74 

Figure 3.3  Relationships between the normalized difference vegetation index and measured 

arthropod biomass in four vegetation communities ................................................................... 77 

Figure 3.4 Relationships between measured and model-predicted arthropod biomass in four 

vegetation communities ............................................................................................................. 77 

 

 

 

 

 

 



 viii 

LIST OF EQUATIONS 

Equation 2.1   Photosynthetically active radiation (PAR) reflectance.......................................... 43 

Equation 2.2   Optical infrared radiation (OIR) reflectance ......................................................... 43 

Equation 2.3   Broadband normalized difference vegetation index (NDVIbroadband) ..................... 43 

Equation 2.4   Narrowband normalized difference vegetation index (NDVIspectroradiometer) .......... 44 

Equation 2.5   Linear relationship between NDVIbroadband and NDVIspectroradiometer ....................... 44 

Equation 2.6   Normalized difference vegetation index ratio (NDVIratio) ..................................... 46 

Equation 2.7   Leaf area index model ........................................................................................... 47 

Equation 2.8   Net ecosystem exchange model............................................................................. 50 

Equation 2.9   Respiration model .................................................................................................. 50 

Equation 2.10 Gross primary production model ........................................................................... 50 

 

Equation 3.1   Normalized difference vegetation index (NDVI) .................................................. 71 

Equation 3.2   Arthropod biomass model ..................................................................................... 73 

 

 

 

 

 

 

 

 

 

 

 



 ix 

ACKNOWLEDGEMENTS 

First and foremost I want to thank my advisor Natalie Boelman, to whom I am eternally 

grateful. It has been an honor to be her first Ph.D. student. Without Natalie I would never have 

had the opportunity to attend Columbia University, to work in the arctic tundra, nor would I be 

writing this dissertation. I appreciate her contributions of time, ideas, and funding to make my 

experience productive and stimulating. She taught me how good scientific research is done, and 

how to present ideas coherently and concisely. Natalie has been more than just an academic 

advisor; she has been a mentor and a confidant, which was especially important during rough 

times in the Ph.D. pursuit. I am grateful for the countless hours she dedicated to guiding me 

through the sometimes dizzying realm of graduate school, and for flawlessly and seamlessly 

keeping me on track through thick and thin. Thank you Natalie! 

Laura Gough has also been an integral part of my endeavors. Her statistical expertise and 

knowledge of the arctic tundra have been invaluable. I am indebted to Laura for her continued 

patience and help in writing my dissertation, as well as for her practical and wise advice, which 

helped me maintain a healthy work-life balance. Both Natalie and Laura have shown me that it is 

possible to simultaneously be a mother, a teacher, a mentor, a wife, a research scientist, a grant 

writer extraordinaire, a friend and more. I am thankful for the amazing examples they have been 

of successful women researching and teaching in science. The dedication and drive Natalie and 

Laura have for their research is inspirational and motivational. 

Kevin Griffin has also contributed immensely to my professional and personal time at 

Columbia, both practically and theoretically. His wealth of knowledge and lab space have been 

invaluable assets, and I truly appreciate all of the time and ideas he has given me over the years. 

Kevin’s unbridled enthusiasm for the world of plants and ecophysiology is inspirational to say 

the least. I am thankful for having had such a great mentor who was able to teach me without me 

even knowing I was being taught, and who has shown me the meaning of the term ‘humble 

genius’.  

John Rowden has been yet another source of inspiration for me in graduate school. His 

Ornithology class was one of the first courses I took at and from the moment I stepped into his 

classroom I was enthralled by how excited someone could be about what they do for a living. 

John’s sincere zeal and zest made me realize a career can be more than just making a living; it 

can be a passion and a love. I am grateful to John for never hesitating to take time out of his busy 



 x 

schedule to offer guidance and advice. I would also like to thank Natalie, Kevin and John for 

being such supportive and helpful committee members. And I thank the other two members of 

my oral defense committee, Chris Small and Arnold Gordon, for their time and insightful 

questions and comments. It has been a privilege to work with such talented people who helped 

exponentially expand my intellectual horizons. 

This dissertation would not have been possible without the collaborative effort of Team 

Bird. We had some incredible experiences and accomplished so much, and I cannot thank 

everyone enough for all the help in the field and beyond. Working in the vast and remote arctic 

tundra can take a toll on a person, and I am grateful to the other graduate students on Team Bird 

whom I worked with closely. Thank you Jesse Krause for sticking out the entire five years and 

teaching me the relaxation of gold panning. Thank you Ashley Asmus for showing me that even 

when experiments flop it’s possible to move on with a smile. Thank you Jonathan Perez for 

never hesitating to help even in treacherous arctic conditions. And thank you Helen Chmura for 

inspiring me with your dedication, motivation, and enthusiasm. Thank you all for helping to keep 

me in one piece, mentally and physically, and for making blizzards in July and grizzly bears on 

our plots seem like reasonably ordinary events! 

I am also grateful for the amazing undergraduate research assistants I worked alongside.  

We had a lot of fun and got everything done, and I truly appreciate your dedication. Thank you 

Adam Formica for your boundless energy and musical serenades. Thank you Jess Gersony for 

your very special friendship, scarily positive attitude and incredible dedication. And thank you 

Marley Tran for your invaluable help and for stepping (and excelling) way outside your comfort 

zone. I was incredibly lucky to work with such brilliant, quick-witted and all around great 

individuals and would never have made it through without your help, so thank you! 

Thank you also to John Wingfield for always finding the time he didn’t actually have to 

lend an ear and give advice. And thanks to the numerous people in John’s lab group who never 

hesitated to lend a helping hand, including Kathleen Hunt, Simone Meddle, Karen Lizars, Jake 

Schas, Michaela McGuigan, Lisa Quach, and Shae Bowman. Searching the tundra for nests in 

vain would not have been the same without all of you!  

Thanks also to Team Laser, including Lee Vierling, Jan Eitel, Heather Greaves and Troy 

Magney. Aside from being incredibly supportive and collaborative researchers, Team Laser 



 xi 

proved to be very impressive arctic soccer players! And thanks also to Heather for stepping in for 

me in 2010 (I owe you). 

Thank you to everyone from Laura Gough’s lab group who worked with us in Alaska 

over the years, including Jennie McLaren, Matt Rich, Kat Daly, Leslie Baker and Rachel Smith. 

You were all incredibly helpful and I’ll never forget all the wonderful hours of bug sorting and 

plant identifying! Thank you to also to the multitudes of people (too many to name) who helped 

sort sweep net samples over the years, without which the arthropod biomass model in Chapter 

three would not have ben possible.  

I am also grateful to the members of the Griffin/Boelman Lab group, including Mary 

Heskel and Jen Levy, who have been a source of friendship, advice, and collaboration over the 

years. I am forever indebted to Angie Patterson who stuck it out with me in grad school and was 

an incredibly patient teacher when it came to using the finicky CHN Analyzer! Thank you Case 

Prager for your thoughtfully intelligent feedback and tundra fun. And thank you Ruth Oliver for 

prooving that it’s possible to excel far out of one’s comfort zone.  

 Thank you to the entire Toolik Field Station community and Thom Walker and Chad 

Diesinger for making the Arctic a comfortable and fun home. Thank you also to Thom for 

rescuing us from the driveway during the whiteout of 2013! I’m also incredibly grateful to Jeb 

and Molly Timm for their science support and friendship at Toolik and beyond.  

I also really appreciate the numerous researchers and scientists at Toolik for helpful 

discussions and insights, and for allowing me to utilize their space, time, and equipment; notably 

Gus Shaver, Syndonia Bret-Harte, Jim Laundre and Adrian Rocha. Also thanks to Syndonia for 

letting me use her snow fence experiment in 2012, and thank you Gus for the wonderfully 

helpful advice during the writing of Chapter two. I also thank Heidi Steltzer, Geneva Chong and 

Rick Shory. Without their inventive equipment, funding, logistical support, and code writing 

abilities, the carbon flux study in Chapter two would not have been possible. I appreciate 

everyone’s collaboration and support. 

 I would like to thank the Department of Earth and Environmental Science and the 

Lamont-Doherty Earth Observatory at Columbia University for the opportunity to pursue a Ph.D. 

and for all of the financial, educational and other generous support offered during my time here. I 

also thank the Institute of Arctic Biology and Toolik Field Station (University of Alaska, 



 xii 

Fairbanks) and the Arctic Long-Term Experimental Research station (ARC LTER) for support 

and logistics while working in the Arctic. 

I gratefully acknowledge the funding sources that have supported my Ph.D. work: the 

National Science Foundation (Office of Polar Programs); the James D. Hays Graduate Student 

Research Award (Earth and Environmental Science, Columbia University); the Climate Center 

(Earth Institute, Columbia University); and the Arctic Long-Term Ecological Research project 

(MBL, Woods Hole).  

Finally, I would like to thank all of my friends and family for love, support and 

encouragement. Thank you especially to my brothers, Zac Rood and Josh Sweet, and sister-in-

laws, Jasmine Peters and Kelly Sweet, for believing in me and not letting me lose my way! You 

truly helped me maintain lucidity and stay the course. Most of all I thank my parents, Mary Ruth 

Sweet-Rood and Marvin Rood, who raised me to believe in unthinkable things and pursue 

grandiose dreams. My parents have been more inspirational and motivational than they will ever 

know, possibly more than I will ever know. Besides the obvious fact that without them there 

would be no me, there is the less obvious fact that everything I have done and accomplished 

could (and should) be attributed to my parents. I am eternally grateful for the love of science, 

common sense, independence, patience, determination, and hardworking grit they instilled in me. 

Thank you! Thank you! Thank you mom and dad!  

 

Shannan Kathlyn Sweet 

May 2015 

 

 



 1 

INTRODUCTION 

 

Earth’s surface temperatures have increased by about 0.72C since 1950, primarily as a 

result of industrialization and anthropogenic greenhouse gas emissions (e.g. carbon dioxide, 

methane, and nitrous oxide) (IPCC 2013). Chlorofluorocarbons and other industrial heat 

retaining chemicals as well as agriculture and deforestation further promote climate change 

(IPCC 2013). According to IPCC (2013) model predictions, the planet could warm an additional 

1 to 4C by the end of the century.  

Arctic air temperatures have been increasing at two to three times the global rate (~ 2C) 

over the same time period (ACIA 2004, McBean et al. 2006), resulting in a particularly strong 

warming trend in arctic environments (Chapin et al. 2005, Serreze & Francis 2006) (Figure 1). 

Summer temperatures in Arctic Alaska, for instance, increased by about 1.5°C from 1961 to 

2004 (Chapin et al. 2005). According to ACIA (2004), the Arctic could warm an additional 4 to 

7C by the end of the century. 

 

 

Figure 1. From Shindell & Faluvegi (2009) Figure 2: Area-weighted mean observed surface temperatures over the 
indicated latitude bands. The values are nine-year running means relative to the 1880–1890 mean. Correlations (R2) 
with the global mean over 1931–2007 by region are: 0.94 tropics, 0.61 SHext, 0.86 NHml and 0.53 Arctic. 

 

Such drastic increases in temperature could have significant implications for abiotic and 

biotic components of the arctic ecosystem, especially since life in this region has adapted to 
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extreme environments (Coulson et al. 1992, Hodkinson et al. 1998), and plant and insect 

communities have evolved to survive low temperatures, long winters, late springs, and short 

summers (Danks 2004, Wingfield et al. 2004).  

Biotic responses to these upward temperature trends in the arctic tundra have already 

become apparent (Walther et al. 2002, Callaghan et al. 2004, McBean et al. 2006, ACIA 2004, 

AMAP 2012). One response is the expansion of deciduous shrubs (Hinzman et al. 2005, Walker 

et al. 2006). Over the last several decades, remote sensing data and satellite imagery have 

detected a ‘greening’ of the arctic tundra (Stow et al. 2004, Bunn et al. 2007, Verbyla 2008, Jia 

et al. 2009), as measured by changes in the normalized difference vegetation index (NDVI) 

(Figure 2). This ‘greening’ has been attributed to the expansion of deciduous shrubs (primarily 

birch, willow, and alder) into non-shrub tundra (typically dominated by evergreens, graminoids, 

 

 

 
 

Figure 2. From Jia et al. 

(2003) Figure 2: Time series 

of (a) peak NDVI derived 

from 8-km resolution 

AVHRR data from 1981 to 

2001 and (b) Summer 

Warmth Index (SWI) over the 

past 22-50 years among 

bioclimatic subzones. Dashed 

lines are linear regressions. 

The shaded area highlights 

the period of SWI covered by 

NDVI data 
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and cryptogams) (Jia et al. 2003, Olthof et al. 2008, Forbes et al. 2010, Fraser et al. 2011) 

(Figures 3, 4, & 5). Expansion of deciduous shrub tundra into non-shrub tundra is also evident in 

comparative photo interpretation (Sturm et al. 2001b, Tape et al. 2006) (Figure 6) and has been 

quantified in field surveys (Sturm et al. 2001a, Hinzman et al. 2005, Hallinger et al. 2010). 

 
 

 
 

 

 

 

 
Figure 4. (NOTE: in combination with Figures 3 & 5). From Jia et al. (2006) Figure 2: Fractional covers of 
tundra vegetation along the latitudinal gradients for each transect (Figure 3). The fractional 
covers were summarized for 0.1° latitude intervals over a vegetation map of the (a) Western Transect and (b) 
Eastern Transect. [MNT, moist nonacidic tundra; MAT moist acidic tundra]. 

Figure 3. (NOTE: in combination 

with Figures 4 & 5). From Jia et al. 

(2006) Figure 1: Location of the 

study sites with respect to bioclimate 

subzones and vegetation transects. 

The dotted lines show the 

boundaries of bioclimate subzones, 

C, prostrate dwarf shrub subzone 

(north), D, erect dwarf shrub 

subzone (middle), and E, low shrub 

subzone (south). The solid polygons 

are the boundaries of transects used 

in our study. Black points represent 

the study sites.  
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Figure 5. (NOTE: in combination with Figures 3 & 4). From Jia et al. (2006) Figure 3: Spatial patterns of decadal 
mean Peak‐ NDVI shown as images and summarized for 0.1° latitude intervals along latitudinal gradients for each 
transect (Figure 3). 
 
 

Figure 6. From Tape et al. (2006) 

Figure 5:  Shrub expansion along the 

Oolamnagavik River located at 68°N 

52.00′, 154°W 08.36′: 8/11/1948 and 

7/27/2002. 
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Because deciduous shrubs are predicted to continue to expand their range and grow larger 

(Bret-Harte et al. 2001, Wookey et al. 2009, Myers-Smith et al. 2011, Pearson et al. 2013), 

numerous studies have examined the impact increasing shrub cover has in terms of changing 

plant community composition and potential positive feedback mechanisms that might facilitate 

shrub encroachment (Chapin et al. 1995, Wahren et al. 2005, Wookey et al. 2009, Hinzman et al. 

2005, Jia et al. 2003, Tape et al. 2006). For instance, spread of shrubs into regions of tundra now 

occupied primarily by graminoids and cryptogams has been shown to reduce albedo (Sturm et al. 

2005a, Chapin et al. 2005). This reduction in arctic albedo is most pronounced in winter and 

early spring when woody stems emerge through the snow and reduce the high albedo of pure 

white snow (Sturm et al. 2005a). Reduced albedo will further enhance warming temperature 

trends, which will likely lead to continued shrub expansion (Hinzman et al. 2005, Sturm et al. 

2005a, Chapin et al. 2005, Wookey et al. 2009) (Figure 7). 

 

 

Figure 7. From Chapin et al. (2005) Figure 2: Diagram of feedback loops that couple climatic processes in arctic 
Alaska. Arrows linking processes indicate a positive effect of one process on another unless otherwise indicated (by 
minus signs). 
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Also, shrubs more efficiently trap snow, creating deeper drifts in shrubby tundra (Sturm 

et al. 2001a, Sturm et al. 2005b) (Figure 8), which leads to increased soil temperatures during 

winter and early spring (Schimel et al. 2004, Wahren et al. 2005, Wookey et al. 2009). Research 

has shown that higher soil temperatures under this deep, insulating blanket of snow leads to  

increased microbial activity, which leads to increased nutrient mineralization (Sturm et al. 2005b, 

Wookey et al. 2009, Wahren et al. 2005). Not only are these nutrients being released directly 

under shrubs, but also deciduous shrubs are generally more efficient than many other arctic 

plants at taking up nitrogen and other nutrients, giving them an advantage in the nutrient limited 

tundra (Chapin et al. 1995, Bret-Harte et al. 2001, Tape et al. 2006, Wookey et al. 2009). Shrubs 

are essentially playing a key role in the positive feedback loop of their own expansion:  shrubs 

encroach and grow larger, effectively trapping more snow, which increases winter and 

spring soil nutrient mineralization, further promoting shrub expansion (Sturm et al. 2001a, Sturm 

et al. 2005b, Wahren et al. 2005) (Figure 9).  

Increasing deciduous shrub cover may further influence the arctic ecosystem in a number 

of unpredictable ways (Figure 10). For instance, if height and density of arctic tundra shrubs 

continue to increase as predicted (Myers-Smith et al. 2011), overall canopy height would 

increase, increasing shading, and reducing shade-intolerant cryptogams (Walker et al. 2006, 

Cornelissen et al. 2001) (Figure 11).  

 
 
 

 
 
 
 
 

 

Figure 8. (a) From Sturm et al. (2005b) Figure 5: A shrub 

patch that has created a snowdrift in and downwind of the 

patch. The snow on the tundra behind the patch was about 

one-fifth as deep as the drift. Photograph: Matthew Sturm.  

Figure 9. From Sturm et al. (2005b) 

Figure 9: The snow-shrub-soil-microbe 

feedback loop. 
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Figure 10. From Myer-Smith et al. (2011) Figure 3: Potential feedbacks from increased density and cover of shrubs 
to ecosystems processes and properties. Red arrows indicate positive relationships, and blue arrows indicate 
negative relationships between the two connecting factors, gray arrows indicate as yet undetermined influences. 
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Figure 11. From Wookey et al. (2009) Figure 2: Ecosystem cascades and feedbacks resulting in an increase in 
deciduous shrubs and a decline in graminoids and cryptogams in response to increasing warmth and duration of the 
growing season in Arctic tundra. Note that stronger responses to climate drivers among deciduous shrub species 
(denoted by the thicker line from ‘Global Change Drivers’ to shrubs than to graminoids and cryptogams) result in a 
positive feedback between increasing height and leaf area index (LAI) and increased trapping of snow. Changes in 
the depth, duration, and properties of snow pack can have positive or negative impacts on nitrogen (N) availability 
through altering soil thermal and moisture regime. Increased height and LAI of shrubs will likely have a negative 
impact on graminoids and cryptogams through shading effects. Furthermore, increased prevalence of species with 
ectomycorrhizas (ECM) or ericoid mycorrhizas (ERC) will likely decrease nutrient availability to other species, with 
further negative consequences. Increases in the proportion of low N, but high lignin, woody litter (leaf and stem 
litter of woody species associated with increasing shrub dominance) will also tend to reduce N availability. 
 
 

 
For instance, a long-term manipulative experiment done by Chapin et al. (1995) in the 

Alaskan arctic tundra showed that with increased temperature and nutrients (a likely climate 

change scenario) deciduous shrubs became dominant (e.g. became larger and denser), while the 

biomass of graminoids, evergreens, and cryptogams declined (Figure 12). Deciduous shrubs 

outcompeted other species via more efficient nutrient utilization, increased shading of understory, 

and increased smothering of understory through increased litter (Chapin et al. 1995). After nine 

years, Chapin et al. (1995) found a 30-40% decline in species richness, where Betula nana 

(dwarf birch) became the most dominant species, and entire functional groups, such as mosses, 

lichens, and forbs, were essentially eliminated, and other typically dominant non-shrub tundra 

species, such as Eriophorum spp. (cottongrass), declined sharply (Chapin et al. 1995). Not only 
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did deciduous shrubs respond most positively to increases in temperature and nutrient 

availability, but evergreen shrub species’ growth was actually inhibited by these environmental 

changes (Chapin et al. 1995). 

 

 

 
 

Figure 12. From Chapin et al. (1995) Figure 2: Total peak-season biomass (excluding roots) of tussock-tundra 
vegetation by growth form in response to environmental manipulations measured 3 and 9 yr after initiation of 
treatments. Data are means and SE, n =4 blocks, 5 quadrats per plot. Treatments are control (C), nutrient (N), 
temperature (T), nutrient-temperature (NT), and light attenuation (L). 
 

 

Wahren et al. (2005) found similar results in their manipulative experiments in the 

Alaskan arctic tundra. In this study, sites were subjected to snow addition and summer warming 

to mimic potential climate change scenarios in the arctic tundra. They found altered snow and 

temperature dynamics led to increased mean canopy height of deciduous shrub species and a 

decrease in evergreen canopy height (Wahren et al. 2005). As with other studies (e.g. 

