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Abstract

This paper investigates the combined impact of depot location, fleet composition and routing decisions
on vehicle emissions in city logistics. We consider a city in which goods need to be delivered from a depot
to customers located in nested zones characterized by different speed limits. The objective is to minimize
the total depot, vehicle and routing cost, where the latter can be defined with respect to the cost of fuel
consumption and CO2 emissions. A new powerful adaptive large neighborhood search metaheuristic is
developed and successfully applied to a large pool of new benchmark instances. Extensive analyses are
performed to empirically assess the effect of various problem parameters, such as depot cost and location,
customer distribution and heterogeneous vehicles on key performance indicators, including fuel consump-
tion, emissions and operational costs. Several managerial insights are presented.

Keywords. location-routing; fuel consumption; CO2 emissions; heterogeneous fleet; city logistics; adap-
tive large neighborhood search metaheuristic.

1 Introduction

City logistics poses challenges to governments, businesses, carriers, and citizens, particularly in the context

of freight transportation, and calls for new business operating models. It also requires an understanding

of the public sector and private businesses, as well as collaboration mechanisms to build innovative part-

nerships. Trade flows within cities exhibit a high variability, both in the size and shape of the shipments.

Cities often possess a transportation infrastructure that allows traffic flows within their boundaries, but this

infrastructure is often inadequate for freight transportation, which translates into congestion and pollution.

For relevant references and more detailed information on city logistics, the reader is referred to the books

of Taniguchi et al. (2001) and of Gonzalez-Feliu et al. (2014).

Depot location, fleet composition and routing all bear on emissions in urban freight transportation. Some

of their interactions are already well documented. However, whereas there exists an extensive body of
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knowledge on the integration of location and routing, on the effect of route choice on pollution and on

the impact of fleet composition on emissions, the interplay between depot location, fleet composition and

routing decisions and their influence on emissions has not yet been investigated. Yet, these decisions are

clearly intertwined, especially in a city logistics context. Our purpose is to analyze these three interrelated

components of city logistics within a unified framework. Before we proceed with our study, we briefly

review the relevant literature on some of the interactions just mentioned.

1.1 A brief review of the literature

Depot location and vehicle routing are two interdependent decisions. Their joint study was first suggested

by Von Boventer (1961) and has since evolved into what is now commonly known as the Location-Routing

Problem (LRP) (see Laporte, 1988; Min et al., 1998; Nagy and Salhi, 2007; Prodhon and Prins, 2014; Albareda-

Sambola, 2015; Drexl and Schneider, 2015, for reviews). Applications of the LRP arise namely in city logis-

tics (Boudoin et al., 2014; Mancini et al., 2014).

Fleet composition is yet another critical issue in city logistics. Heterogeneous vehicle fleets are commonly

used in most distribution problems (Hoff et al., 2010). Heterogeneous VRPs include two major classes:

the Fleet Size and Mix Vehicle Routing Problem proposed by Golden et al. (1984), which works with an

unlimited fleet, and the Heterogeneous Vehicle Routing Problem (HVRP) introduced by Taillard (1999),

which works with a known fleet. For further details on these problems and their variants, we refer the

reader to Baldacci et al. (2008), Jabali et al. (2012a) and Koç et al. (2016b). In recent years, green issues have

received increased attention in the context of the HVRP (see Kopfer and Kopfer, 2013; Kopfer et al., 2014;

Kwon et al., 2013). Koç et al. (2014) introduced the Fleet Size and Mix Pollution-Routing Problem which

extends the Pollution-Routing Problem (PRP) by considering a heterogeneous vehicle fleet and developed

a hybrid evolutionary metaheuristic to solve it. They conducted computational experiments to shed light

on the trade-offs between various performance indicators, such as fuel and CO2 emissions, vehicle fixed

cost, distance, driver cost and total cost. They demonstrated the benefit of using a heterogeneous fleet over

a homogeneous one.