Cornelissen et al. 2001, Chapin et al. 1995), increased shading resulted in a dramatic decline of 

cryptogams (Wahren et al. 2005). Similar to what Chapin et al. (1995) found, Wahren et al. 

(2005) found that increased deciduous shrub dominance decreased species evenness and changed 

the plant community dynamics, with fewer species producing a larger proportion of cover.  

Changes in plant community composition, biomass, production, and species evenness 

that occurs with increasing deciduous shrub dominance (Chapin et al. 1995, Cornelissen et al. 
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2001, Wahren et al. 2005) may impact arctic herbivores, and have cascading consequences for 

higher trophic levels. It has already been found that increased deciduous shrub cover negatively 

effects caribou (Joly et al. 2007, Gilg et al. 2009) through reduced availability of important food 

resources (Person 1975, White & Trudell 1980, Ferguson et al. 2001, Storeheier et al. 2002, Joly 

et al. 2009) and increasing snow depth that inhibits their mobility and access to forage 

(Adamczewski et al. 1987, Collins & Smith 1991). Research also suggests that changes in plant 

community composition and structure will likely lead to changes in arctic arthropod diversity 

(Muff et al. 2009, Bowden & Buddle 2010,) and abundance (Haddad et al. 2001, Richardson et 

al. 2002, Rich et al. 2013). Further, the reduction of specific plant species (e.g. Carex, 

Eriophorum, and Pedicularis spp.) that characteristically occurs with increases in deciduous 

shrub cover (Chapin et al. 1995) could decrease the success of small mammals such as lemmings 

(Batzli 1993, Oksanen et al. 2008), arctic ground squirrels (Batzli & Sobaski 1980, Karels et al. 

2000), and voles (Galindo & Krebs 1985, Batzli & Lesieutre 1991). In turn, changes in herbivore 

communities may have unforeseen and potentially far-reaching implications for tundra 

carnivores (Finke & Denno 2006, Post et al. 2009, Usher et al. 2010), such as arctic fox 

(Angerbjörn et al. 1999), wolves (Dale et al. 1994), and snowy owls (Boxall & Lein 1982). 

The strong warming trend in many arctic tundra regions has also been correlated with 

earlier spring snowmelt and later fall snow accumulation (Stow et al. 2004, Foster et al. 2008, 

AMAP 2012) (Figure 13). Satellite data since the 1960s, for example, has revealed a 10% 

decrease in snow cover as well as lengthening of freeze-free periods in high-latitude regions 

(Walther et al. 2002). As a result, many regions have experienced an earlier start and/or a later 

end to the growing season, and a lengthening of the overall growing season (Tucker et al. 2001, 

Zhou et al. 2001, Jia et al. 2004, Jeong et al. 2011, Zeng et al. 2011, Barichivich et al. 2013) 

(Figure 14). Some studies suggest an increase in growing season length of approximately 12 to 

14 days per decade in North American high latitudes (Myneni et al. 1997, Zeng et al. 2011), and 

approximately 6 to 7 days per decade in northern Eurasia (Zhou et al. 2001, Jeong et al. 2011, 

Zeng et al. 2011). Research also suggests that some arctic regions are experiencing shifts toward 

an earlier peak green season (Goetz et al. 2005, Tagesson et al. 2012), resulting in an earlier, and 

potentially longer, period of maximum tundra greenness, but not necessarily a longer overall 

growing season (Jia et al. 2009) (Figure 15).  
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Figure 13. From AMAP (2012) Change in snow-cover cover duration for autumn (snow-cover onset period) and 
spring (snow-cover melt period) between 1973/72 and 2008/09.  
 
 
 

        
  

 

 

 

 

Figure 14. From Zeng et al. (2011) 

Figure 2: Spatial patterns of the linear trends in 

the start of season (SOS), end of season (EOS) 

and length of season (LOS) from 2000 to 2010 

based on MODIS data. Positive values (warm 

colors) indicate later onset (SOS), later finish 

(EOS) and longer duration (LOS) of the 

growing season. 
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Because the arctic growing season begins in spring with increases in temperature and 

light, snowmelt, soil thaw, and the onset of photosynthesis, and ends in fall with decreases in 

temperatures and light, snowfall, soil refreezing, and the cessation of photosynthesis (Euskirchen 

et al. 2006), shifts in the onset and end of the growing season could have unforeseen 

consequences for arctic ecosystems and carbon (C) balances. Longer growing seasons, for 

example, could reduce the rate of atmospheric CO2 accumulation in arctic regions (McDonald et 

al. 2004, Barichivich et al. 2013, Graven et al. 2013). Additionally, important factors in the 

terrestrial C budget, such as net ecosystem production (NEP) and gross primary production 

(GPP) and are closely linked with growing season length (Piao et al. 2007). For instance, an 

advance in start of the growing season in the Northern Hemisphere could increase spring NEP by 

2-4 g C m-2 day-1 (Richardson et al. 2009), and increase annual GPP by 5.8 g C m-2 yr-1 (Piao et 

al. 2007). Further, because the arctic growing season is notoriously short, starting the growing 

season only a few days earlier could significantly enhance the carbon sink potential of the arctic 

 

 

Figure 15. From Jia et al. (2009) Figure 6: Seasonal 
changes of vegetation greenness for each arctic 
bioclimate subzone. Dashed lines represent average 
values for the period of 1982–1992, while solid lines 
are average values for the period of 1993–2003. The 
x-axis is in bimonthly interval, e.g. 5a and 9b 
represent first half of May and second half of 
September, respectively. Vertical lines indicate the 
dates of peak NDVI. (a) Subzone A, (b) Subzone B, 
(c) Subzone C, (d) Subzone D, (e) Subzone E. 
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tundra, which covers a large portion of the terrestrial biosphere (Nemani et al. 2002, van Wijk et 

al. 2003, Euskirchen et al. 2006).  

Post et al. (2009) suggests the low functional redundancy of the Arctic necessitates 

greater conservation attention, because extinction or range shifts here may have more significant 

ecological impacts compared to more diverse temperate or tropical ecosystems. Also, a majority 

of studies conducted in the Arctic suggest the rate and magnitude of current and expected abiotic 

changes (Post & Høye 2013) and subsequent biotic changes (Callaghan et al. 2004, McBean et al. 

2006, Wookey et al. 2009) in arctic tundra environments has amplified the need to better monitor, 

understand, and predict the arctic tundra’s ecological responses to climate change over large 

spatial and temporal scales (Gauthier et al. 2013, Nielsen & Wall 2013). In light of these needs, 

the research presented in this dissertation provides useful insight into the influence vegetation 

community composition has on phenology, carbon flux, and canopy arthropod biomass in the 

arctic foothills region of the Brooks Range, Alaska. Our findings in Chapter one suggest that 

delayed snowmelt in areas dominated by taller deciduous shrubs may have a short-lived impact 

on the timing of leaf development, likely resulting in no difference in duration of peak 

photosynthetic period between tall and short-stature shrubs. Our findings in Chapter two suggest 

that greater deciduous shrub dominance not only increases carbon uptake due to higher leaf area 

relative to surrounding tundra, but may also be causing a net extension in the period of maximum 

tundra greenness and further increasing peak season carbon sequestration. Our findings in 

Chapter three suggest that measurements of the NDVI made from air and spaceborne sensors 

may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape 

to regional scales, and across diverse tundra vegetation communities.  
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CHAPTER ONE: 

Tall Deciduous Shrubs Offset Delayed Start of Growing 

Season Through Rapid Leaf Development in the 

Alaskan Arctic Tundra 

© 2014 Regents of the University of Colorado. All rights reserved. 

 

Abstract. Increasing temperatures in arctic regions are causing earlier spring snowmelt, leading 

to earlier plant emergence, which could lengthen the period of carbon uptake. Warming is also 

leading to a shift from graminoid to deciduous shrub-dominated tundra, and in many areas 

deciduous shrubs are becoming taller. As taller shrubs become increasingly dominant, arctic 

landscapes may retain more snow, which could lengthen spring snow cover duration and offset 

advances in the start of the growing season that are expected as a result of earlier spring 

snowmelt. As a consequence, deeper snow and later snowmelt in taller shrub tundra could delay 

plant emergence and shorten the period of carbon uptake. This study tracked leaf development of 

two abundant deciduous shrubs, Betula nana and Salix pulchra, and compared individuals along 

a natural shrub height gradient on the North Slope of Alaska. We measured spring snow depth 

and snow cover duration, bud and developing leaf nitrogen content, as well as the timing of 

budburst and leaf expansion. Taller deciduous shrubs in shrub-dominated communities had 

deeper snow surrounding them, and became snow-free 1 to 6 days later, delaying budburst by 2 

to 12 days relative to shorter deciduous shrubs in graminoid-dominated communities. However, 

leaf development of tall shrubs caught up to that of short shrubs; occasionally, tall shrubs 

reached full leaf expansion 1 to 4 days before short shrubs, indicating more rapid leaf 

development. This convergence in the timing of later leaf development stages is potentially 

enabled by approximately 16% to 25% greater nitrogen in buds and developing leaves of taller 

shrubs compared with shorter shrubs. Our findings suggest that delayed snowmelt in areas 

dominated by taller shrubs may have a short-lived impact on the timing of leaf development, 

likely resulting in no difference in duration of peak photosynthetic period between tall and short 

stature shrubs.  
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1.1  Introduction 

Climate change has caused a particularly strong warming trend in the Arctic (Chapin et al. 

2005, Serreze & Francis 2006, IPCC 2007), and spring snowmelt is occurring earlier in many 

arctic tundra regions (Stow et al. 2004, AMAP 2012). Meta-analyses in northern ecosystems 

correlate increasing temperatures and earlier spring snowmelt with earlier plant emergence (Arft 

et al. 1999, Root et al. 2003, Wipf & Rixen 2010). This phenomenon has been observed via field- 

(Starr et al. 2000, Wipf et al. 2009) and satellite-based studies (Myneni et al. 1997, Zhou et al. 

2001, Zeng et al. 2011). The implication of a shift toward earlier plant emergence in arctic tundra 

ecosystems is not fully understood, but it could lengthen the period of maximum leaf area 

(Oberbauer et al. 1998), potentially increasing the amount of carbon sequestered by arctic plants 

within a given year (Euskirchen et al. 2006, Graven et al. 2013, Richardson et al. 2013).  

In addition to an earlier start to the growing season, satellite studies suggest the Arctic 

has been “greening” over the past several decades (Bunn et al. 2007, Verbyla 2008, Jia et al. 

2009), which is likely due in part to the expansion and increasing dominance of deciduous shrubs 

(Jia et al. 2003). Expansion of deciduous shrubs into primarily graminoid-dominated tundra in 

the Alaskan Arctic is evident in comparative historical photo interpretation (Tape et al. 2006) 

and has been quantified in field surveys (Hinzman et al. 2005). Deciduous shrub expansion has 

been attributed to increases in air temperature (Walker et al. 2006), subsurface water flow (Naito 

& Cairns 2011, Tape et al. 2012), and soil nutrient mineralization (Sturm et al. 2005b). Findings 

from experimental manipulation studies suggest that deciduous shrubs will continue to expand 

and grow taller as arctic warming continues (Chapin et al. 1995, Wahren et al. 2005).  

Many arctic tundra studies have focused on the impacts of increasing deciduous shrub 

dominance on snow and nutrient cycling dynamics. For example, tall stature deciduous shrubs 

are more efficient at trapping snow, deeper drifts surround them compared to shorter stature 

shrubs (Sturm et al. 2001a, Sturm et al. 2005b, Myers-Smith & Hik 2013). Deeper snowdrifts 

increase soil insulation, which increases winter microbial activity and nutrient mineralization 

(Schimel et al. 2004, Wahren et al. 2005, DeMarco et al. 2011). Because deciduous shrubs have 

been shown to be more efficient than many other arctic plants at taking up nutrients (Shaver & 

Chapin 1991, Bret-Harte et al. 2001, Wookey et al. 2009), increased mineralization in this 

strongly nitrogen limited ecosystem allows deciduous shrubs to outcompete other plants (Chapin 

et al. 1995, Cornelissen et al. 2001, Shaver et al. 2001), creating a potential positive feedback for 
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increasing deciduous shrub dominance (Sturm et al. 2005b, Myers-Smith et al. 2011).  

Further, it has been suggested that winter precipitation is also increasing in arctic regions 

(Serreze et al. 2000), contributing to deeper snowdrifts. Deeper snowdrifts lead to later snowmelt 

dates (Liston et al. 2002), which can delay timing of plant emergence (Borner et al. 2008), 

potentially shortening the growing season and delaying the period of photosynthetic activity. 

Thus, due to their tendency to increase spring snow cover duration, the increasing dominance of 

tall deciduous shrubs could delay plant emergence, thereby offsetting, at least to some extent, the 

earlier start to the growing season expected to continue with spring warming and earlier 

snowmelt.  

Although several studies have explored how changing snow depth and spring snowmelt 

dates may affect plant phenology, most have been experimental, relying on snow removal 

(Oberbauer et al. 1998, Starr et al. 2000, Wipf et al. 2009) or artificial warming to simulate the 

impacts of early snowmelt (Wookey et al. 1993, Hartley et al. 1999, Aerts et al. 2006), and snow 

fences to simulate the impacts of greater snow depth and later snowmelt (Walker et al. 1999, 

Wahren et al. 2005). While snow manipulation studies are important for understanding potential 

implications of climate change on plant phenology, Wipf & Rixen (2010) suggested that such 

experimental techniques may deviate from natural scenarios by altering snow composition and 

compaction. Therefore, it is important to also include observations of how natural gradients in 

vegetation stature, and consequently snow depth, impact tundra plant phenology (Dunne et al. 

2004, Hollister et al. 2005). Also, most plant phenological studies monitor the date on which 

some or all of the following life history events occur – snow-free, leaf budburst, flowering, 

and/or senescence dates (e.g. Molau & Molgaard 1996) – yet intermediate leaf development 

stages, such as leaf expansion, can also be important from a carbon gain perspective (Johnson & 

Tieszen 1976).  

In this study, we monitored snow depth, timing of snowmelt, timing of leaf bud 

appearance, leaf budburst, leaf opening, and leaf expansion, as well as nitrogen contents of buds 

and emerging leaves for two species of deciduous shrubs (Betula nana and Salix pulchra, 

hereafter B. nana and S. pulchra) along a natural gradient of increasing shrub dominance (i.e. 

increasing aerial cover and stature) on the North Slope of Alaska. Because the rate of leaf 

development may affect timing of maximum photosynthetic capacity (Constable & Rawson 

1980) and thus carbon sequestration (Street et al. 2007), we quantified sequential leaf stages 
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closely throughout the period of leaf development. Our goal was to gain an understanding of how 

shrub stature and associated snow dynamics impact the timing of leaf bud break and leaf 

development. Based on findings from previous studies (Sturm et al. 2001a, Liston et al. 2002), 

we hypothesized that taller stature deciduous shrubs would undergo a delay in leaf development 

as a result of deeper snow and a delayed snow-free date.  

 

1.2  Methods 

1.2.1  Study Sites and Study Areas 

Data sets were collected in early May through the end of July in 2011 and 2012 at three 

field sites (Figure 1.1) within ~30 km of the Arctic Long Term Ecological Research (ARC 

LTER) site at Toolik Field Station in the northern foothills of the Brooks Range, Alaska (68’38N, 

149’34W). Annual precipitation at Toolik is 200 – 400 mm, with 45% falling as snow; annual 

average air temperature is -10ºC (van Wijk et al. 2005) and average growing season air 

temperature is 7ºC (Johnson et al. 2000). We defined the growing season as the period from 

snow-free until senescence, which near Toolik extends from approximately late May/early June 

until mid to late August. Daily air temperature during the 2011 and 2012 growing seasons at our 

sites (Figure 1.2) were within the long-term average range of growing season air temperatures at 

Toolik (Johnson et al. 2000).  

Sites were chosen in May 2010 to represent the most common shrub tundra types in the 

foothills of the Brooks Range (Hanson 1953) as part of a larger research effort investigating the 

effects of shrub vegetation on associated arthropod and migratory songbird reproductive success 

(Rich et al. 2013). The three sites used in this study were: Toolik Lake Field Station (TLFS), 

Sagavanirktok River-Department of Transportation camp (SDOT), and Imnavait Creek (IMVT) 

(Figure 1.1). Each of the three sites included two study areas dominated by different vegetation 

cover; one study area dominated by graminoids that also contained short deciduous shrubs 

(hereafter referred to as Open) and one study area dominated by deciduous shrubs (hereafter 

referred to as Shrub) (Figure 1.3). Within each Open or Shrub study area, two 100 m transects 

were established, for a total of 12 transects (6 Open and 6 Shrub). Ten 1-m
2 

quadrats were 

established at 10 m intervals along each transect. In early 2012, along each transect, wooden 2x6 

inch boardwalks were installed low to the ground and a reasonable distance from quadrats. In 

this study, five 1-m
2 

quadrats were randomly chosen along each transect, for a total of 60 
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quadrats (30 Open and 30 Shrub). In all 60 quadrats, individual B. nana and S. pulchra plants 

closest to the lower left corner of each quadrat were selected and an individual branch at the top 

of the canopy of each plant was labeled with an identification (ID) tag in the spring of 2011.  

 
 

 

 

 

Together, the Open and Shrub areas represent a natural gradient of increasing shrub 

dominance, because the same deciduous shrubs (B. nana and S. pulchra) are found in all study 

areas, however, their percent cover and stature increase from low percent cover (~ 20%– 30%) 

and short stature (< 30 cm) in Open areas to higher percent cover (~ 40%–55%) and taller stature 

(ranging from 30 to 105 cm) in Shrub areas. Although there is topographical variation between 

sites (TLFS, IMVT, and SDOT), the study areas within each site (Open and Shrub) are not 

topographically different enough (Table 1.1) to cause significant differences in snow depths, thus 

differences in snow depth between Open and Shrub areas at each site are primarily caused by 

differences in vegetation height.  

Figure 1.1. Map of 

Alaska and the North 

Slope of the Brooks 

Range (inset) showing 

the location of the three 

field sites near the 
Toolik Lake field station 

used in this study. TLFS 

= Toolik Lake Field 

Station; IMVT = 

Imnavait Creek; and 

SDOT = Sagavanirktok 

River–Department of 

Transportation.  
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The Open areas at all three sites are similar to one another and are characterized by 

tussock-forming sedges interspersed with a variety of dwarf shrubs, forbs, and mosses, with 

average maximum deciduous shrub heights of approximately 16 cm (IMVT), 23 cm (TLFS), and 

28 cm (SDOT). The three Shrub areas differ from one another and represent a gradient of shrub 

statures, with average maximum deciduous shrub heights of approximately 22 cm (IMVT), 35 

cm (TLFS), and 84 cm (SDOT). The IMVT Shrub area is located in water tracks and represents 

vegetation typical of water track tundra as described in Chapin et al. (1988). The TLFS Shrub 

area is located near the Toolik Lake outlet (~ 200 m from the outlet) and represents vegetation 

typical of shrub tundra described in Shaver & Chapin (1991). The SDOT Shrub area is a riparian 

community (~ 200 m from the Oksrukuyik Creek), has tall and structurally complex shrubs, and 

represents vegetation typical of riverside shrub tundra as described in Giblin et al. (1991).  

Figure 1.2. Average 

daily air temperature 

(Celsius) from 2 May to 

28 July (DOY: 132 to 

210) during the (a) 2011 

and (b) 2012 field 

season at three sites 

used in this study. 
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Figure 1.3. Examples of graminoid-dominated (Open – left panels) and deciduous shrub-dominated (Shrub – right 

panels) areas used in this study in the Northern foothills of the Brooks Range, Alaska.  

 

 

 

 

 Site TLFS IMVT SDOT 

  Area Open Shrub Open Shrub Open Shrub 

Average elevation 747 m 722 m  918 m 910 m  508 m 504 m 

Minimum elevation 735 m 716 m 913 m 902 m 503 m 500 m 

Maximum elevation  755 m 725 m 923 m 919 m 510 m 509 m 

 

Table 1.1. Average, 

minimum, and 

maximum topographic 

elevation (in meters) 

at each site and study 

area used in this study. 

Additional maps at 

[http://toolik.alaska.ed

u/gis/index.php] 
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1.2.2 Snow Depth and Melt 

The day of year (DOY) on which each individual plant being monitored for leaf 

development (see Timing of Leaf Development) was snow-free (snow-free date) was recorded in 

2011 and 2012. In addition to individual plant snow-free dates, in 2012 snow depth was 

measured every four to six days in each of the quadrats where individual plants were monitored, 

from 11 May until snow depth reached 0 cm (ca. 24 May to 5 June, depending on the site). Snow 

depth was measured at the center and four corners in all sixty 1-m
2 

quadrats by pushing a 1 cm 

diameter aluminum pole into the snow until soil or moss surface was reached (for a total of 25 

measurements per transect, per sampling date). The five snow depth values associated with each 

quadrat were averaged to give a mean quadrat value.  

 

1.2.3 Timing of Leaf Development 

In 2011 and 2012, the timing of leaf development stages (described below and in Figure 

1.4) of individuals labeled with ID tags (see Study Sites) were monitored every two days, from 

the time each individual was snow-free until leaves were fully expanded (ca. 6 June to 30 June, 

depending on the species, site, and year) for a total of 60 B. nana and 60 S. pulchra monitored (n 

= 30 B. nana Open, 30 B. nana Shrub, 30 S. pulchra Open, and 30 S. pulchra Shrub). A modified 

version of the International Tundra Experiment (ITEX) phenology protocol (Molau & Molgaard 

1996) for Salix spp. was used, with the modification being that two additional leaf development 

stages (first leaf opening and first leaf expanded) were added to the existing ITEX protocol. For 

each B. nana and S. pulchra individual, the date on which the following four leaf development 

stages were reached for the first leaf on an individual labeled branch was recorded: (1) the 

appearance of the first leaf bud (first leaf bud, FLB), (2) when the first leaf became visibly 

distinct with green tissue splitting through bud scales (first leaf visible, FLV), (3) when the first 

leaf separated from the bud and individual leaves became apparent (first leaf opening, FLO), and 

(4) when the first leaf completely separated from the bud and expanded (first leaf expanded, 

FLE) (Figure 1.4). This may not have always been the same leaf monitored at each stage, but the 

date the first leaf on the same branch reached each stage.  
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1.2.4 Leaf Nutrient Content 

Buds and leaves were collected for nutrient content analysis in 2012 from 25 May to 9 

June at three times (corresponding to three leaf development stages: FLB, FLV, and FLO) from 

one B. nana and one S. pulchra individual located directly adjacent to each plant being 

monitored for timing of leaf development. A total of five bud or leaf samples per species, per leaf 

development stage, per transect were collected (n = 30 for each species, in each vegetation type, 

at each leaf development stage; for a total of 60 B. nana and 60 S. pulchra samples for each leaf 

development stage). Samples were placed in paper coin envelopes, air dried, and later dried in an 

oven at 60 C for 24 hours. Samples were ground into a powder using a Mini-Beadbeater-16 ball 

mill (Bio Spec Products, Oklahoma, U.S.A.). Subsamples of approximately 10 mg were weighed 

into tin capsules, combusted at 950 C, and analyzed for nitrogen content using a Thermo 

Scientific Flash 2000 CHN Analyzer (CE Elantech, New Jersey, U.S.A.). Because of equipment 

failure, there was only one sample available for data analysis for the FLB stage for S. pulchra 

from the IMVT Open area, thus data for IMVT Open S. pulchra were not included in statistical 

analysis.  

Figure 1.4. Examples of 

Betula nana (left panels) and 

Salix pulchra (right panels) 

leaf development stages. 
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1.2.5 Statistical Analysis 

Because the same individual plants were tracked for leaf development and used for 

sample collection for nutrient analysis, repeated measures MANOVA was used with timing of 

leaf developmental stages or leaf nutrient content as the dependent variables and vegetation 

cover type (Shrub and Open) and site (TLFS, IMVT, and SDOT) as the main effects. For 

repeated measures multivariate between subject tests, we report Wilks’s Lambda results. 

Because snow depth was measured repeatedly throughout 2012, and because snow-free date was 

monitored in both 2011 and 2012, a repeated measures analysis was performed on each data set 

separately, using a linear mixed-effects model, which included vegetation cover and site as the 

main effects. Quadrats were used as replicates for all data sets (n = 60; 30 Open and 30 Shrub). If 

the repeated model depicted a significant effect, means were compared using Tukey’s honestly 

significant differences (Tukey’s HSD) criterion. Statistical analysis was done in R (R Core Team 

2011) and SAS (SAS Software, v. 9.2, SAS Institute, Cary, North Carolina, U.S.A.).  

 

1.3   Results 

1.3.1 Snow Depth and Melt 

Depending on the site (i.e. TLFS, IMVT, and SDOT), snow depth (Figure 1.5) ranged 

from 6 to 30 cm deeper in Shrub areas compared to Open areas from DOY 132 to 136 (12 May 

2012 to 15 May 2012), and remained significantly deeper until the end of May (effect of cover: 

F
1,54 

= 20.24, P < 0.0001). The pattern of snow depth over time varied between site and cover 

type (i.e. Open and Shrub), driving a significant three-way interaction for the overall data set 

(effect of day*site*cover: F
10,100 

= 1.94, P = 0.05). The pattern of snow depth also differed over 

time and across sites (effect of day: F
5,50 

= 128.84, P < 0.0001; effect of day*site: F
10,100 

= 9.98, 

P < 0.0001) and cover type (effect of day*cover: F
5,50 

= 4.69, P = 0.001). These significant 

interaction effects were driven by the differences in snow depth over time between sites and 

cover type. As can be seen in Figure 1.5, snow depth appears to have decreased at a fairly 

constant rate at TLFS, decreased more rapidly at SDOT after the second measurement date, and 

decreased even more rapidly at IMVT after the third measurement. There was also a significant 

interaction between site and cover type for the first two sample dates, driving a significant 

interaction for the overall data set (effect of site*cover: F
2,54 

= 4.06, P = 0.02). The significant 
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interaction of site*cover disappeared over time because, as snow melted, the magnitude of 

difference between sites and cover types decreased. Because the IMVT Open area actually had 

greater snow depths than TLFS or SDOT Shrub areas, there was also an effect of site on snow 

depth (effect of site: F
2,54 

= 16.5, P < 0.0001).  

 

 
 

 

Although there was variation from year to year and among the sites and cover types, the 

snow-free date for B. nana (Table 1.2) was approximately 1 to 6 days later in Shrub areas 

(depending on the site and year) as compared to Open areas (effect of year*site*cover: F
2,54 

= 

4.15, P = 0.02), which corresponds with deeper snow of Shrub areas (Figure 1.5). This three-way 

interaction of year*site*cover was driven by the fact that there was no statistically significant 

difference in snow-free date between Shrub and Open cover type at SDOT in either year, nor at 

IMVT in 2012; but there were significant differences between cover types at TLFS in both years 

and at IMVT in 2011. There were also significant effects of year*site (F
2,54 

= 19.63, P < 0.0001) 

and year (F
1,54 

= 37.07, P < 0.0001), because B. nana was snow-free earlier in 2012 compared to 

2011 at SDOT and TLFS, but later in 2012 at IMVT. Also, B. nana at IMVT was snow-free last 

compared to TLFS and SDOT, and whether TLFS or SDOT melted out first varied from year to 

year and between cover types. There was a significant interaction between site and cover type for 

B. nana in 2012 (F
2,54 

= 4.31, P = 0.02), because in 2012 there was a significant difference in 

Figure 1.5. Average 

snow depth (cm) in 

2012 throughout 

measurement period 

in Open (dashed 

lines and open 

symbols) and Shrub 

(solid lines and filled 

symbols) areas by 

site (TLFS = teal 

squares; IMVT = 

purple triangles; 

SDOT = black 

circles). Error bars 

represent 1 SEM.  
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snow-free date between cover types at TLFS only. Although Shrub areas were snow-free later 

than Open areas in both years (effect of cover: F
1,54 

= 25.69, P < 0.0001), the magnitude of 

difference between snow-free dates in Open and Shrub areas was greater at TLFS compared to 

IMVT or SDOT (effect of site: F
2,54 

= 68.82, P < 0.0001).  

 
Table 1.2. Average snow free dates (DOY) in 2011 and 2012 for B. nana and S. pulchra. Means are listed (± 1 

SEM) for Open and Shrub areas from three sites (IMVT, TLFS, and SDOT) near the Toolik Lake field station in 

northern Alaska. Different letters in parentheses next to mean indicate means within the row are significantly 

different (P < 0.05) from each other.  

 Site TLFS IMVT SDOT 

  Area Open Shrub Open Shrub Open Shrub 

Year Species             

2011 B. nana 142 ± 0 (a) 144 ± 0.6 (b) 144 ± 0.4 (b) 148 ± 0 (c) 141 ± 0 (a) 142 ± 1 (a) 

2012 B. nana 136 ± 0.6 (a) 141 ± 1.1 (b) 146 ± 0.8  (c) 148 ± 1.1  (c) 140 ± 0.5 (b) 140 ± 0.5 (b) 

2011 S. pulchra 142 ± 0 (a) 145 ± 0.6 (b) 144 ± 0.4  (b) 148 ± 0.3 (c) 141 ± 0 (a) 142 ± 1 (a) 

2012 S. pulchra 136 ± 0.9 (a) 141 ± 1.3 (b) 145 ± 0.7 (b) 148  ± 1.3 (bc) 139 ± 0 (ab) 140 ± 0.6 (ab) 

 
 

As with B. nana, snow-free date for S. pulchra was later in Shrub areas compared to 

Open areas (Table 1.2), but this trend differed across sites and years (effect of year*site: F
2,54 

= 

10.68, P = 0.0001; effect of year: F
1,54 

= 29.59, P < 0.0001). As with B. nana, this was driven by 

the fact that S. pulchra was snow-free earlier in 2012 compared to 2011 at SDOT and TLFS, but 

later in 2012 at IMVT. There was also a significant interaction between site and cover type for S. 

pulchra in 2011 (effect of site*cover 2011: F
2,54 

= 3.4, P = 0.04), because there was a smaller 

magnitude of difference in snow-free date between cover type and sites for S. pulchra in 2012. 

Although the S. pulchra individuals in Shrub areas melted out later than Open areas in both years 

(effect of cover: F
1,54 

= 41.21, P < 0.0001), as with B. nana, the magnitude of difference between 

snow-free dates for S. pulchra in Open and Shrub areas differed from site to site (effect of site: 

F
2,54 

= 67.34, P < 0.0001). S. pulchra at IMVT were snow-free last compared to TLFS and 

SDOT, and whether TLFS or SDOT melted out first varied from year to year and between cover 

types.  

 

1.3.2 Timing of Leaf Development 

Although there were differences among sites, years, and species, because B. nana and S. 

pulchra in Open areas were snow-free earlier (Table 1.2) due to shallower snow (Figure 1.5), 
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initial leaf development stages (e.g. first leaf visible [FLV] and first leaf opening [FLO]) 

occurred 2 to 12 days earlier (depending on the site) in Open areas as compared to Shrub areas 

(Figures 1.6a & 1.7a). However, individuals located in Shrub areas accelerated leaf development 

to such an extent that they reached the last leaf development stage (i.e. first leaf expanded [FLE]) 

only 2 days later or even 4 days earlier than those in Open areas. For instance, at TLFS in 2011, 

B. nana and S. pulchra reached FLO 12 and 10 days later (respectively) in Shrub areas compared 

to Open areas, but reached FLE 0 and 1 day later (respectively) (Figures 1.6b & 1.7b). And at 

SDOT in 2011, B. nana and S. pulchra reached FLV 2 and 5 days later (respectively) in Shrub 

areas compared to Open areas, but reached FLE 1 and 5 days earlier (respectively) (Figures 1.6d 

& 1.7d).  

 

 

 
 

Figure 1.6. Average relative timing of leaf development stages (FLB = first leaf bud; FLV = first leaf visible; 
FLO = first leaf opening; and FLE = first leaf expanded) for B. nana in Open (orange circles) and Shrub (blue 
squares) areas in 2011 and 2012 for (a) all three sites averaged; and at (b) TLFS, (c) IMVT, and (SDOT). Error 
bars represent 1 SEM. Asterisks (*) above symbols indicate a significant difference (P < 0.05) in time when leaf 
development was reached between Open and Shrub areas. 
 

 

mailto:#Fig1_6
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In both 2011 and 2012, the pattern of leaf development of B. nana over time differed 

between site and cover type, driving a significant three-way interaction for the overall data set 

(effect of leaf stage*site*cover: 2011, F
6,104 

= 4.83, P < 0.0002; 2012, F
6,104 

= 4.83, P < 0.0002). 

In 2012, only the pattern of leaf development of B. nana differed between site and cover type 

(effect of site*cover: 2012, F
2,54 

= 7.91, P = 0.001) because shrubs at IMVT reached all leaf 

development stages in both Open and Shrub areas later than SDOT or TLFS in 2012 (Figure 1.6), 

which corresponds with the later snow-free date at IMVT (Table 1.2). Differences between 

timing of leaf development stages FLV and FLO for B. nana between Shrub and Open areas 

were greatest at TLFS and IMVT in 2011 and at TLFS in 2012; and there was no significant 

difference in timing between cover types at SDOT in either year. Overall, in both 2011 and 2012, 

B. nana in Shrub areas reached the first three leaf development stages later than in Open areas 

(effect of cover: 2011, F
1,54 

= 27.86, P < 0.0001; 2012, F
1,54 

= 28.70, P < 0.0001) (Figure 1.6a). 

For individual leaf development stages, in both years, B. nana in Shrub areas reached FLB, FLV, 

and FLO significantly later (2 to 12 days later depending on the site) than in Open areas, but 

there was a significant difference in timing at FLE in 2012 only (Table 1.3). In 2011, the effect 

of site was driven mostly by TLFS and IMVT (effect of site: 2011, F
2,54 

= 13.11, P < 0.0001), 

and by TLFS in 2012 (effect of site: 2012, F
2,54 

= 55.75, P < 0.0001). Differences between sites 

and years could also be affected by differences in air temperatures (Figure 1.2). Although the 

difference in timing when leaf development stages were reached was not significant at SDOT, it 

is notable that although Open areas reached FLB and FLV leaf development stages 2 to 3 days 

earlier than Shrub areas, B. nana in SDOT Shrub areas reached FLE 1 day before those in Open 

areas, indicating an accelerated rate of leaf development (Figure 1.6d).  

For S. pulchra, there was a significant three-way interaction effect in 2011 only (effect of 

leaf stage*site*cover: 2011, F
6,104 

= 2.53, P = 0.03), because in 2011 there were significant 

differences in timing of leaf development stages being reached between Open and Shrub areas, 

but the stage at which the differences were significant differed among sites (Figure 1.7). Overall, 

in both years, S. pulchra individuals in Shrub areas reached the first three leaf development 

stages later than S. pulchra in Open areas (effect of cover: 2011, F
1,54 

= 11.17, P < 0.002; 2012, 

F
1,54 

= 6.45, P = 0.01) (Figure 1.7a). For individual leaf development in 2011, S. pulchra in 

Shrub areas reached FLV and FLO significantly later (4 to 10 days later depending on the site) 
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than in Open areas, but there was no significant difference in timing at FLB or FLE (Table 1.3). 

For individual leaf development in 2012, S. pulchra in Shrub areas reached FLB and FLV 

significantly later (2 to 6 days later depending on the site) than in Open areas, but there was no 

significant difference in timing of FLO or FLE. Effect of site in 2012 was driven by the fact that 

the only significant difference in timing of leaf development stages was at TLFS at FLB and 

FLV (effect of site: 2012, F
2,54 

= 37.47, P < 0.0001) (Figure 1.7b). Similar to B. nana, 

differences between sites and years could also be due to differences in air temperature (Figure 

1.2). As with B. nana, S. pulchra in Open areas reached FLB and FLV leaf development stages 

earlier than Shrub areas at SDOT, but S. pulchra in SDOT Shrub areas reached FLE before those 

in Open areas – 5 days in 2011 and 3 days in 2012 – indicating an accelerated leaf development 

(Figure 1.7d). S. pulchra in IMVT Shrub areas also reached FLE 2 days before those in Open 

areas in 2012 (Figure 1.7c).  

 
 

 
 

Figure 1.7. Average relative timing of leaf development stages (FLB = first leaf bud; FLV = first leaf visible; 
FLO = first leaf opening; and FLE = first leaf expanded) for S. pulchra in Open (orange circles) and Shrub (blue 
squares) areas in 2011 and 2012 for (a) all three sites averaged; and at (b) TLFS, (c) IMVT, and (SDOT). Error 
bars represent 1 SEM. Asterisks (*) above symbols indicate a significant difference (P < 0.05) in time when leaf 
development was reached between Open and Shrub areas.  
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Table 1.3. Repeated measures MANOVA P- and F-values for main effects (Site and Cover) as well as their 

interaction comparing dates (DOY) when leaf development stages (FLB, FLV, FLO, and FLE) were reached for B. 

nana and S. pulchra in 2011 and 2012 for Open and Shrub areas from three sites (IMVT, TLFS, and SDOT) near the 

Toolik Lake field station in northern Alaska. Direction of significant effects (S = Shrub and O = Open) are noted for 

means comparisons significant at P < 0.05. Any effect with a P-value > 0.05 is listed as NS. Degrees of freedom for 

leaf development stage = Cover: 1, 54; Site and Interaction: 2, 54.  

Source 

  

Cover   Site   Interaction  

      P : effect    F P : effect F P F 

Species Year Leaf Stage             

B. nana 2011 FLB < 0.0001 : S > O 22 < 0.0001 : IMVT > TLFS = SDOT 16.71 NS 
 

B. nana 2011 FLV < 0.0001 : S > O 36.16 0.0027 : IMVT > TLFS = SDOT 6.6 0.0606 2.95 

B. nana 2011 FLO < 0.0001 : S > O 37.15 < 0.0001 : IMVT > TLFS > SDOT 16.79 0.0015 7.37 

B. nana 2011 FLE NS 

 

0.003 : IMVT = TLFS > SDOT 6.48 NS 

 
B. nana 2012 FLB 0.0001 : S > O 16.75 < 0.0001 : IMVT > TLFS = SDOT 58.82 0.0038 6.19 

B. nana 2012 FLV < 0.0001 : S > O 31.23 < 0.0001 : IMVT > TLFS > SDOT 45.33 0.0013 7.57 

B. nana 2012 FLO < 0.0001 : S > O 19.11 < 0.0001 : IMVT > TLFS > SDOT 30 NS 
 

B. nana 2012 FLE 0.0066 : S > O 7.98 < 0.0001 : IMVT > TLFS = SDOT 17.36 0.0029 6.53 

S. pulchra 2011 FLB NS 

 

NS 

 

NS 

 
S. pulchra 2011 FLV 0.0002 : S > O 16.49 NS 

 

NS 

 
S. pulchra 2011 FLO < 0.0001 : S > O 29.5 NS 

 

NS 

 
S. pulchra 2011 FLE NS 

 

0.0111 : IMVT = TLFS > SDOT 4.89 0.0278 3.83 

S. pulchra 2012 FLB < 0.0001 : S > O 19.33 < 0.0001 : IMVT > TLFS = SDOT 31.44 NS 

 
S. pulchra 2012 FLV 0.0038 : S > O 9.14 < 0.0001 : IMVT > TLFS = SDOT 30.22 NS 

 
S. pulchra 2012 FLO NS 

 

< 0.0001 : IMVT > TLFS = SDOT 13.84 NS 

 S. pulchra 2012 FLE NS   0.0065 : IMVT > TLFS = SDOT 5.54 NS   

 
 

Figure 1.8, which depicts the relationship across species, sites, and years between the 

difference in snow-free dates and the difference in FLV and FLE dates (Shrub dates minus Open 

dates), shows that later snow-free dates for B. nana and S. pulchra in Shrub areas led to a later 

budburst relative to Open areas (FLV: R2 = 0.6, P < 0.01), but did not significantly affect the date 

of leaf expansion (FLE: R
2 = 0.21, P = 0.2). Occasionally, even when snowmelt and budburst 

were delayed, taller shrubs in Shrub areas reached the leaf expansion stage before shorter shrubs 

in Open areas (Figure 1.8).  

 

1.3.3 Leaf Nutrient Content  

Although there were differences among sites, and at each leaf development stage, Shrub 

areas overall had higher percentage of nitrogen (%N) in developing leaves (e.g. first leaf visible 

[FLV] and first leaf opening [FLO]) of B. nana and S. pulchra as compared to Open areas 

(Figure 1.9a). For instance, percentage of nitrogen in B. nana buds (measured at FLB) and leaves
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 (measured at FLV and FLO) was generally higher in Shrub areas compared to Open areas  

(Figure 1.9b) (effect of cover: F
1,33 

= 20.22, P < 0.0001), but this significance varied across 

individual leaf development stage (Table 1.4). Because %N for B. nana was actually lower in 

Shrub areas at TLFS for the first two leaf development stages, and because the pattern across the 

three leaf development stages differed from site to site, there was a significant effect of site 

(effect of site: F
2,33 

= 9.22, P < 0.001). Both IMVT and SDOT had higher %N in B. nana buds 

(measured at FLB) in Shrub areas compared to Open areas (the opposite was true for TLFS), and 

the overall %N in both Open and Shrub areas and magnitude of difference between cover types 

was greatest at SDOT. Both IMVT and SDOT had higher %N in B. nana leaves at FLV in Shrub 

areas compared to Open areas (the opposite was true for TLFS), but again, the overall %N and 

magnitude of difference between cover types was greatest at SDOT. At FLO, the pattern of %N 

in B. nana leaves changed from that of the previous two leaf development stages, where all three 

sites (including TLFS) had higher %N in B. nana leaves in Shrub areas compared to Open areas. 

As opposed to FLB and FLV, the %N at FLO was highest at IMVT Open and Shrub areas, but 

the magnitude of difference between cover types was still greatest at SDOT (Figure 1.9b & Table 

1.4).  
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Figure 1.8. Across species, year, and 

site relationship between the 

difference in snow-free dates, and the 

difference in budburst (first leave 

visible: FLV; purple circles) or leaf 

expansion dates (FLE: first leaf 

expanded; black triangles). Values 

indicate the number of days later 

(positive values) or earlier (negative 

values) each stage was reached in 

Shrub areas compared to Open areas 

[Shrub - Open]. Values below the 

gray line drawn at zero indicate 

Shrub areas reached that stage earlier, 

and values above this line indicate 

Shrub areas reached that stage later. 

Each point represents the average for 

a species (B. nana or S. pulchra) in 

one year (2011 or 2012) for an entire 

site (TLFS, IMVT, or SDOT).  
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Figure 1.9. Average percent 
nitrogen in Open (orange bars) 
and Shrub (blue bars) areas at 
each of the three leaf 
development stages measured 
(FLB = first leaf bud; FLV = 
first leaf visible; and FLO = 
first leaf opening for (a) B. 

nana and S. pulchra averaged 
across all sites; (b) B. nana 

separated for all three sites; 
and (c) S. pulchra separated 
for all three sites. Bars 
represent areas averages (n = 
10 per bar where data was 
available). Error bars represent 
1 SEM. Asterisks (*) above 
bars indicate a significant 
difference (P < 0.05) in 
percent nitrogen at that site 
and leaf development stage 
(Note: at IMVT, there was not 
an adequate number of 
replicates at FLB stage at the 
Open area for statistical 

comparison (see Methods)).  
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Table 1.4. Repeated measures MANOVA P- and F-values for main effects (Site and Cover) as well as their 

interaction comparing percent nitrogen for B. nana and S. pulchra for each development stage measured (FLB, FLV, 

and FLO) for Open and Shrub areas from three sites (IMVT, TLFS, and SDOT) near the Toolik Lake field station in 

northern Alaska. Direction of significant effects (S = Shrub and O = Open) are noted for means comparisons 

significant at P < 0.05. Any effect with a P-value >s 0.05 is listed as NS. Degrees of freedom for B. nana 

= Cover: 1, 33; Site and Interaction: 2, 33. Degrees of freedom for S. pulchra = Cover: 1, 32; Site and Interaction: 2, 

32.  

Source 

  

Cover   Site   Interaction  

      P : effect    F P : effect F P F 

Species Variable Leaf Stage             

B. nana %N FLB NS 

 

< 0.0001 : SDOT > TLFS = IMVT 25.01 0.0228 4.27 

B. nana %N FLV 0.0096 : S > O 7.6 0.0087 : SDOT = IMVT > TLFS 5.53 NS 

 
B. nana %N FLO 0.0002 : S > O 17.36 0.0076 : IMVT > SDOT = TLFS 5.7 NS 

 
S. pulchra %N FLB NS 

 

< 0.0001 : SDOT = IMVT > TLFS 15.41 NS 

 
S. pulchra %N FLV 0.0002 : S > O 17.59 0.0403 : SDOT = IMVT > TLFS 3.6 NS 

 S. pulchra %N FLO < 0.0001 : S > O 35.62 0.0177 : SDOT = IMVT > TLFS 4.65 0.0065 8.6 

 

 

Although overall %N for S. pulchra was higher in Shrub areas compared to Open areas at 

all sites (effect of cover: F
1,32 

= 16.99, P < 0.0002), the magnitude of difference between cover 

types differed from site to site at each leaf development (Figure 1.9c), driving a significant site 

effect (effect of site: F
2,32 

= 34.42, P < 0.0001) (Table 1.4). The difference between %N for S. 

pulchra in Open versus Shrub areas was greatest at IMVT at FLB, but because this data was not 

actually included in the statistical analysis (see Methods), the main site effect was likely driven 

by the high %N at IMVT and SDOT Shrub areas and low %N at TLFS Shrub area. The 

magnitude of difference in %N for S. pulchra at FLV between cover types was greater at both 

IMVT and SDOT compared to TLFS, but was much greater at FLO at SDOT compared to either 

IMVT or TLFS (Figure 1.9c & Table 1.4).  

The %N values in this study were higher than those reported for peak season biomass, 

likely because samples were collected prior to full leaf expansion (i.e. leaf bud and emerging 

leaf) (Chapin et al. 1980). Other studies in the Alaskan and Scandinavian Arctic have found that 

N concentrations in emerging leaves, shortly after snowmelt, tend to be high, and foliar N 

concentrations decrease as leaves continue to expand and arctic plants reach peak biomass 

(Chapin et al. 1975 & 1980, Torp et al. 2010).  
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1.4 Discussion 

We found, similar to previous experimental and modeling studies (e.g. Sturm et al. 2001a, 

Liston et al. 2002), that spring snowmelt was delayed where snowpack was deeper in our tall 

stature deciduous shrub-dominated communities. Our results supported our hypothesis in that 

later snowmelt did delay the initial stages of leaf development (e.g. budburst and leaf opening) 

for tall stature B. nana and S. pulchra in deciduous shrub-dominated communities relative to 

short stature individuals of the same species in graminoid-dominated communities. However, in 

contrast with our predictions, taller individuals reached subsequent leaf development stages (e.g. 

when the leaf fully expanded) at similar times, or even before the shorter B. nana and S. pulchra 

found in graminoid-dominated tundra. In other words, the delay in leaf development in taller 

shrubs was short-lived, and the difference in timing between tall and short stature shrub leaf 

development decreased, or even disappeared in some cases, by the time full leaf expansion 

occurred.  

It is important to note that though snow-free dates were 1 to 6 days later in Shrub areas 

compared to Open areas, budburst dates (i.e. FLV) were 2 to 12 days later. Although we are not 

certain as to why the delay in budburst was twice that of the delay in snowmelt, it is possible that 

taller, more densely packed deciduous shrubs in Shrub areas shaded the soil, which could reduce 

soil temperatures relative to shorter, less densely packed deciduous shrubs in Open areas (Blok et 

al. 2010, Myers-Smith & Hik 2013). This could lead to a slightly slower thawing of the active 

layer immediately following snowmelt in Shrub areas, which could delay water availability. Also, 

taller stature shrubs in deciduous shrub-dominated tundra likely have deeper roots due to deeper 

summer thaw depths (Shaver & Chapin 1991, Bonfils et al. 2012), which means the active layer 

would need to thaw deeper relative to shorter stature shrubs in graminoid-dominated tundra 

before roots had access to liquid water essential for leaf opening (Billings & Mooney 1968, Dale 

1988).  

Similar to our findings, other studies have found trends of accelerated plant development 

offsetting the effects of a later spring snowmelt in alpine and arctic regions (Dunne et al. 2003, 

Borner et al. 2008). For instance, in their combined natural snow depth and snow fence 

manipulation experiment at Toolik Lake, Alaska, Borner et al. (2008) found that increased snow 

depth decreased the effective growing season length for both B. nana and S. pulchra. Yet, leaf 

senescence of these species occurred at relatively similar times regardless of snow depth and 
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snowmelt date, suggesting that differences in the timing of early phenological stages diminished 

over the course of the growing season. However, because Borner et al. (2008) monitored only 

snow-free, budburst, and leaf senescence dates, the intermediate leaf stage at which the catch-up 

in development occurred was not known, nor was the mechanism driving the accelerated leaf 

development.  

Although emergence and initial stages of leaf development of many species in the arctic 

tundra are cued by snowmelt and temperature (Pop et al. 2000, Hollister et al. 2005, Wipf et al. 

2009), the rate of leaf expansion, shortly after leaves begin to open, is likely related to the 

amount of nitrogen in buds and emerging leaves (Radin & Boyer 1982, Vos & Biemond 1992). 

We surmise this relationship because it has been shown that enhanced nitrogen availability 

increases photosynthesis (Field & Mooney 1983, Evans 1989, Reich et al. 1998, Heskel et al. 

2012), which increases metabolites important in leaf expansion (Dale 1988). Therefore, one 

possible explanation for the accelerated leaf development of taller shrubs in our Shrub areas 

could be related to the fact that our taller shrubs had higher nitrogen contents (approximately 

16% to 25% more) in their leaf buds and emerging leaves compared to the shorter shrubs of our 

Open areas.  

There are several ways in which taller shrubs may have access to more nitrogen during 

the period of leaf expansion and bud formation. First, higher nitrogen of taller shrubs may be 

related to the fact that tall deciduous shrubs tend to grow in areas where soil conditions facilitate 

their growth (Tape et al. 2012). For instance, increased subsurface water flow in naturally 

occurring deciduous shrub–dominated tundra compared to graminoid-dominated tundra increases 

nutrient flow (Giblin et al. 1991, Shaver & Chapin 1991) and access to nitrogen (Naito & Cairns 

2011, Bonfils et al. 2012, Chapin et al. 1988). Second, their inherently thicker snowpack 

insulates soils from freezing air temperatures during the winter, thereby enabling higher rates of 

winter soil mineralization (Schimel et al. 2004, DeMarco et al. 2011), which would enable higher 

leaf nutrient contents. For example, in their snow fence experiment in the Alaskan Arctic, Walsh 

et al. (1997) found that deeper snow led to higher nitrogen concentrations in leaves of B. nana 

and Salix planifolia. Finally, a delay in snowmelt has been shown to limit dilution of leaf 

nitrogen throughout the growing season (Korner 1989, Welker et al. 2005). For these reasons, 

taller shrubs may have access to more nitrogen, which may allow for accelerated leaf 

development (Dale 1988, Radin & Boyer 1982, Vos & Biemond 1992).  
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Regardless of the exact driving mechanism, accelerated leaf expansion may be important 

from a canopy carbon gain perspective for several reasons. First, phenological events for arctic 

plants tend to be compressed in time (i.e. rapid development) relative to plants growing in more 

southern locations (Post et al. 2008, Steltzer & Post 2009). This rapid development of arctic 

plants (Billings & Mooney 1968, Bliss 1971) suggests that the expansion of the first leaf on an 

individual deciduous shrub likely corresponds with the expansion of most leaves on the entire 

canopy of that individual (Johnson & Tieszen 1976). Second, when leaves are fully expanded is 

when they are near their maximum photosynthetic capacity (Constable & Rawson 1980, 

Patankar et al. 2013). Therefore, accelerated leaf development could offset potential reductions 

in growing season carbon uptake by minimizing the effects of later snowmelt and delayed 

budburst. This is especially important in the Arctic, because the growing season is notoriously 

short and differences in canopy development of only a few days could significantly alter the 

tundra’s annual carbon uptake potential (van Wijk et al. 2003). In fact, Euskirchen et al. (2006) 

suggested that for each day the growing season is extended in the arctic tundra, net carbon (C) 

uptake increases by 5.3 g C m
–2 

yr
–1

. In addition, our findings have important implications for 

tundra fauna, since changes in tundra plant phenology associated with climate warming have 

been shown to create asynchrony in the timing of food resource availability for wildlife (Høye & 

Forchhammer 2008, Post et al. 2009).  

Furthermore, deciduous shrub leaf expansion dates may be particularly important in the 

Arctic. At the beginning of the growing season, deciduous shrubs become photosynthetically 

active slightly later than other tundra plant functional groups (e.g. evergreens and sedges) (Starr 

& Oberbauer 2003, Euskirchen et al. 2013). However, deciduous shrubs have higher peak season 

leaf area (van Wijk et al. 2005) and greater maximum rates of photosynthesis (Johnson & 

Tieszen 1976, Oechel 1989, Aerts 1995) compared to other functional groups. Because of this, 

and because deciduous shrub dominance is expected to continue increasing in the arctic tundra 

(Walker et al. 2006, Pearson et al. 2013), changes in the timing of leaf expansion in deciduous 

shrubs may prove to be especially important for future carbon flux in the Arctic (Hobbie & 

Chapin 1998).  
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CHAPTER TWO: 

Greater Deciduous Shrub Abundance Extends Tundra Peak 

Season and Increases Modeled Net CO2 Uptake 

© 2015 John Wiley and Sons. All rights reserved. 

 

Abstract. Satellite studies of the terrestrial Arctic report increased summer greening and longer 

overall growing and peak seasons since the 1980s, which increases productivity and the period 

of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow 

cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly 

abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our 

aim was to determine the influence of greater deciduous shrub abundance on tundra canopy 

phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing 

and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-

dominated and evergreen/graminoid-dominated community-level canopy phenology throughout 

the growing season using the normalized difference vegetation index (NDVI). We used a tundra 

plant-community specific leaf area index (LAI) model to estimate LAI throughout the green 

season, and a tundra specific NEE model to estimate the impact of greater deciduous shrub 

abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. 

We found that deciduous shrub canopies reached the onset of peak green 13 days earlier and the 

onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-

day extension of the peak season. The combined effect of the longer peak season and greater leaf 

area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous 

shrub communities compared to evergreen/graminoid communities, while the longer peak season 

alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results 

suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater 

leaf area, but also due to an extension of the period of peak greenness, which extends the period 

of maximum carbon uptake. 

 

 



 37 

2.1 Introduction   

Global air temperature has increased by about 0.72 °C since 1950 (IPCC 2013). Arctic air 

temperature has increased more than twice that amount (about 2 °C) over the same period 

(AMAP 2012, Overland et al. 2012), resulting in a particularly strong warming trend in the 

Arctic (Chapin et al. 2005, McBean et al. 2006, Serreze & Francis 2006). Ecological responses 

have already become apparent (Walther et al. 2002, ACIA 2004). Many regions, for instance, 

have experienced an earlier start and/or a later end to the growing season, resulting in longer 

growing seasons at the pan-arctic scale (Tucker et al. 2001, Jia et al. 2004). Some studies have 

found an increase in growing season length of 12 to 14 days per decade at high northern latitudes 

of North America (Myneni et al. 1997, Zeng et al. 2011) and 6 to 7 days per decade in northern 

Eurasia (Zhou et al. 2001, Jeong et al. 2011). Other studies suggest the lengthening of the 

growing season has been more significant in Eurasia than North America (Barichivich et al. 

2013).  

Some arctic regions are also experiencing shifts toward an earlier peak season (i.e. the 

period of maximum tundra greenness) (Goetz et al. 2005, Goetz et al. 2011, Jia et al. 2009, 

Tagesson et al. 2012). A longer peak season extends the period of maximum leaf out and 

photosynthetic activity (Kikuzawa 1995, Oberbauer et al. 1998), which extends the period of 

maximum carbon (C) uptake within a given year (Richardson et al. 2013, Mbufong et al. 2014). 

This is especially important in the Arctic, which has extremely short growing seasons (often < 

100 days), and where an extension of just a few days can have significant effects on annual 

carbon uptake (van Wijk et al. 2003). Euskirchen et al. (2006), for instance, estimate that for 

each day the growing season is extended in the arctic tundra, net carbon uptake increases by 5.3 

g C m-2 yr-1. As the area of pan-arctic tundra that melts out annually covers approximately 6.5 

million km2, this suggests that a 1-day extension of the growing season could increase the tundra 

biome’s annual carbon uptake by ~ 35 tons.  

 While changes in air temperature (Hollister et al. 2005, Delbart & Picard 2007, Xu et al. 

2013) and snow cover duration (Stow et al. 2004, Wipf 2010, Pau et al. 2011) are key factors 

influencing recent shifts in arctic canopy phenology, other major changes may also be 

contributing. For example, over the same time period satellite sensors have observed changes in 

canopy phenology and growing season length, they have also detected an increase in the peak 

greenness of the arctic tundra (Bunn et al. 2007, Verbyla 2008, Jia et al. 2009), as measured by  
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increases in the normalized difference vegetation index (NDVI). This greening has been 

attributed to increased growth of extant deciduous shrubs (primarily birch, willow, and alder) as 

well as the expansion of deciduous shrubs into non-shrub tundra that is typically dominated by 

evergreens, graminoids, and cryptogams (Jia et al. 2003, Olthof et al. 2008, Forbes et al. 2010, 

Fraser et al. 2011). These findings are supported by comparative photo-interpretation (Sturm et 

al. 2001b, Tape et al. 2006) and field surveys (Sturm et al. 2001a, Hinzman et al. 2005, 

Elmendorf et al. 2012). Deciduous shrubs are predicted to continue to expand their range and 

grow larger (Sturm et al. 2005b, Wookey et al. 2009, Myers-Smith et al. 2011, Pearson et al. 

2013), which is likely to result in the decline of shade-intolerant plant functional types, such as 

evergreens, graminoids, and cryptogams (Chapin et al. 1995, Cornelissen et al. 2001, Wahren et 

al. 2005, Walker et al. 2006). Since it has been shown that deciduous shrub-dominated tundra 

communities have accelerated green-up rates (Vierling et al. 1997), and reach peak NDVI earlier 

compared to graminoid and evergreen-dominated tundra (Jia et al. 2004), we hypothesized that 

the increased abundance of deciduous shrubs is likely contributing to satellite observations of 

earlier tundra peak seasons (Goetz et al. 2005, Goetz et al. 2011, Tagesson et al. 2012), and that 

this in turn is enhancing seasonal carbon uptake by tundra vegetation.  

To test these hypotheses at a plot-level scale we tracked community-level phenology of 

deciduous shrub-dominated and evergreen/graminoid-dominated canopies in the arctic foothills 

region of Alaska throughout the duration of the 2013 growing season. We determined canopy 

phenology metrics (i.e. onset of greening, onset of peak green, and onset of senescence) by 

applying both threshold analysis and piecewise linear regression modeling to curves of growing 

season near-surface measurements of daily plot-level NDVI. We then estimated leaf area (LAI) 

using previously determined NDVI-LAI relationships for arctic vegetation (Street et al. 2007), 

and used the arctic-specific model of Shaver et al. (2007) to predict net ecosystem exchange 

(NEE) throughout the green season. A number of studies have shown differences in canopy 

phenology among different tundra types (e.g. Vierling et al. 1997, Jia et al. 2004, Narasimhan & 

Stow 2010), as well as differences between tundra vegetation communities in net carbon flux 

(e.g. Shaver et al. 2007, Street et al. 2007). However, to our knowledge this is the first field study 

to combine both, with a focus on peak season length, and to make comparisons between 

naturally occurring deciduous shrub and evergreen/graminoid tundra communities. This 

approach allows us to determine the influence of deciduous shrub abundance on canopy 
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phenology and to estimate the relative effect of deciduous shrub abundance on net ecosystem 

carbon exchange.  

 

2.2 Methods   

2.2.1 Study Sites 

Datasets were collected from snowmelt until snowfall in 2013 (from 1 June to 5 

September) at two field sites, near the Sagavanirktok River-Department of Transportation camp 

(SDOT) and Imnavait Creek (IMVT) (Figure 2.1). Average elevation at IMVT is ~ 900 m and at 

SDOT is ~ 500 m. The two field sites are located in the vicinity (within ~ 30 km) of Toolik Field 

Station in the northern foothills of the Brooks Range, Alaska (68º38’ N, 149º34’ W). Annual 

precipitation at Toolik is 200-400 mm, with 45% falling as snow (van Wijk et al. 2005). The 

average growing season at Toolik extends from approximately late May/early June until mid- to 

late August, during which time the average air temperature is 7 ºC (Johnson et al. 2000). Based 

on the canopy greenness metrics derived from our seasonal NDVI measurements, we define the 

growing season as the period from the onset of greening (shortly after snowmelt) until the end of 

senescence (after prolonged snowfall), and define the peak season as the period from the onset of 

peak green until the onset of senescence. Although our field sites experienced delayed snowmelt 

in 2013 relative to the three previous years, air temperature and photosynthetically active 

radiation (PAR) throughout the growing season (Figure 2.2) were within the average range of 

values for Toolik (Johnson et al. 2000, Heskel et al. 2013). 

In May 2010, two 20,000 m2 study areas were selected at each field site: one 

evergreen/graminoid study area (EG; the “Open” areas in Chapter one) and one deciduous shrub 

study area (DS; the “Shrub” areas in Chapter one). Two 100 m transects were established within 

each EG and DS study area at each field site (for a total of 8 transects), and ten 1 m2 quadrats 

were established at 10 m intervals along each transect (for a total of 80 quadrats). Because only 

18 instruments were available to measure canopy phenology for this study, two to three quadrats 

along each transect were chosen to best represent vegetation communities with naturally 

occurring maximum and minimum deciduous shrub dominance (see Percent Vegetation Cover). 

In total, we monitored 9 DS (n = 4 at IMVT & 5 at SDOT) and 9 EG (n = 5 at IMVT & 4 at 

SDOT) canopies. 
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Figure 2.1. Map of Alaska and 

the North Slope of the Brooks 

Range (inset) showing the 

location of the two field sites 

near the Toolik Lake field 

station used in this study. 

IMVT = Imnavait Creek; and 

SDOT = Sagavanirktok River-

Department of Transportation. 

Figure 2.2. Two-day 
averages of seasonal (a) air 
temperature (Celsius) and 
(b) photosynthetic active 
radiation (PAR) at two 
field sites, used in this 
study, in the northern 
foothills of the Brooks 
Range, Alaska. Error bars 
represent +/- 1 SEM.  
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2.2.2 Percent Vegetation Cover 

Plant cover was measured in each 1 m2 quadrat in late July (period of maximum leaf 

area) of 2010 by placing a frame outlining 20 cm × 20 cm sub-quadrats over each 1 m2 quadrat 

and visually estimating the plant canopy from directly above, with groups summing to 100%. 

The cover of leaves and plants hidden by over story vegetation was not included, which may 

have led to an underestimate for low-lying plants, such as mosses, in some quadrats. Based on 

this percent cover data (Figure 2.3), we selected nine DS quadrats that contained high percent 

cover (ranging from ~ 30-90%) of deciduous shrubs (mainly Betula nana and Salix spp.), and 

low percent cover of evergreens and graminoids (ranging from ~ 1-30%). We also selected nine 

EG quadrats that contained low percent cover of deciduous shrubs (ranging from ~ 7-30%) and 

high percent cover of evergreens and graminoids (ranging from ~ 20-70%). DS and EG canopies 

had similar amounts of moss cover and were interspersed with forbs and lichens. 

 

 

Figure 2.3. Percent cover of functional groups for deciduous shrub (DS) canopies (blue bars) and 

evergreen/graminoid (EG) canopies (brown bars). Bars represent averages for both sites (n = 9 per group, per cover 

type). ANOVA was used to compare means between DS and EG canopies. Bars marked with different letters are 

significantly different from one another (P < 0.05) based on Tukey’s HSD comparisons. Error bars represent 1 SEM 

(standard error of the mean). 
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2.2.3 Canopy Phenology 

2.2.3.1 Spectral Reflectance Measurements and Calculation of NDVI 

The seasonal pattern in canopy greenness was determined from broadband NDVI 

calculated using two light sensors (Figure 2.4): (1) a PAR smart sensor, and (2) a Silicon 

Pyranometer smart sensor (Onset Computer Corporation, Bourne, MA, USA). Prior to snowmelt, 

downward-looking light sensors were fitted with cylindrical sheaths (Figure 2.4) to limit the full 

angle cone of acceptance field of view (FOV) to 45° and sensors were positioned 50 cm above 

the top of the canopy in each 1 m2 quadrat, so that each measurement’s circular footprint was 

approximately 0.75 m2. Light sensors measured canopy reflectance every two minutes from 1 

June to 5 September 2013, and data were stored on a HOBO Weather Station logger (Onset 

Computer Corporation). Only NDVIbroadband values collected between 1200 and 1400 local time 

were used because solar noon occurs between 1300 and 1330 during the growing season in our 

study region. 

 

 

Figure 2.4. Example of equipment assemblages in evergreen/graminoid (EG) canopy (left) and deciduous shrub 

(DS) canopy (right) used in this study to determine the normalized difference vegetation index (NDVI). Sensors 

collected photosynthetically active radiation (PAR), solar irradiance, and air temperature data every two-minutes 

from 1 June to 5 September 2013.  

 

 

In one quadrat at each of the two sites, the same set of light sensors were placed looking 

upward to measure incoming light conditions and were used as calibration references and to filter 

data (Shory et al. in prep. 2014). Upward-looking sensors were not sheathed and thus 
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incorporated incoming solar light from the full upper hemisphere. Filters were developed to 

select clear sky data points. First, a clear day was selected by visual inspection of irradiance 

charts. A clear day has a characteristic smooth bell-shaped curve easily distinguished from the 

jagged curves of cloudy days. Based on this index day, thresholds were generated. For each 

sensor, the maximum irradiance value on the index day was internally extracted. This was the 

sensor’s clear sky noon value (CSNV). Thresholds for each sensor were generated as 75–125% 

of the CSNV for that sensor. At each time point, if any of the sensor reading needed for 

NDVIbroadband was outside the thresholds for that sensor, NDVIbroadband was not calculated for that 

time point for that instrument. Clear sky conditions occurred frequently enough so that 80–120 

values were obtained each day. Occasionally, an entire day’s data were rendered invalid due to 

persistent inclement weather conditions (e.g. continuous precipitation or snow cover), and these 

data points were removed. 

Equations 2.1 through 2.3, adapted from methods outlined in Huemmrich et al. (1999) 

and described in detail in Shory et al. (in prep. 2014), were used to calculate NDVIbroadband from 

the two light sensors. PAR sensors recorded photosynthetically active radiation (mol photons 

m-2 s-1) over a broad visible band (PAR: 400 – 700 nm). Pyranometer sensors recorded irradiance 

(W m-2) over a broad visible and infrared (shortwave) band (SW: 300 – 1100 nm). First, PAR 

measurements were converted to units of W m-2 by multiplying by 0.21 J mol-1 (Huemmrich et 

al. 1999, Shory et al. in prep. 2014). PAR reflectance (ρPAR) was then calculated using Equation 

2.1, where EPARrefl and EPARin (W m-2) are the reflected and incoming PAR values, respectively. 

Optical infrared reflectance (ρOIR) was calculated using Equation 2.2, where ESWin and ESWrefl 

(W m-2) are the shortwave (visible + infrared) irradiances for both incoming and reflected fluxes, 

respectively. These reflectance values were then used to calculate a broadband NDVIbroadband 

using Equation 2.3. 

 

ρPAR = EPARrefl / EPARin        (Equation 2.1) 

 

ρOIR = (ESWrefl - EPARrefl) / (ESWin -EPARin)     (Equation 2.2) 

 

NDVIbroadband = (ρOIR - ρPAR) / (ρOIR + ρPAR)     (Equation 2.3) 
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In addition to high temporal resolution NDVIbroadband data from PAR and pyranometer 

sensors, we also collected weekly spectral reflectance in all quadrats from 1 June to 16 July 2013 

with a field portable spectroradiometer (FieldSpec3, Analytical Spectral Devices, Boulder, CO, 

USA) so that NDVIbroadband values could be calibrated/converted and used to calculate leaf area 

(see Leaf Area Index Model). The FieldSpec3 has a 25° full angle cone of acceptance FOV with 

a spectral sampling interval of 1.4 nm. FieldSpec3 radiance measurements were preceded by a 

calibration scan of a 99% reflectance white standard (Spectralon, LabSphere, North Sutton, NH, 

USA) to normalize for changes in light conditions between measurements. The foreoptic was 

held 1 m above the top of the canopy, so that each measurement’s circular footprint was 

approximately 0.15 m2. Five measurements were made within each 1 m2 quadrat to capture 

spatial heterogeneity of each quadrat. Spectral measurements were converted to reflectance 

values, and NDVIspectroradiometer was calculated using Equation 2.4 from visible red (R: 650 – 690 

nm) and near-infrared (NIR: 750 – 850 nm) reflectance. The five NDVIspectroradiometer values 

associated with each quadrat were averaged to give a mean quadrat value. 

 

NDVIspectroradiometer = (NIR - R) / (NIR + R)      (Equation 2.4) 

 

NDVIspectroradiometer and NDVIbroadband values showed a strong linear correlation (R2 = 0.85, 

P < 0.001, F1,120 = 712.3; Figure 2.5). We used this linear relationship (Equation 2.5) to convert 

the broadband NDVIbroadband values to calculate leaf area with higher precision. Converted values 

are hereafter referred to as NDVI. 

 

y = 2.13085x – 0.91531       (Equation 2.5) 

 

2.2.3.2 Determination of Phenological Metrics 

Prior to determining phenological metrics, a locally weighted regression (loess) was used 

to smooth data (Cleveland 1979, Cleveland & Loader 1996). To produce a relatively smooth 

curve while still capturing the important and intrinsic structure of the data, we set the smoothing 

parameter (α) = 0.2 (Jacoby 2000). Although α values > 0.5 are often used for highly variable

and scattered data (Cleveland & Loader 1996, Jacoby 2000), we chose 0.2 because lower 

parameters (α < 0.2) did not smooth the curve enough, yet our data were not so variable that we 
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needed to use a high value (α > 0.2), which would have removed valuable information in the 

seasonal NDVI curves used to determine precise phenological parameters. After smoothing, we 

used two methods (threshold analysis and piecewise regression modeling) to determine the date 

[day of the year (DOY)] of three canopy phenology metrics for each of the 18 seasonal NDVI 

curves: (1) onset of greening; (2) onset of peak green; and (3) onset of senescence. The fourth 

phenological metric, end of senescence (4), was determined as the date on which NDVI values 

dropped dramatically following multiple days of snowfall/snow cover, which occurred on 5 

September (DOY 248) for all quadrats. Quadrat-specific dates on which each phenological 

metric was reached – as determined by both methods – can be found in Figure 2.6. 

Although there are several methods to model land surface phenology from remotely 

sensed data (White et al. 2009, Klosterman et al. 2014), we chose thresholds and piecewise linear 

regression modeling for the following reasons. Thresholds are commonly used and considered to 

be the simplest method for phenological studies using NDVI (de Beurs & Henebry 2010, Zeng et 

al. 2011). However, threshold analysis can be problematic given the variability of NDVI among 

different sensors (van Leeuwen et al. 2006, Zeng et al. 2011), across different regions (White et 

Figure 2.5. Relationship between 

NDVIbroadband values derived from 

photosynthetically active radiation 

(PAR) and solar irradiance (pyrano-

meter) light sensors, and 

NDVIspectroradiometer values derived 

from a FieldSpec3 (ASD) portable 

field spectroradiometer 

measurements. Data represents daily 

averages from all 18 quadrats at each 

site (IMVT and SDOT) from 1 June 

to 16 July 2013 (n = 140). 
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al., 2003), and over time. Although using the ratio method developed by Kogan (1995) alleviates 

some of the problems with using thresholds (White et al. 1997), threshold analysis may not be 

optimal when dealing with high temporal resolution NDVI data that exhibit daily variations and 

that have not been obtained throughout an entire 365-day year (de Beurs & Henebry 2010). In 

contrast, piecewise linear regression modeling has the potential to find precise inflection points 

(Vieth 1989) without relying on thresholds (Zhang et al. 2003, Chandola et al. 2010) and allows 

for the variable temporal nature of NDVI curves (de Beurs & Henebry 2010). Further, piecewise 

analysis best-matched our view of seasonal canopy development (e.g. that the onset of greening 

is when vegetation begins to quickly green, and that the peak season is when the canopy is 

constant in greenness), and has been successful in identifying ecological thresholds (Toms & 

Lesperance 2003, Wang et al. 2011) and modeling inflection points in NDVI data (Piao et al. 

2011, Sun et al. 2011, Zhang et al. 2013). 

For threshold analysis, a locally tuned NDVI threshold was used (White et al. 1997, de 

Beurs & Henebry 2010), where the state of the ecosystem is indexed by transforming the NDVI 

to a 0 to 1 NDVIratio, using Equation 2.6, where NDVI is the daily NDVI, and NDVImax and 

NDVImin are the seasonal maximum and minimum of the NDVI curve, respectively. Onset of 

greening was defined as the date when the NDVIratio value of 0.5 was exceeded. Onset of peak 

green was defined as the date when a NDVIratio value of 0.9 was reached and consistently 

exceeded. Onset of senescence was defined as the date when NDVIratio values dropped below 0.9. 

 

NDVIratio  = (NDVI – NDVImin) / (NDVImax – NDVImin)   (Equation 2.6) 

 

Piecewise linear regression modeling was applied to seasonal NDVI curves using the 

‘segmented’ package in R (R Core Team 2014). The conceptual framework and mathematical 

calculations used to find inflection points in nonlinear models are detailed in Muggeo (2003 & 

2008). Onset of greening was defined as the point in the curve (i.e. the date) when NDVI began 

to increase rapidly following snowmelt. Onset of peak green was defined as the point in the  

curve when NDVI began to level out. Onset of senescence was defined as the point in the curve 

when NDVI began to decrease. Prior to modeling, phenology metrics were visually estimated in 

Excel (Microsoft Excel 2008 for Mac, v. 12.0, Redmond, WA, USA) and inflection points 

determined from piecewise modeling closest to visual estimates and with the lowest standard 
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errors were chosen as representative dates. 

Using the above four canopy phenology metrics determined via both the threshold and 

piecewise regression techniques, we calculated growing season length (from the onset of 

greening to the end of senescence) and peak season length (from the onset of peak green to the 

onset of senescence) for each quadrat. To determine the daily rate of change in NDVI during 

green-up (i.e. rate of green-up), linear slopes of the segments of NDVI curves from the onset of 

greening to the onset of peak green were calculated. These canopy metrics were determined for 

each of the 18 quadrats, and means were then calculated for DS (n = 9) and EG (n = 9) canopies. 

Although we present phenology metrics determined from both threshold and piecewise 

regression methods, we used dates determined from piecewise regressions to model NEE (see 

Net Ecosystem Exchange Model) for several reasons. First, both methods yielded similar results 

for the onset of peak green and the onset of senescence (Figure 2.6). Also, because piecewise 

regression analysis is more robust, it better matched our view of seasonal canopy development in 

terms of the onset of greening (e.g. that the onset of greening is when NDVI increases rapidly 

after a flat period following snowmelt). 

 

2.2.4 Leaf Area Index Model 

Calibrated daily values of canopy NDVI were used to model daily changes in leaf area 

index (LAI) (Equation 2.7) in m2 leaf m-2 ground using the model developed by Street et al. 

(2007).  

    

LAI = a * eb*NDVI        (Equation 2.7) 

 

Model parameters in Equation 2.7 were varied for each quadrat depending on species 

composition (see table 1 in Street et al. 2007), which was determined from our percent cover data 

described above. Parameters from Street et al. (2007) for Betula and Salix vegetation 

communities were used to derive DS canopy LAI, and parameters for Tussock and Sedge 

vegetation communities were used to derive EG canopy LAI (Table 2.1). Although this NDVI-

LAI model does not explicitly include biophysical variables (e.g. leaf layering and orientation) 

(Baret & Guyot 1991), the model parameters from Street et al. (2007) were chosen because these  
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Figure 2.6. Quadrat-level phenology modeling of seasonal loess smoothed NDVI curves of deciduous shrub 

canopies (DS – solid circles; blue font) and evergreen/graminoid canopies (EG – open circles; brown font). 

Horizontal lines extending to dates on the x-axis depict dates of onset of greening (orange lines), (2) onset of peak 

green (purple lines), and (3) onset of senescence (black lines). Dashed lines represent dates determined using 

threshold analysis, and solid lines represent dates determined using piecewise regression analysis. For phenology 

dates where both methods yielded the same results only a solid line is visible. 

 

 

vegetation specific parameters were derived from nearby low arctic sites (including from our 

IMVT site) with similar vegetation characteristics as those used in this study, and take into 

account changes in leaf area across different vegetation communities. Also, although other 
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studies have developed models to estimate LAI using NDVI through space (van Wijk & 

Williams 2005, Steltzer & Welker 2006), the relationships derived by Street et al. (2007) were 

developed from mid-June through August, and include changing canopy phenology dynamics 

over time. It is important to note that this LAI model was not developed during senescence and 

assumes changes in NDVI are due to changes in leaf area. However, after the onset of 

senescence, reductions in NDVI are due to changes in both leaf color and leaf area. To capture 

trends during the period of rapid greening that occurs shortly after snowmelt, we therefore  

defined a new period termed the ‘green season’, which extends from the onset of greening to the 

onset of senescence, and modeled LAI data during this green season period only. 

 

 

Study area 

(this study) 

Vegetation Type 

(Street et al. 2007) 
    a b 

Deciduous shrub Betula 0.0132 6.271 

 
Salix 0.0323 5.625 

Evergreen/graminoid Tussock 0.0064 7.210 

 Sedge 0.1516 2.663 

 

 

 

2.2.5 Net Ecosystem Exchange Model 

Net ecosystem exchange of CO2 (NEE) was calculated using the model of Shaver et al. 

(2007) (Equations 2.8 through 2.10), using measurements of PAR and air temperature (air T) 

made every two minutes throughout the season, and daily estimates of LAI based on the midday 

measurements of NDVI described above. Because it has been shown that photosynthesis per unit 

leaf area is relatively constant throughout the growing season in the Alaskan arctic tundra 

(Heskel et al. 2013), knowing only the amount of leaf area of the canopy (as estimated by LAI), 

as well as PAR and air T, allows for reasonable estimation of NEE throughout the season even 

though the NEE model was developed mid-season.  

NEE (mol CO2 m
-2 s-1), calculated using Equation 2.8, is the difference between overall 

ecosystem respiration (RE) and gross primary production (GPP), where negative values of NEE 

Table 2.1. Model parameters used to 

predict leaf area indices (LAI) using 

NDVI (Equation 2.7: LAI = a * e
b*NDVI

) 

based on best-fit exponential regression 

parameters for the LAI-NDVI 

relationship from table 2 in Street et al. 

(2007). Vegetation types selected for use 

in this study were based on a comparison 

of aerial percent cover of our research 

areas compared to information in table 1 

in Street et al. (2007). 
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represent net CO2 uptake. We used parameter values for PmaxL, k, E0, β, R0, and RX as determined 

by Shaver et al. (2013) for the low Arctic.  

 

NEE = RE  – GPP        (Equation 2.8) 

 

RE was calculated using Equation 2.9, where R0 (1.177 mol CO2 m
-2 leaf s-1) is the basal 

respiration rate, which accounts for a majority of both autotrophic and heterotrophic respiration 

(Shaver et al. 2013), and varies with changes in LAI, the parameter  (0.046 C-1), and air T (C). 

Air T used in Equation 2.9 was recorded ~ 50 cm above ground level in all 18 quadrats with a 

HOBO TMC20-HD Sensor (Onset Computer Corporation). The additional source of respiration 

in Equation 2.9, Rx (0.803 mol CO2 m
-2 ground s-1), comes from deeper soil horizons and is 

independent of LAI and short-term fluctuations in air T (Shaver et al. 2007). Rx was added to the 

model because it improves accuracy of predictions and the fit of the model, and prevents RE from 

going to zero when there is no leaf area (Shaver et al. 2007). 

 

RE = (R0 * eβ*airT * LAI) + Rx       (Equation 2.9) 

 

GPP was calculated using Equation 2.10, where PmaxL (14.747 mol m-2 leaf s-1) is the 

light saturated photosynthetic rate per unit leaf area, k (0.5 m-2 ground m-2 leaf) is a Beer’s law 

extinction coefficient, and E0 (0.041 mol CO2 fixed mol-1 photons absorbed) is the initial slope 

of the light response curve. Incoming solar irradiance (I), which is the top-of-the-canopy 

photosynthetic photon flux density (mol PAR m-2 ground s-1) (Rastetter et al. 1992), was 

recorded ~ 50 cm above the canopy in one quadrat at each site using upward-looking PAR 

sensors described above. All air T and I data (Figure 2.2) were recorded every two-minutes from 

1 June to 5 September 2013 and stored on a HOBO Weather Station logger (Onset Computer 

Corporation, USA).  

 

GPP = (PmaxL / k) * ln (PmaxL + E0 * I) / (PmaxL + E0 * I * e(-k*LAI))  (Equation 2.10) 

 

We calculated RE, GPP, and NEE (mol CO2 m-2 s-1) at two-minute intervals through 

each day (24 hours) for each of the 18 quadrats, and estimated seasonal NEE based on each 
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quadrat’s respective phenology dates derived from piecewise linear regression analysis. Total 

peak season NEE (g C m-2 season-1) was estimated by integrating daily average NEE values from 

the onset of peak green to the onset of senescence. As with LAI, the NEE model was not 

developed after the period of senescence, and because modeled LAI was used for NEE 

calculations, we modeled NEE data during the green season only. Because we did not estimate 

total growing season NEE, to capture the period of green-up/leaf expansion (prior to peak green), 

we estimated total green season NEE (g C m-2 season-1) by integrating daily average NEE values 

from the onset of greening to the onset of senescence. To tease out the effect of differences in 

leaf area between communities and further examine the effect of changing season length on NEE, 

total integrated NEE was also estimated for all nine DS quadrats using average EG peak and 

green season dates, as well as for all nine EG quadrats using average DS peak and growing 

season dates (see Statistical Analysis).  

The NEE model used in this study has been tested across a wide array of arctic 

ecosystems. For instance, in comparing 1,410 modeled versus in-situ measured CO2 flux 

measurements from Alaskan and Swedish arctic sites, Shaver et al. (2007) found the NEE model 

confidently predicted CO2  fluxes (R2 = 0.8) with no a priori knowledge of species composition 

and using model inputs of only PAR, air T, and LAI derived from NDVI. Further testing of the 

model using eddy covariance data was performed by Rastetter et al. (2010), where they were 

able to reliably predict NEE for all major vegetation types in the low Arctic (R2 > 0.77). Still 

further testing performed by Shaver et al. (2013) across the pan-Arctic showed good agreement 

between 4,834 measured versus predicted NEE (R2 = 0.76). The model has also proven effective 

at predicting fluctuations in NEE over large regions using satellite-derived NDVI. Loranty et al. 

(2010), for instance, used MODIS satellite-based estimates of NDVI to calculate LAI and predict 

NEE over approximately 1 km2 at low arctic sites in Alaska and Canada. Across a wide range of 

sites and years, Loranty et al. (2010) found good agreement between NEE measured at eddy 

covariance towers and modeled NEE (R2
 = 0.76).  

 

2.2.6 Model Sensitivity Analysis 

We assessed the sensitivity of modeled NEE to changes in air T, PAR, LAI, and the onset 

date of the peak season by varying the original/baseline values of these four parameters by ± 

10%, 20%, and 30% for each quadrat. We then recalculated NEE for every two-minute interval 
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(applying the same methods described above). The percent changes in model parameters were 

applied equally across both DS and EG canopies. A peak season beginning on DOY 189 and 40 

days long was assumed as the baseline value because this was the average date of onset and 

length of the peak season across all DS and EG canopies using piecewise regression analysis. 

 

2.2.7 Statistical Analysis 

Data were checked for normality in distribution and homogeneity of variances using the 

Shapiro-Wilk and Bartlett’s tests. Data that did not meet assumptions of normality (Shapiro-

Wilk: P < 0.05) and/or homogeneity (Bartlett’s: P < 0.05) was log- or square-root-transformed 

prior to statistical analysis. For all between subject tests, we report Wilks’ Lambda results. 

Differences were considered significant at P < 0.05. All statistical analysis was done in R (R 

Core Team 2014). 

A multivariate analysis of variance (MANOVA) was conducted to test for differences in 

the three canopy-level phenology stages between canopy types (n = 9 DS canopy, n = 9 EG 

canopy), with site (IMVT & SDOT) as a blocking factor. Main effects determined from both 

phenology analysis methods are reported in tables, and main and interaction effects from results 

of piecewise regression analysis are reported in the text. 

One-way analysis of variance (ANOVA), with site as a blocking factor, was used to test 

for differences between canopy types in the rate of green-up, growing and peak season lengths, 

and total green season and peak season NEE.  

One-way ANOVA, with site as a blocking factor, was also used to test the effects of 

changing season length on total green and peak season NEE (determined using piecewise 

regression phenology dates) within each canopy type. To do this, NEE was estimated for all 

quadrats using average DS and EG green and peak season lengths. And changes in total green 

season NEE with changing season length were compared within vegetation communities (i.e. DS 

NEE at 63 days was compared to DS NEE at 68 days; and EG NEE at 63 days was compared to 

EG NEE at 68 days). The same comparison was made for peak seasons within each vegetation 

community (DS NEE at 44 days compared to at 34 days; EG NEE at 44 days compared to at 34 

days).  

A repeated measures ANOVA, with date and canopy type as the main effects and site as 

a blocking factor, was used to test for differences between canopy types for variables measured 
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(NDVI) or estimated (LAI, RE, GPP, and NEE) repeatedly throughout the season. Linear 

regression models were used to evaluate relationships between percent cover of deciduous shrubs 

and 1) onset of greening, 2) rate of green-up, 3) onset of peak green, 4) onset of senescence, 5) 

peak season length, 6) growing season length, 7) green season NEE, and 8) peak season NEE.  

 

2.3 Results 

2.3.1 Canopy phenology 

Following snowmelt, DS canopies had lower NDVI values than EG canopies (Figure 2.7), 

but faster greening rates quickly led to greater NDVI values in DS canopies (effect of 

date*canopy type: NDVI - F1,248 = 14.54, P < 0.01). Although the pattern of NDVI changed 

throughout the season (effect of date: NDVI - F1,88 = 51.04, P < 0.001) and differed between sites 

(effect of site: NDVI - F1,248 = 332.16, P < 0.001), DS canopies maintained higher NDVI values 

than EG canopies throughout the majority of the season (effect of canopy type: NDVI - F1,248 = 

702.15, P < 0.001).  

The pattern of canopy phenology (Figure 2.7 & Table 2.2a) differed between canopy 

types (effect of canopy type: phenology - F3,13 = 12.85, P < 0.001) and sites (effect of site: 

phenology - F3,13 = 18.78, P < 0.001) largely due to earlier onset of the peak season and onset of 

senescence for DS canopies in general, and at SDOT in particular. Because DS canopies reached 

the onset of greening 2 days later (P < 0.05) than EG canopies (Table 2.2a), but ended 

senescence at the same time, the growing season length was 2 days shorter for all DS compared 

to EG canopies (Table 2.2b). However, because DS canopies had an accelerated rate of green-up 

(P < 0.001), they reached the onset of peak green 13 days earlier than EG canopies (P < 0.001). 

In addition, DS canopies reached the onset of senescence only 3 days earlier than EG canopies. 

Thus, though SDOT had faster green-up rates (effect of site: green-up rate - P < 0.05, F1,15 = 

5.54) and longer peak seasons compared to IMVT (effect of site peak season length: F1,15 = 13.31, 

P < 0.05), the average peak season for all DS canopies (SDOT and IMVT combined) was 10 

days longer (P < 0.05) compared to EG canopies (Table 2.2b). 
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Figure 2.7. Seasonal canopy greenness (loess smoothed NDVI) for deciduous shrub (DS – blue symbols) and 

evergreen/graminoid (EG – brown symbols) canopies at the two study sites. Error bars represent 1 SEM. On the 

respective NDVI curves, dates when canopy phenology metrics were reached are marked with purple (DS) and 

orange (EG) points, with arrows of matching colors extended to the x-axis. Canopy phenology parameters are 

indicated by numbered boxes on the x-axis: [1] onset of greening, [2] onset of peak green, and [3] onset of 

senescence. Phenology dates were determined (a) using piecewise linear regression analysis and (b) using threshold 

analysis. 
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Table 2.2. Canopy phenology metrics  1 SEM determined from piecewise linear regression modeling and threshold 

analysis. (a) Dates of canopy-level phenological parameters [day of year (DOY)]. Differences indicate number of 

days earlier (minus sign) or later (no sign) deciduous shrub (DS) canopies reached each stage compared to 

evergreen/graminoid (EG) canopies. (b) Lengths (number of days) of growing and peak seasons, and rates of green-

up (slopes). Differences indicate shorter (minus sign) or longer (no sign) seasons, and faster rates of green up for DS 

compared to EG canopies. Asterisks (*) indicate dates or values in a row were significantly different from one 

another, and “ns” indicates no significant difference. Significant main effects of mean comparisons of DS and EG 

canopy values in each row are shown. 

 

 

To further examine the effect of increasing deciduous shrub cover, we evaluated the 

relationship between percent deciduous shrub cover and canopy phenology variables across all 

quadrats (Figure 2.8). We found that, although the onset of greening did not occur earlier as 

deciduous shrub cover increased, the rate of green-up became significantly faster (R2 = 0.7, F1,16 

= 37.59, P < 0.001; Figure 2.8b) and the onset of peak green occurred significantly earlier (R2
 = 

0.8, F1,16 = 58.64, P < 0.001; Figure 2.8c). Although increasing deciduous shrub cover did not 

Phenological parameter DS EG Difference P F df 

(a)                                       Average canopy phenology stage date    

Onset of greening 
      

Piecewise 163 ± 1 161 ± 1 2* < 0.05 4.97 1,15 

Threshold 168 ± 2 168 ± 2 0 ns   

Onset of peak green       

Piecewise 182 ± 2 195 ± 3 −13* < 0.001 16.93 1,15 

Threshold 182 ± 3 193 ± 2 −11* < 0.001 18.47 1,15 

Onset of senescence       

Piecewise 226 ± 1 229 ± 2 −3 ns   

Threshold 227 ± 2 230 ± 2   −3 ns   

(b)                                       Average canopy phenology parameter    

Growing season length 
      

Piecewise 85 ± 1 87 ± 1 −2 ns   

Threshold 80 ± 2 80 ± 2   0 ns   

Peak season length       

Piecewise 44 ± 3 34 ± 4 10* < 0.05 7.39 1,15 

Threshold 45 ± 4 37 ± 3 8* < 0.05 4.91 1,15 

Rate of green-up       

Piecewise 0.018 ± 0.003 0.007 ± 0.002 0.011* < 0.001 16.94 1,15 

Threshold 0.016 ± 0.003 0.005 ± 0.001 0.010* < 0.01 15.46 1,15 
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affect the date of the onset of senescence, nor the overall growing season length, the peak season 

lengthened significantly (R2 = 0.71, F1,16  = 39.38, P < 0.001; Figure 2.8e). 

 

 

 
Figure 2.8. Relationships between percent deciduous shrub cover of canopies along all transects (n = 18) and 
canopy (a) onset of greening, (b) rate of green-up, (c) onset of peak green, (d) onset of senescence, (e) length of the 
peak green season, (f) length of the growing season; and modeled estimates of total net ecosystem exchange (NEE) 
in grams of carbon (C) m-2 season-1 for (g) the green season and (h) the peak season. Canopy metrics were 
determined using piecewise linear regression modeling. Only trend lines (blue) of significant relationships are 
shown. 
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2.3.2 Leaf Area Index Model 

Similar to the pattern of NDVI, the increase in the leaf area index (LAI) during green-up 

was more pronounced for DS canopies compared to EG canopies (effect of date*canopy type: 

LAI - F1,203 = 25.44, P < 0.001; Figure 2.9a). Although the pattern of LAI changed throughout 

the season (effect of date: LAI - F1,71 = 93.6, P < 0.001), DS canopies maintained higher LAI 

throughout most of the green season compared to EG canopies (effect of canopy type: LAI - 

F1,203 = 1070.86, P < 0.001). As with NDVI, SDOT maintained higher LAI values compared to 

IMVT throughout most of the green season (effect of site: LAI - F1,203 = 318.6, P < 0.001). 

 

2.3.3 Net Ecosystem Exchange Model 

The change in respiration (RE) during green-up and senescence was more pronounced for 

DS canopies compared to EG canopies (effect of date*canopy type: RE - F1,203 = 33.59, P < 

0.001; Figure 2.9b). Throughout most of the green season, although the pattern of RE changed 

(effect of date: RE - F1,71 = 43.8, P < 0.05), DS canopies had greater CO2 release from RE 

compared to EG canopies (effect of canopy type: RE - F1,203 = 1030.81, P < 0.001). There was 

also a difference between sites because SDOT maintained higher RE values compared to IMVT 

throughout most of the green season (effect of site: RE - F1,203 = 414.36, P < 0.001). 

Similar to RE, there was a significant interaction effect for the overall gross primary 

production (GPP) data (effect of date*canopy type: GPP - F1,203 = 11.61, P < 0.001; Figure 2.9c) 

and the pattern of GPP changed throughout the season (effect of date: GPP - F1,71 = 13.26, P < 

0.001). Also similar to RE, throughout most of the green season, DS canopies had greater CO2 

uptake from GPP compared to EG canopies (effect of canopy type: GPP - F1,203 = 969.14, P < 

0.001) and SDOT maintained higher GPP values compared to IMVT (effect of site: GPP - F1,203 

= 305.59, P < 0.001). 

The pattern of change throughout the season in net ecosystem exchange (NEE) was 

similar for both DS and EG canopies (Figure 2.9d). However, DS canopies had greater net CO2 

uptake throughout most of the green season compared to EG canopies (effect of canopy type: 

NEE - F1,203 = 342.69, P < 0.001). Also, SDOT tended to have greater net CO2 uptake compared 

to IMVT throughout most of the green season (effect of site: NEE - F1,203 = 52.19, P < 0.001). 

Because DS canopies had higher LAI values during both green and peak seasons, and 

longer peak seasons, DS canopies took up about twice as much C (P < 0.001) during their green 
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season (an estimated additional 113 g C m-2 season-1), and nearly three times the amount of C (P 

< 0.001) during their peak season (an estimated additional 101 g C m-2 season-1) compared to EG 

canopies (Table 2.3). SDOT took up more total carbon compared to IMVT during both the green 

and peak seasons (effect of site: green season NEE - F1,15  = 8.22, P < 0.05; peak season NEE - 

F1,15 = 10.07, P < 0.01). 

 

 

Figure 2.9. Modeled estimates of two-day averages of seasonal (a) leaf area index (LAI), (b) respiration (RE), (c) 

gross primary production (GPP), and (d) net ecosystem exchange (NEE) for deciduous shrub (DS, blue symbols) 

and evergreen/graminoid (EG, brown symbols) canopies at each of the two study sites. Error bars represent 1 SEM. 

 

 

Table 2.3. Modeled estimates of integrated total net ecosystem exchange (NEE) in grams of carbon (C) m
-2

 season
-1

 

 1 SEM for green and peak seasons, as determined by piecewise linear regression modeling. Differences indicate 

amount of additional grams C uptake for deciduous shrub (DS) compared to evergreen/graminoid (EG) canopies; 

and percentages indicate the percent additional carbon gain for DS relative to EG canopies. Asterisks (*) indicate 

values in a row were significantly different from one another. Significant main effects of mean comparisons of DS 

and EG canopy NEE values in each row are shown. 

 DS EG 

Difference 

(% additional)   P   F df 

Green season NEE (g C m
-2

 season
-1

) − 220 ± 11 − 107 ± 17 113 (106%)*   < 0.001 45.47 1,15   

Peak season NEE (g C m
-2

 season
-1

) − 153 ± 13  − 52 ± 13 101 (192%)*   < 0.001 49.36 1,15   
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To tease out the effect of different LAI across vegetation communities, and further 

examine the effect of changing season length, we estimated green and peak season NEE for each 

community type under changing season lengths (Table 2.4). Increasing the green season length 

by 5 days increased carbon uptake for both DS and EG canopies by 3% and 4%, respectively 

(Table 2.4a). Extending the peak season by 10 days increased C uptake by 84% (P < 0.001) for 

DS canopies (an estimated additional 71 g C m-2 season-1) and by 64% (P < 0.05) for EG 

canopies (an estimated additional 30 g C m-2 season-1) (Table 2.4b). 

To further examine the effect of increasing deciduous shrub cover on NEE, we evaluated 

the relationship between percent deciduous shrub cover and seasonal NEE across all quadrats 

(Figures 2.8g & 2.8h). We found that both green and peak season NEE were significantly greater 

when percent deciduous shrub cover was greater (green season NEE - R2 = 0.76, F1,16 = 51.28, P 

< 0.001; peak season NEE - R2 = 0.85, F1,16 = 87.31, P < 0.001). 

 

Table 2.4. Modeled estimates of integrated total net ecosystem exchange (NEE) in grams of carbon (C) m
-2

 season
-1

 

 1 SEM for deciduous shrub (DS) or evergreen/graminoid (EG) canopies, as determined by piecewise linear 

regression modeling. (a) Comparing total NEE under two green season length scenarios: 1) DS green season (DOY 

163 to 226, 63 days) and 2) EG green season (DOY 161 to 229, 68 days). Differences indicate amount of additional 

grams C uptake during the longer green season (i.e. 5 days longer). Percentages indicate the percent additional 

carbon uptake during the longer green season. (b) Comparing total NEE under two peak season length scenarios: 1) 

DS peak season (DOY 182 to 226, 44 days) and 2) EG peak season (DOY 195to 229, 34 days). Differences indicate 

amount of additional grams C uptake during the longer peak season (i.e. 10 days longer). Percentages indicate the 

percent additional carbon uptake during the longer peak season scenario. Asterisks (*) indicate values in a row were 

significantly different from one another, and “ns” indicates no significant difference. Significant main effects of 

mean comparisons of NEE values across one canopy type in each row are shown. 

(a) 
DS green season 

(63 days) 

EG green season 

(68 days) 

Difference 

(% additional) 
   P    F df 

DS
 
NEE (g C m

-2

 season
-1

) − 221 ± 10  − 228 ± 10  7 (3%)  ns    

EG NEE (g C m
-2

 season
-1

) − 103 ± 16  − 107 ± 16  4 (4%)  ns    

(b) 
DS

 
peak season 

(44 days) 

EG peak season 

(34 days) 
      

DS
 
NEE (g C m

-2

 season
-1

) − 156 ± 5 − 85 ± 4 71 (84%)* < 0.001 114.84 1,15 

EG NEE (g C m
-2

 season
-1

) − 77 ± 12  − 47 ± 7  30 (64%)* < 0.05 5.58 1,15 

 

 

2.3.4 Model Sensitivity Analysis 

To assess the sensitivity of total peak season net ecosystem exchange (peak NEE) to 

changes in air T, PAR, LAI, and the onset date of the peak season, we varied individual model 
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parameters by stepwise percentages (Figure 2.10). On average, peak NEE was most sensitive to 

changes in PAR and the timing of the onset of the peak season, and least sensitive to changes in 

LAI. For instance, if considering average percent change (i.e. across both canopy types), a 20% 

increase in LAI increased peak NEE by 12%, whereas a 20% earlier onset of the peak season or 

20% increase in PAR increased peak NEE by 33% and 21%, respectively. The effect changing 

air T had on peak NEE was relatively similar in magnitude of effect, but opposite in directional 

effect compared to other model parameters, where an increase in air T of 20% decreased peak 

NEE by 19%.  

 

 
Figure 2.10. Sensitivity of modeled estimates of total peak season net ecosystem exchange (NEE) for deciduous 

shrub (DS) and evergreen/graminoid (EG) canopies to changes in four NEE model parameters: irradiance (PAR), air 

temperature (Air T), leaf area (LAI), and onset date of the peak season (Peak Onset). Percent differences from 

original values of PAR, Air T, and LAI and a baseline peak onset date of DOY (day of year) 189 are shown on the 

x-axis. Percent change in total peak green season NEE with changes in model parameters are on the y-axis. The 

percent changes in model parameters were applied equally across DS and EG canopies. Error bars represent 1 SEM. 
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Decreases in PAR led to larger magnitude changes compared to the same percentage  

increases in PAR. As this was not the case for the onset of the peak season, peak NEE was, on 

average, most sensitive to the earlier onset of the peak season. For instance, if considering 

average percent change across both canopy types, a 30% increase in PAR increased peak NEE 

by 32%, while a 30% decrease in PAR decreased peak NEE by 47%. On the other hand, a 30% 

earlier (or later) onset of the peak season led to an increase (or decrease) in peak NEE of 46%. 

Although DS and EG canopies’ peak NEE was similarly sensitive to changes in PAR, air 

T, and onset of the peak season, DS canopies were much less sensitive to changes in LAI  

compared to EG canopies (Figure 2.10). For instance, increasing LAI by 30% increased peak 

NEE for DS canopies by 6% and for EG canopies by 28%. And decreasing LAI by 30% 

decreased peak NEE for DS canopies by 21% and for EG canopies by 38%. 

 

2.4 Discussion 

2.4.1 Deciduous Shrubs Lengthen the Period of Peak Canopy Greenness 

We found that deciduous shrub canopies had an accelerated rate of green-up, and reached 

the period of peak greenness 13 days earlier compared to evergreen/graminoid canopies. Because 

deciduous shrub canopies reached the onset of senescence only 3 days earlier, the period of peak 

tundra greenness (from the onset of peak green to the onset of senescence) was 10 days longer 

for deciduous shrub canopies compared to evergreen/graminoid canopies. However, because 

deciduous shrub and evergreen/graminoid canopies began greening at similar times and ended 

senescence at the same time, greater deciduous shrub dominance did not lengthen the overall 

growing season. These results suggest that the ongoing increase in deciduous shrub dominance in 

the arctic tundra (Forbes et al. 2010, Myers-Smith et al. 2011) may be contributing to the 

concurrent satellite-detected trend toward an earlier onset of the peak green season (Goetz et al. 

2005, Jia et al. 2009, Tagesson et al. 2012), ), but not necessarily to observed lengthening of the 

entire growing season (Zhou et al. 2001, Jeong et al. 2011, Zeng et al. 2011). Longer overall 

growing seasons are more likely related to increases in air temperature (Hollister et al. 2005, 

Delbart & Picard 2007, Xu et al. 2013) and reductions in snow cover duration (Stow et al. 2004, 

Wipf 2010, Pau et al. 2011), which cause an earlier onset of greening and/or a later end of 

senescence (Tucker et al. 2001, Jia et al. 2004).  
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2.4.2 Deciduous Shrubs Lengthen the Period of Maximum Carbon Uptake 

We found that due to the combined effects of higher leaf area and a longer peak season, 

deciduous shrub canopies took up nearly three times the amount (an estimated additional 101 g C 

m-2 season-1) of carbon compared to evergreen/graminoid canopies. However, we also found that 

a 10-day extension of the peak season alone nearly doubled the net carbon uptake in deciduous 

shrub canopies, increasing uptake by an estimated 71 g C m-2 season-1. Thus, while a portion (~ 

29%) of the additional carbon uptake by deciduous shrub communities during the period of peak 

greenness was due to greater leaf area, a significant portion (~ 71%) was due to the extended 

duration of the peak season exhibited by deciduous shrub communities compared to 

evergreen/graminoid communities. Our results are supported by previous work showing that the 

carbon gain potential of the tundra is enhanced when the arctic peak season is extended 

(Tagesson et al. 2012). Our findings on the effect deciduous shrub abundance has on the length 

of the peak season are important since carbon uptake at its maximum for all tundra communities 

during the peak season (Richardson et al. 2013, Ueyama et al. 2013, Mbufong et al. 2014). Our 

results suggest that greater deciduous shrub abundance increases carbon uptake not only due to 

greater leaf area, but also due to an extension of the period of peak greenness, which extends the 

period of maximum carbon uptake, and may increase tundra carbon gain as deciduous shrubs 

become increasingly abundant.  

It is important to note that by focusing on the growing season only, this study examined 

the influence of greater deciduous shrub cover on net carbon exchange during only the snow-free 

season, but respiratory carbon flux during the winter may also be altered by increasing deciduous 

shrub cover. Some studies suggest that increasing deciduous shrub cover may enhance carbon 

loss in winter through changes in snow cover dynamics and winter soil temperature regimes 

(Walker et al. 1999, Schimel et al. 2004) that in turn influence heterotrophic respiration. Further, 

it has been suggested that evergreens may be photosynthetically active under the snow in spring 

(Starr & Oberbauer 2003), which may enhance annual carbon uptake where evergreen species 

are abundant. Also, although the model has shown great accuracy in estimating entire ecosystem 

carbon flux across a variety of tundra landscapes (Shaver et al. 2007, Loranty et al. 2010, 

Rastetter et al. 2010), a portion of the unexplained variance may be due in part to respiration 

from shallow soil depths, or differences in plant species composition not incorporated into the 

NEE model (Shaver et al. 2013). While it is not possible to predict with 100% certainty what the 
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future of net carbon flux will be for arctic tundra, our results suggest that increasing deciduous 

shrub cover significantly increases the carbon uptake potential of the tundra by both increasing 

leaf area and extending the length of the peak season.  

 

2.4.3 Modeling Tundra Carbon Uptake 

Our sensitivity analysis suggests that the magnitude of change in total peak season net 

ecosystem exchange (peak NEE) is most sensitive to changes in photosynthetically active 

radiation (PAR) and the timing of the onset of the peak season, and least sensitive to changes in 

leaf area (LAI). Peak NEE was most sensitive to the earlier onset of the peak season. The 

sensitivity of peak NEE to changes in the onset of the peak season supports the main finding of 

our study, where we found that the earlier onset of the peak season significantly increased carbon 

gain in both deciduous shrub and evergreen/graminoid tundra. The sensitivity analysis suggests 

that the effect deciduous shrub cover has on the length of the peak season may be just as, if not 

more, important than the effect deciduous shrub cover has on leaf area when considering tundra 

carbon gain potential. 

  The sensitivity of peak NEE to changes in PAR suggests that changes in insolation, such 

as might be the result of increased cloudiness, may have large effects on peak season NEE. 

Light-attenuation studies in the Alaskan arctic tundra have shown that reduced light 

(representative of increased cloud cover) may decrease photosynthesis (Chapin & Shaver 1996), 

nutrient uptake and plant biomass (Chapin et al. 1995). This may prove important given that 

satellite records suggest summer cloud cover has increased in Alaska (Chapin et al. 2005) and 

the pan-Arctic (Wang & Key 2003) over the last several decades.  

Increases in PAR and LAI, and an earlier peak season onset increased carbon uptake, 

while increases in air temperature (air T) had the opposite effect, since carbon loss from 

respiration increased with increasing air T, while GPP was unaffected. This sensitivity of 

respiration to changes in air T could prove important given that air T is predicted to continue 

rising in the arctic tundra (IPCC 2013). Increasing air T could increase respiration (Cahoon et al. 

2012, Heskel et al. 2013), and potentially offset any increases in carbon uptake due to longer 

peak green seasons and greater leaf area associated with increasing deciduous shrub cover 

(Belshe et al. 2013). 
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 We found that deciduous shrub canopy NEE was less sensitive to changes in LAI than 

evergreen/graminoid canopies. Although higher LAI during peak season increased the daily rate 

of carbon gain in both canopy types, earlier seasons had a critical impact on NEE by increasing 

the number of days early in the peak season when carbon gain was greater than carbon loss. Thus, 

in deciduous shrub tundra, which already has a much higher LAI compared to 

evergreen/graminoid tundra, an earlier onset of the peak season increased carbon uptake much 

more substantially than proportional increases in LAI. 
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CHAPTER THREE: 

NDVI as a Predictor of Canopy Arthropod Biomass in the 

Alaskan Arctic Tundra 

© 2015 Ecological Society of America. All rights reserved. 

 

Abstract. The physical and biological responses to rapid arctic warming are proving acute, and 

as such, there is a need to monitor, understand, and predict ecological responses over large 

spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) 

acquired from airborne and satellite sensors addresses this need as it is widely used as a tool for 

detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, 

and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests 

that it may be similarly applied to characterizing primary and secondary consumer communities. 

Here we develop empirical models to predict canopy arthropod biomass with canopy-level 

measurements of the NDVI both across and within distinct tundra vegetation communities over 

four growing seasons in the arctic foothills region of the Brooks Range, Alaska. When canopy 

arthropod biomass is predicted with the NDVI across all four growing seasons, our overall 

model that includes all four vegetation communities explains 63% of the variance in canopy 

arthropod biomass. Whereas each of our four vegetation community-specific models explain 

74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% 

(dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based 

study suggests that measurements of the NDVI made from air and spaceborne sensors may be 

able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to 

regional scales.  
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3.1 Introduction 

Arctic regions have been warming at a rate two to three times higher than the global 

average since the 1950s (AMAP 2012, Overland et al. 2012, IPCC 2013), and the physical and 

biological responses are proving acute (ACIA 2004, Callaghan et al. 2004, McBean et al. 2006). 

These trends have amplified the need to better monitor, understand, and predict the arctic 

tundra’s ecological responses to climate change over large spatial and temporal scales (Gauthier 

et al. 2013, Nielsen & Wall 2013, Post & Høye 2013). However, arctic landscapes are generally 

vast and largely inaccessible, are characterized by short growing seasons, and can exhibit 

considerable heterogeneity in dominant vegetation cover over small spatial scales (Walker et al. 

1994). Within an area of less than 1 km2 on the north slope of Alaska, for example, vegetation 

cover often includes dry heath tundra on windblown ridge tops, tussock tundra on mesic slopes, 

dwarf-shrub communities in riparian areas, and wet sedge tundra in low-lying, waterlogged areas 

(Shaver et al. 1996, Walker & Walker 1996). Ecosystem phenology and production in the Arctic 

also exhibit a high degree of temporal interannual variability (Markon et al. 1995, Artf et al. 

1999, Hope et al. 2004). Although these factors pose challenges, previous modeling efforts have 

achieved a high degree of predictive ability across diverse tundra communities with widely 

different dominant plant species (Williams & Rastetter 1999, Epstein et al. 2001, Shaver et al. 

2013). Small-scale, localized modeling successes can then be scaled up to address the problems 

of vastness and inaccessibility of the Arctic. The problem then becomes collecting large-scale 

data. 

One solution to the limitations of collecting large-scale data in the Arctic is the use of 

airborne and satellite remote sensing to characterize and monitor ecological change (Pettorelli et 

al. 2005). Several arctic studies have found strong correlations between plot level measurements 

of the normalized difference vegetation index (NDVI) and aboveground biomass (Boelman et al. 

2003, Raynolds et al. 2006), plant community dominance and biophysical structure (Gould et al. 

2002, Boelman et al. 2011), leaf area (van Wijk & Williams 2005, Steltzer & Welker 2006), 

primary productivity (Nemani et al. 2003, Street et al. 2007), carbon flux (Vourlitis et al. 2000), 

and net ecosystem exchange (Boelman et al. 2005, Shaver et al. 2007). Satellite NDVI datasets 

have already been used to quantify regional and pan-arctic trends in the spatial and temporal 

dynamics of various tundra vegetation characteristics, such as vegetation cover type (Stow et al. 
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2004, Jia et al. 2009), productivity (Myneni et al. 1997, Beck & Goetz 2011, Shaver et al. 2013), 

and phenology (Zhou et al. 2001, Zeng et al. 2011).  

A number of arctic studies have also documented predictive relationships between tundra 

vegetation and arthropod abundance (Masters et al. 1998, Haddad et al. 2001, Richardson et al. 

2002), biomass (Schaffers et al. 2008), and density (Coulson et al. 2003). In addition, predictive 

models for arctic arthropod abundance and biomass as a function of climatic factors such as 

temperature, thawing degree days, wind speed, and solar radiation have been successfully 

employed (Høye & Forchammer 2008, Bolduc et al. 2013). Because the NDVI is representative 

of primary productivity and integrates the climatic conditions that affect plant phenology and 

biomass (Jia et al. 2003, Raynolds et al. 2006, Tagesson et al. 2012), and given the strong 

empirical relationships between the NDVI and tundra vegetation characteristics mentioned above, 

the NDVI may also be a good predictor of tundra canopy arthropod biomass. Yet, to our 

knowledge, no studies have explored the use of NDVI as a predictor of consumer biomass in the 

arctic tundra. However, the NDVI has been used in a variety of temperate and tropical 

ecosystems to identify insect infestations (Ji et al. 2004, Zha et al. 2005, Board et al. 2007, 

Jepsen et al. 2009), and quantify the impact of insect herbivory on vegetation biomass 

(Vogelmann 1990, de Beurs & Townsend 2008, Eklundh et al. 2009).  

The goal of this study was to determine empirical relationships between the NDVI and 

canopy arthropod biomass, and subsequently develop an empirical model to predict canopy 

arthropod biomass in arctic tundra landscapes from the NDVI. We established empirical 

relationships between measurements of near-surface, canopy-level NDVI and plant canopy-

dwelling arthropod biomass within and across four distinct vegetation types, over four 

consecutive growing seasons in the arctic foothills region of the Brooks Range, Alaska. As such, 

this is a first step towards assessing the potential for datasets acquired by air and spaceborne 

sensors to quantify spatial and temporal dynamics in canopy arthropod biomass at landscape and 

regional scales. Developing predictive relationships between remotely sensed NDVI and 

arthropod biomass will contribute to our ability to quantify how changes in tundra vegetation 

cover and phenology will affect higher trophic levels as arctic warming continues.  
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3.2 Methods 

3.2.1 Study Sites and Observational Setup 

 Datasets were collected at four field sites located in the vicinity (within ~ 30 km) of the 

Arctic Long Term Ecological Research (ARC LTER) site at Toolik Field Station in the northern 

foothills of the Brooks Range, Alaska (68º38’ N, 149º34’ W, elevation 760 m): Roche 

Mountonnee (ROMO), Toolik Lake Field Station (TLFS), Imnavait Creek (IMVT), and the 

Sagavanirktok River-Department of Transportation camp (SDOT) (Figure 3.1). Annual 

precipitation at Toolik is 200 – 400 mm, with 45% falling as snow; annual average temperature 

is -10 ºC, and average July temperature is 14 ºC (van Wijk et al. 2005).  

 
 

 
 

Each of the four sites included two 20,000 m2 study areas, for a total of eight study areas. 

Within each of the eight 20,000 m2 study areas, two 100 m transects were established and ten 

quadrats (1 m2) were established at 10 m intervals along each transect (for a total of 16 transects 

and 160 quadrats). The eight study areas were categorized into four vegetation communities, 

based on differences in vegetation height and dominant vegetation and surface cover (Table 3.1), 

and using existing vegetation classifications for the Alaskan arctic tundra (e.g. Walker et al. 2005, 

Walker & Maier 2008). Methodology used to determine aerial percent vegetation cover and 

shrub height in this study are described in Chapter one and in Rich et al. (2013). 

Figure 3.1. Map of Alaska 

and the North Slope of the 

Brooks Range (inset) showing 

the location of the four field 

sites near the Toolik Lake 

field station used in this study: 

Roche Mountonee (ROMO), 

Toolik Lake Field Station 

(TLFS), Imnavait Creek 

(IMVT), and the Saga-

vanirktok River Depart-ment 

of Transportation camp 

(SDOT). 



 69 

The four vegetation communities used in this study overlap somewhat in species 

composition but are distinct in the relative abundance of dominant species and other 

characteristics (Table 3.1). The riparian shrub tundra community (RST) was located at ROMO 

and was less than 100 m from the Roche Mountonnee Creek. The RST was dominated by Salix 

spp., interspersed with forbs. The RST was also characterized by well-drained, rocky soils with 

the tallest shrubs of all the communities. Because the large stature shrubs at the RST were widely 

spaced, there was considerable surface exposure of bare soil and rock, litter, and woody stem 

material. The two erect shrub tundra communities (EST) were located at TLFS (approximately 

200 m from the Toolik Lake outlet) and at SDOT (approximately 200 m from the Oksrukuyik 

Creek), where proximity to a large body of water (TLFS) or flowing water (SDOT) may increase 

thaw depths and promote root lengthening and shrub growth (Naito & Cairns 2011). The TLFS 

EST represents vegetation typical of shrub tundra described in Shaver and Chapin (1991). The 

SDOT EST represents vegetation typical of riverside shrub tundra as described in Giblin et al. 

(1991). The EST communities were dominated primarily by tall stature Betula nana, and 

secondarily by Salix spp. and other deciduous shrubs, interspersed with moss, evergreens, and 

forbs. Unlike the RST, EST had little to no litter and bare soil and rock surface cover. The 

prostrate/dwarf deciduous shrub tundra community (DST) was located in an area of water tracks 

(McNamara et al. 1999) at IMVT, and represents vegetation typical of water track tundra as 

described in Chapin et al. (1988). The DST was characterized by medium stature Betula nana 

and Salix spp. as well as moss, interspersed with graminoids, evergreens, and forbs. The four 

moist tussock tundra communities (MTT) were located at all four sites in tundra with tussock-

forming and other sedges (Eriophorum and Carex) and substantial evergreen and moss cover, 

interspersed with forbs and short stature deciduous shrubs.  

These four vegetation communities together consist of approximately 77% of the total 

vegetation cover in this studies region (subzone E of the Circumpolar Arctic Vegetation Map 

(CAVM) – Walker et al. 2005). The current study does not include observations in two other less 

common vegetation communities (i.e. wet sedge and barren/cryptogam tundras), primarily 

because together, these two communities consist of only approximately 10% of the total 

vegetation cover of our study region (subzone E of the CAVM – Walker et al. 2005). Not only 

do the vegetation communities used here represent a large portion of the cover in the northern 

foothills region of the Brooks Range, but they also make up approximately 70% of the North 
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Slope of Alaska’s vegetation cover (subzones D and E of the CAVM – Walker et al. 2005), and 

57% of the entire arctic tundra biome (subzones B, C, D, and E of the CAVM – Walker et al. 

2005).  

 

Table 3.1. Vegetation communities and codes (number of quadrats per community), descriptions (with average 

maximum shrub height), and percent cover of plant species, lichen, moss, and other surface cover materials in 1-m
2
 

quadrats in each vegetation type used in this study. Notes: Data were collected in late July 2010. Total percent cover 

does not always add to 100% because (1) standing water is not included and (2) percentages were rounded to the 

nearest whole number, and any value ≤ 0.4% is listed as 0%. 

Community           

(no. quadrats) 

Description                  

(shrub height range) 

Species and functional group           

cover (%) 

Coarse cover 

categories (%) 

Riparian shrub 

tundra; RST (20) 

dominated by tall willows, 

leaf litter and woody 

material (45 – 165 cm) 

Betula nana (0), Salix spp. (25), other 

deciduous shrubs (1), Eriophorum 

and Carex spp. (0), other graminoids 

(0), Vaccinium vitis-idaea and 

Ledum palustre (0), other 

evergreens (1), forbs (9), moss (8), 

lichen (4) 

woody stem 

material (23), 

litter (21), bare 

soil surface and 

rock (7) 

Erect shrub tundra;  

EST (40)  

dominated by medium-to-

tall birch and other 

deciduous shrubs         

(20 – 90 cm)  

B. nana (22), Salix spp. (10), other 

deciduous shrubs (12), Eriophorum 

and Carex spp. (3), other graminoids 

(1), V. vitis-idaea and L. palustre 

(5), other evergreens  (2), forbs (8), 

moss (13), lichen (4) 

woody stem 

material (14), 

litter (4), bare 

soil surface and 

rock (0)  

Dwarf/prostrate 

deciduous shrub 

tundra; DST (20) 

mixture of dwarf birch and 

willow, with scattered 

moss (10 – 45 cm) 

B. nana (11), Salix spp. (16), other 

deciduous shrubs (0) Eriophorum 

and Carex spp. (9), other graminoids 

(1), V. vitis-idaea and L. palustre 

(9), other evergreens  (1), forbs (11), 

moss (19), lichen (1) 

woody stem 

material (8), litter 

(10), bare soil 

surface and rock 

(0) 

Moist tussock tundra;  

MTT (80)  

dominated by moss, 

graminoids and 

evergreens (5 – 30 cm) 

B. nana (8), Salix spp. (7) other 

deciduous shrubs (3), Eriophorum 

and Carex spp. (18), other 

graminoids (0), V. vitis-idaea and L. 

palustre (14), other evergreens  (10), 

forbs (6), moss (17), lichen (3) 

woody stem 

material (5), litter 

(10), bare soil 

surface and rock 

(1) 

 

3.2.2 Spectral Reflectance and NDVI 

Quadrat-level spectral radiance measurements were made weekly with a field portable 

spectroradiometer (FieldSpec3, Analytical Spectral Devices, Boulder, CO, USA) from late May 

through late July over four years (2010 through 2013). The spectroradiometer has a 25° full 

angle cone of acceptance field-of-view (FOV) fiber optic with a spectral range from 350 to 1050 
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nm. The spectral sampling interval of the spectroradiometer is 1.4 nm. Radiance measurements 

were preceded by a calibration scan of a 99% reflectance white standard (Spectralon, LabSphere, 

North Sutton, NH, USA) to normalize for changes in light conditions between measurements. 

The foreoptic was held approximately 1 m above the top of the canopy, so that each 

measurement’s circular footprint was approximately 0.15 m2. Spectral measurements were made 

in the 1 m2 quadrats along each of the 16 transects described above. Five measurements were 

collected within each 1 m2 quadrat in order to ensure that the spatial heterogeneity of each 

quadrat was captured, which resulted in 50 spectral measurements for each transect. All spectral 

measurements were converted to reflectance values. 

We employ the normalized difference vegetation index (NDVI), which is indicative of 

the quantity of photosynthetically active, green vegetation (Rouse et al. 1974), and has proven to 

be sensitive to variations in aboveground biomass (Boelman et al. 2003) and leaf area (van Wijk 

& Williams 2005, Street et al. 2007) in tundra landscapes. The five NDVI values associated with 

each quadrat were averaged to give a mean quadrat NDVI value, and these were averaged to 

obtain mean transect values for each week. The NDVI was calculated from visible red (R: 650 to 

690 nm) and near-infrared (NIR: 750 to 850 nm) reflectance using Equation 3.1.  

 

NDVI = (NIR – R) / (NIR + R)        (Equation 3.1) 

 

3.2.3 Sweep Net Sampling and Canopy Arthropod Biomass 

Canopy-dwelling arthropod biomass was measured via sweep netting using a standard 

insect net (Robel et al. 1995). Although it is possible that sweep netting captures arthropods 

differently within and across vegetation communities (Southwood 1978), we chose this method 

to collect canopy-dwelling arthropods for several reasons including: 1) all canopy arthropod 

sampling methods introduce some bias (Doxon et al. 2011), but sweep netting may introduce less 

sampling bias compared to other techniques (Sørensen et al. 2002); and 2) samples associated 

with sweep netting tend to overlap in abundance and composition with other collection methods 

(Noyes 1989, Spafford & Lortie 2013). Samples were collected weekly from late May to mid- to 

late July over four years (2010 through 2013). One 100 m sweep net transect was established in 

each of the eight 20,000 m2 study areas. Using an iron bar as the center point, the direction of the 

transect was randomly determined at each sample time using a compass bearing generated from a 
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random numbers table to avoid repeated sampling of the same area. Each sweep set involved ten 

horizontal passes of the net (at 10 m intervals out to approximately 5 m on each side of the 

transect) along the ground vegetation and up into the shrubs to about 2 m where necessary. The 

ten sweep set was duplicated on each side of the transect line, for a total of 100 sweeps and so 

that each sampling area covered approximately 100 m2. No effort was made to avoid or contact 

particular vegetation, and all contents of the samples from each sweep set (including any 

vegetation material) were transferred to plastic bags with 1 cm2 pieces of Shell pest strips to kill 

arthropods, for a total of 10 plastic bags (each containing the contents from 10 sweeps) per study 

area per date. In the laboratory, samples were sorted (e.g. vegetation was removed/separated 

from arthropods), and arthropods were transferred to scintillation vials to be counted and dried in 

the laboratory. The samples were dried for a minimum of 48 hours at 40°C, after which 

arthropods were weighed for dry biomass. The ten samples associated with each transect were 

summed, and divided by 100 (the area covered for each sample set) and reported as the mean 

mass of arthropods per m2 of ground area (mg m-2). Captured arthropods included a diverse array 

of functional and taxonomic groups. Abundance and biomass were overwhelmingly dominated 

by Diptera, which included many midges, mosquitoes and Muscoid flies. Web-building spiders, 

Homopteran herbivores, and parasitic wasps were also abundant (Gough unpublished data). 

 

3.2.4 Data Analysis 

In all four years, mean values of the NDVI and measured arthropod biomass were 

calculated to give average weekly values for each vegetation community (RST, EST, DST, and 

MTT) through the plant-growing season. The average date of each measurement week is used to 

account for irregularity of spacing between dates across vegetation communities. We analyzed 

seasonal changes in the NDVI and canopy arthropod biomass using a repeated measures 

ANOVA with vegetation community as the between-subject factor, and week and year of 

measurement as the within-subject factors. Univariate results are presented. Tukey’s honestly 

significant differences (Tukey’s HSD) post-hoc analysis was used to compare means of each 

vegetation community in more detail.  

We determined model parameters from best-fit exponential regression models of the 

NDVI-measured canopy arthropod biomass relationships for each vegetation community 

separately (Table 3.1), as well as across all vegetation communities (all data n = 130). Canopy 
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arthropod biomass (mg m-2) was predicted from the NDVI using Equation 3.2, where α and β are 

parameters specific to each vegetation community (Table 3.2): 

 

Biomass = α * e(β * NDVI)         (Equation 3.2) 

 

We quantified linear relationships between measured canopy arthropod biomass and 

predicted canopy arthropod biomass (using Equation 3.2) between vegetation communities, as 

well as across all vegetation communities, and report the accuracy of prediction and amount of 

variance in Table 3.2 (RMSE and R2). Statistical analysis was done in R (R Core Team 2014).  

 

 

 

3.3 Results 

3.3.1 Seasonal Patterns of NDVI and Arthropod Biomass 

There was significant variation in the NDVI throughout the growing seasons (effect of 

week: F1,30 = 287.67, P < 0.001), and among vegetation communities (effect of vegetation 

community type: F3,90 = 36.02, P < 0.001), but there was no significant variation across years. 

Post-hoc analysis showed that NDVI values of the vegetation communities, with the exception of 

DST and EST, were each significantly different from one another (P < 0.05) (Figure 3.2).  

Similar to the NDVI, canopy arthropod biomass varied significantly throughout the 

growing seasons (effect of week: F1,30 = 40.04, P < 0.001) and among vegetation communities 

(effect of vegetation community type: F3,90 = 4.85, P < 0.01). Unlike the NDVI however, 

arthropod biomass also varied significantly across years (effect of year: F1,2 = 4.88, P < 0.05). 

Post-hoc analysis showed significant differences in arthropod biomass between EST and all other  

   
Model 

parameters 

Predicted 

vs. observed 

Vegetation 

community n α β RMSE R
2
 

RST 20 0.009 10.160 0.75 0.84 

EST 38 0.004 9.129 1.39 0.82 

DST 19 0.001 11.950 0.93 0.87 

MTT 53 0.004 10.370 1.05 0.74 

All data 130 0.008 8.835 1.51 0.63 

Table 3.2. Number of quadrats (n), best-fit 

exponential regression parameters (α and β), 
root mean squared errors of prediction 

(RMSE), and R
2
 values for the NDVI-canopy 

arthropod biomass relationships used to 

predict canopy arthropod biomass (mg/m
2
) 

(Equation 3.2) in different communities. 

Note: Regressions were calculated using data 

from weekly NDVI and sweep net samples 

collected late May through mid- to late July 

(2010 to 2013) in vegetation communities 

classified according to species composition 

and shrub height (see Table 3.1 for vegetation 

community descriptions). 
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Figure 3.2. Weekly canopy arthropod biomass (let-hand panels) and NDVI (right-hand panels) from late May to 

mid- to late July for field seasons in 2010 through 2013. Different lines represent different vegetation communities 

(Table 3.1): riparian shrub tundra (RST), erect shrub tundra (EST), dwarf/prostrate deciduous shrub tundra (DST), 

and moist tussock tundra (MTT). 
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vegetation communities (P < 0.05), but no significant differences among RST, DST, and MTT 

communities (Figure 3.2).  

Across all four years and vegetation types, the NDVI and arthropod biomass generally 

increased concurrently from late May through late June or mid-July, although there was 

interannual and vegetation community specific variability in the timing of maximum arthropod 

biomass (Figure 3.2). Also, while the NDVI values remained high through late July, arthropod 

biomass reached maximum values and began to decline in late June through early-July 

(depending on the year and vegetation community). Despite some variation, the NDVI and 

arthropod biomass followed similar overall patterns throughout the seasons, where vegetation 

communities with higher deciduous shrub cover (i.e. EST and DST) typically had both higher 

NDVI values and canopy arthropod biomass relative to communities with more bare soil surface, 

woody stem material, and litter (i.e. RST) or graminoids and evergreens (i.e. MTT) ( Figure 3.2). 

 

3.3.2 NDVI-Arthropod Biomass Relationships 

Across all vegetation communities and time periods, 76% of the variance in measured 

arthropod biomass was explained by the NDVI. A majority of the variation in the overall 

regression relationship occurred at NDVI values > 0.6 (Figure 3.3a), at which point arthropod 

biomass was more variable across vegetation communities (Figure 3.2). For instance, when NDVI 

values were > 0.6 in EST in late June to early July, EST communities often supported dramatic 

increases in arthropod biomass. Other vegetation communities did not have such large increases 

in arthropod biomass at this time. In fact, DST tended to support slight declines in arthropod 

biomass when NDVI values were > 0.6. 

When examining vegetation communities separately, relationships between the NDVI 

and measured arthropod biomass improved (Figures 3.3b & 3.3c). Correlations between the 

NDVI and measured canopy arthropod biomass were: RST (R2 = 0.95); EST (R2 = 0.89); DST 

(R2 = 0.84); and MTT (R2 = 0.79). (Figures 3.3b & 3.3c). Similar to the overall relationship, the 

NDVI-arthropod biomass relationships tended to saturate at NDVI > 0.6 for EST and MTT 

communities. 
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3.3.3 Arthropod Biomass Models 

The overall model was a fairly good predictor of arthropod biomass (Table 3.2 & Figure 

3.4a). In general, the largest variance in the overall predictive model occurred at higher 

arthropod biomasses, which generally corresponded with NDVI > 0.6 (Figure 3.3a).  

Compared to the overall model, vegetation community-specific models were better 

predictors of arthropod biomass (Table 3.2 & Figures 3.4b & 3.4c). The best individual models 

were from the DST and RST communities, although EST and MTT community models also 

showed a high degree of accuracy at estimating arthropod biomass. Similar to the overall model, 

the largest variance in the vegetation-specific predictive models was at higher arthropod 

biomasses.  

 

3.4 Discussion 

We found that the NDVI is significantly correlated with spatial and temporal variation in 

canopy arthropod biomass both among and within the four distinct vegetation communities used 

in this study, thus the NDVI is able to effectively estimate canopy arthropod biomass regardless 

of vegetation community type. Our study complements previous studies showing strong 

empirical relationships between the NDVI and various characteristics of vegetation form and 

function, and which work across diverse arctic tundra plant communities  (van Wijk et al. 2005, 

van Wijk & Williams 2005, Street et al. 2007, Shaver et. al. 2013).  

The correlation between the NDVI and canopy arthropod biomass was strongest prior to 

the period of maximum tundra leaf out (when NDVI < 0.6), suggesting that canopy arthropods 

and canopy leaf expansion share similar early-season phenological cues, such as spring 

snowmelt timing (Wipf et al. 2009, Tulp & Schekkerman 2008) and air temperature (Pop et al. 

2000, Danks 1999). Later in the season, once maximum tundra leaf out is reached, NDVI values 

remain relatively stable through mid to late July while canopy arthropod biomass is 

comparatively plastic. This may be due to a greater sensitivity of arthropods to temperature 

(Hodkinson et al. 1998, Tulp & Schekkerman 2008) compared to plant biomass (Johnson & 

Tieszen 1976, Shaver et al. 1986) at this later time in the season. Favorable weather conditions, 

for example, may allow mosquitoes and midges – the most dominant members of the canopy  
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Figure 3.4. Linear relationships between predicted 

and measured arthropod biomass. Predicted 

biomass was determined using Equation 3.2 and 

parameters in Table 3.2. (a) Relationship for all 

vegetation communities (y = 0.75x + 0.87; R
2
 = 

0.63). (b) Relationships for erect shrub (y = 1.11x 

+ 0.41; R
2
 = 0.82) and riparian shrub tundra (y = 

1.11x – 0.12; R
2 

= 0.84). (c) Relationships for 

moist tussock (y = 1.54x – 0.16; R
2
 = 0.74) and 

dwarf deciduous shrub tundra (y = 1.05x + 0.06; R
2
 

= 0.87). Abbreviations are as in Figure 3.2. 

Number of quadrats are as in Figure 3.3. 

 

Figure 3.3. Exponential relationships between 

NDVI and measured arthropod biomass. (a) 

Relationship for all vegetation communities (n = 

130 quadrats; y = 0.008e
8.835x 

; R
2
 = 0.76). (b) 

Relationships for erect shrub tundra (n = 38 

quadrats; y = 0.004e
9.129x 

; R
2 

= 0.89) and riparian 

shrub tundra (n = 20 quadrats; y = 0.009e
10.16 

; R
2
 = 

0.95). (c) Relationships for moist tussock tundra (n 

= 53 quadrats; y = 0.004e
10.37x 

; R
2
 = 0.79) and 

dwarf deciduous shrub tundra (n = 19 quadrats: y = 

0.001e
11.95x

; R
2
 = 0.84). Abbreviations are as in 

Figure 3.2. 
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arthropod community (Danks 1992) – to emerge simultaneously, creating a larger and earlier 

peak in biomass (Hodkinson et al. 1996). Peak canopy arthropod biomass may also fluctuate 

depending on previous years’ growing conditions: midges and mosquitoes may respectively lay 

one to two (Oliver & Roussel 1983), or up to five (Wood et al. 1979), batches of eggs in a single 

summer. 

Similar to previous vegetation studies (Shaver et al. 2007, Street et al. 2007), our 

individual vegetation community specific models – developed from NDVI and canopy arthropod 

biomass measurements made within specific vegetation communities - increased model precision 

relative to our overall model. This is likely due to differences in species composition (Schaffers 

et al. 2008), plant biomass (Haddad et al. 2001), canopy structure (Price et al. 1980), leaf nutrient 

status (Bryant et al. 1983), and secondary metabolite content (Dudt & Shure 1994, Unsicker et al. 

2009) among the tundra community types sampled – all of which are known to affect arthropod 

abundance and biomass.  

For instance, we found that canopy arthropod biomass was greatest in our erect shrub 

tundra communities, where taller deciduous shrubs were dominant and the NDVI was high 

relative to our other vegetation communities. This is in line with other studies that suggest the 

abundance of erect shrubs has a direct and positive impact on arthropod abundance (Den Herder 

et al. 2004). This may be due to the higher leaf area (Johnson & Tieszen 1976, Shaver & Chapin 

1991), fewer secondary metabolites (Richardson et al. 2002), higher nutritive value (Chapin et al. 

1986), and greater digestibility (Chapin et al. 1986) of many deciduous shrubs relative to other 

plant functional groups. The effect of plant functional group on abundance and palatability of 

forage available to canopy-dwelling arthropods likely also explains why we found that canopy 

arthropod biomass was lowest at our moist tussock tundra communities. In our moist tussock 

tundra communities there is a high percent cover of evergreen species relative to our other 

vegetation communities, which, as opposed to the erect shrub tundra, likely resulted in lower leaf 

area (Shaver & Chapin 1991), lower nutritive value (Chapin et al. 1986), greater secondary 

metabolite content (Price et al. 1980, Aerts 1995), and lower digestibility (Chapin et al. 1986) of 

the canopy. 

Non-consumptive resources may also explain the trend towards higher biomass in taller 

stature shrub-dominated canopies. For instance, the tundra canopy-dwelling arthropod 

community is, at times, dominated by midges and mosquitoes (Danks 1992) that likely find 
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refuge from unfavorable abiotic conditions in the increased structural complexity of tall erect 

shrubs (Boelman et al. 2011), which enables greater flight activity (Service 1980). These same 

structurally complex habitats may also provide arthropods with protection from vertebrate 

predators (Price et al. 1980), cannibalism (Langellotto 2002), and intra-guild predation (Finke & 

Denno 2002). Additionally, orb-weaving spiders and coccinellid beetles - also significant 

components of the canopy-dwelling arthropod biomass - depend on complex-structured canopies 

for increased web attachment sites (McNett & Rypstra 2000) and increased mobility during 

foraging (Langelletto & Denno 2004).  
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CONCLUSIONS 

 

Catch-up in Leaf Development Minimizes Effect of Later Snowmelt 

Since the majority of studies examining the effect of shrub-induced delays in snowmelt 

on the timing of leaf development use experimental manipulations of snow depth, our results 

presented in Chapter one are important as they provide valuable supporting evidence through 

observations made along a naturally occurring gradient of increasing deciduous shrub (B. nana 

and S. pulchra) stature. We found that, relative to low stature shrubs of the same species in 

graminoid-dominated tundra, taller stature shrubs in shrub-dominated tundra were surrounded by 

deeper snowpack and experienced later snowmelt and delayed budburst. However, contrary to 

our hypothesis, the delay in leaf development was short-lived, and as a result both short and tall 

stature deciduous shrubs reached full leaf expansion on approximately the same date. Further, 

despite delayed budburst, tall shrubs occasionally reached full leaf expansion before short shrubs, 

suggesting an accelerated rate of leaf development. We also found that taller shrubs had higher 

bud and emerging leaf nitrogen compared to shorter shrubs, suggesting that environmental 

conditions conducive to taller shrubs are correlated with higher soil nitrogen availability, which 

may have further accelerated leaf development.  

Although the intermediate leaf development stages monitored in this study may provide 

detailed temporal insight into the timing of canopy development as it controls timing in canopy 

carbon uptake (Johnson & Tieszen 1976, Constable & Rawson 1980, Patankar et al. 2013), we 

acknowledge that the short-term nature, small spatial scale, and novelty of this study should be 

taken into consideration in interpreting our results. Because this study was conducted over two 

years and in a single location, caution should be taken in extrapolating our findings to determine 

the potential impacts of observed pan-arctic increases in deciduous shrub stature (Myers-Smith et 

al. 2011) on leaf and canopy development and canopy carbon gain. Further, the precise 

mechanisms involved in the accelerated leaf expansion of tall shrubs relative to short shrubs 

remains uncertain, and while our results are suggestive, we cannot conclusively state that 

increased nitrogen availability is the only mechanism driving accelerated leaf development. For 

these reasons, we believe high temporal resolution monitoring of leaf development, in both 

observational and experimental studies at more sites across the pan-Arctic, as well as a better 
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mechanistic understanding of early season leaf expansion and canopy development across 

different types of tundra will be important to understanding the future consequences of the 

greening Arctic.  

 

Deciduous Shrubs Lengthen Peak Season and Increase Carbon Uptake 

A number of studies have shown differences in canopy phenology among different tundra 

types (e.g. Jia et al. 2004, Narasimhan & Stow 2010), as well as differences between tundra 

vegetation communities in net carbon flux (e.g. Shaver et al. 2007, Street et al. 2007). However, 

to our knowledge the study presented in Chapter two is the first study to combine both in 

unmanipulated, naturally occurring deciduous shrub and evergreen/graminoid tundra, thereby 

contributing new insight into the effect of deciduous shrub cover on the length of the peak season 

(i.e. the period of maximum tundra greenness). The main findings in Chapter two suggest that in 

the Alaskan arctic tundra, greater deciduous shrub abundance causes a net lengthening of the 

period of peak tundra greenness by advancing the onset of peak leaf out. Although the peak 

season was longer, we did not find that greater deciduous shrub abundance extended the entire 

growing season (from the onset of greening to the end of senescence). This suggests that the 

observed lengthening of the entire growing season in the Arctic (Jeong et al. 2011, Zeng et al. 

2011) may be due less to changes in vegetation cover and more to changes in air temperature 

(Hollister et al. 2005, Xu et al. 2013) and snow cover duration (Stow et al. 2004, Wipf 2010) 

associated with climate change. As a combined effect of higher leaf area and an extended period 

of peak greenness, we estimate that deciduous shrub tundra may take up nearly three times as 

much carbon during the peak season compared to evergreen/graminoid tundra. Our results 

suggests that, while additional carbon uptake of deciduous shrub tundra is due in part to greater 

leaf area (~ 29%), a significant portion is also due to the longer peak season (~ 71%) exhibited 

by deciduous shrub compared to evergreen/graminoid tundra. These findings provide valuable 

insight into how changes in vegetation community composition may be driving large-scale 

(regional and biome-level) satellite detected trends in arctic tundra phenology that will be useful 

for reducing uncertainties in modeling future changes in vegetation phenology (Steltzer & Post 

2009) and associated carbon budgeting (Nemani et al. 2002, Jeong et al. 2012).  
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Potential to Estimate Arthropod Biomass From Air and Spaceborne Sensors 

The normalized difference vegetation index (NDVI) has become a widely adopted tool 

for detecting and quantifying large scale spatial and temporal dynamics in tundra vegetation 

cover (Stow et al. 2004, Jia et al. 2009), productivity (Myneni et al. 1997, Beck & Goetz 2011), 

and phenology (Zhou et al. 2001, Zeng et al. 2011). To our knowledge, the study presented in 

Chapter three is the first to show that the NDVI has the potential to be similarly applied to 

consumer biomass in the arctic tundra. Because the study in Chapter three included a variety of 

vegetation communities that cover a large percentage of the arctic foothills region of Alaska, as 

well as the entire arctic tundra biome (Walker et al. 2005), the overall model developed therein, 

which incorporates data from four vegetation communities, may be applicable across vast 

expanses of arctic tundra. To employ the community specific models presented in Chapter three, 

researchers should either: (1) make field-based, near-surface measurements of the NDVI so that 

seasonal changes within vegetation communities are known, or; (2) couple high spatial 

resolution air- or space-borne NDVI datasets with spatially explicit a priori information on 

vegetation community cover when working at landscape or regional scales. Our findings suggest 

that, with this a priori information, high spatial resolution NDVI datasets acquired by satellite 

sensors (e.g. from Worldview, IKONOS, and Quickbird) may be able to quantify spatial and 

temporal dynamics in tundra canopy arthropod biomass at landscape and regional scales. This 

step was beyond the scope of the study presented in Chapter three because: (1) high temporal 

resolution NDVI products currently available have low spatial resolutions (e.g. such as acquired 

by MODIS with a minimum pixel size of 250 m), while; (2) high spatial resolution imagery (e.g. 

acquired by Worldview, IKONOS, and Quickbird) tends to be low in temporal resolution due to 

a combination of several limitations (e.g. high costs, cloud cover, and the need to task these 

sensors). In other words, spaceborne imagery does not currently provide both the high spatial and 

temporal resolution imagery that is needed for us to easily test our field-based relationships at 

larger scales.  

Since our initial assessment was successful, we suggest that it is worth future investments 

to task airborne and spaceborne sensors with high spatial and temporal resolutions to acquire 

NDVI data in arctic regions so that the ecological community can work towards applying our 

current relationships at larger spatial scales. Given the strong relationship between the NDVI and 

canopy-dwelling arthropod biomass found in this study, future research examining relationships 
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between the NDVI and ground-dwelling arthropod biomass would be of great value. In addition, 

validation of our model at larger spatial scales is a critical next step. This is particularly valuable 

for vast and remote arctic tundra regions where shifts in seasonality and vegetation 

characteristics are likely to impact arthropod communities (Rich et al. 2013, Boelman et al. 

2014). This, in turn, could have cascading effects throughout the food web (Seastedt & MacLean 

1979, Post et al. 2009, Tulp & Schekkerman 2008, Ims & Henden 2012), and alter rates of 

nutrient cycling (Hodkinson et al. 2001, Hunter 2001).  
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