Greenhouse gases (GHGs) are a noxious by-product of road freight transportation (Kirby et al., 2000) which

accounts for around a quarter of the total GHG emissions in the United Kingdom and the United States

(DfT, 2012; EPA, 2012). The relationship between road freight transportation and emissions has been the

object of several studies in recent years. Thus Demir et al. (2011) have surveyed several estimation mod-

els for fuel consumption and greenhouse gas emissions. More specifically, the authors have compared
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six models and have assessed their respective strengths and weaknesses. These models indicate that fuel

consumption depends on a number of factors that can be grouped into four categories: vehicle, driver,

environment and traffic. Figliozzi (2011) simultaneously considered the effects of GHG costs, new engine

technologies, market conditions and fiscal policies in fleet management models. The author proposed an

integer programming vehicle replacement model in order to compute some environmental and political

indicators. Four factors were analysed in scenarios arising from a case study in Portland, Oregon, namely

annual vehicle utilization, gasoline prices, electric vehicle tax credits, and GHG emissions costs. Bigazzi

and Figliozzi (2012) examined several factors affecting GHGs emissions. The authors focused on the ef-

fects of travel demand flexibility and on the characteristics of two types of vehicles, namely light and heavy

duty, across different types of pollutants. They stated that fleet composition and vehicle type are key factors

driving CO2 emissions. Furthermore, the authors indicated that several demand- or vehicle-based emis-

sions strategies could have an impact on the reduction of CO2 emissions. Jabali et al. (2012b) later studied

the trade-off between the minimization of CO2 emissions and that of total travel times in the context of

the time-dependent Vehicle Routing Problem (VRP) in which the planning horizon is partitioned into two

phases: free flow traffic and congestion. The authors solved the problem using tabu search and proposed

efficient bounding procedures. More recently, Ehmke et al. (2014) studied stochastic shortest paths with

an emissions minimization objective. The authors concluded that in order to minimize emissions, vehicles

may have to travel via a circuitous path rather than along a more direct shortest path.

The Pollution-Routing Problem (PRP), introduced by Bektaş and Laporte (2011), is an extension of the clas-

sical VRP with time windows. It consists of routing vehicles to serve a set of customers, and of determining

their speed on each route segment to minimize a function comprising fuel cost, emissions and driver costs.

To estimate fuel consumption, the authors applied a simplified version of the emission and fuel consump-

tion model proposed by Barth et al. (2005), Scora and Barth (2006) and Barth and Boriboonsomsin (2009).

This simplified model assumes that all parameters will remain constant on a given arc, but load and speed

may change from one arc to another. As such, the PRP objective approximates the total amount of en-

ergy consumed on a given road segment, which directly translates into fuel consumption and further into

GHG emissions. Demir et al. (2012) developed an extended adaptive large neighbourhood search (ALNS)

heuristic for the PRP. This heuristic operates in two stages: the first stage is an extension of the classical

ALNS scheme to construct vehicle routes (Ropke and Pisinger, 2006a,b; Pisinger and Ropke, 2007), and the

second stage applies a speed optimization algorithm (SOA) (Norstad et al., 2010; Hvattum et al., 2013) to

compute the speed on each arc. In a later study, Demir et al. (2014a) introduced the bi-objective PRP which

jointly minimizes fuel consumption and driving time. The authors have developed a bi-objective adapta-
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tion of their ALNS-SOA heuristic and compared four a posteriori methods, namely the weighting method,

the weighting method with normalization, the epsilon-constraint method and a new hybrid method, using

a scalarization of the two objective functions. Franceschetti et al. (2013) studied the time-dependent PRP

under a two-stage planning horizon, as in Jabali et al. (2012b), and developed an explicit congestion model

in addition to the PRP objectives. The authors presented a mathematical formulation in which vehicle

speeds are optimally selected from a set of discrete values. More recently, Kramer et al. (2015) proposed a

matheuristic for the PRP, as well as for the the Fuel Consumption VRP and the Energy Minimizing VRP,

which integrates iterated local search with a set partitioning procedure and an SOA. Their method out-

performed those presented in previous studies and yielded new best-known solutions. Zhang et al. (2015)

proposed an evolutionary local search heuristic for the minimization of fuel consumption under three di-

mensional loading constraints. Fatnassi et al. (2015) investigated energy gains arising from joint goods and

passenger transportation. For a state-of-the-art coverage on green road freight transportation, the reader is

referred to the book chapter of Eglese and Bektaş (2014), and to the surveys of Demir et al. (2014b) and Lin

et al. (2014).

1.2 Scientific contributions and structure of the paper

This paper studies what we believe to be for the first time the joint impact of location, fleet composition and

routing on emissions in an city logistics context. It makes three main scientific contributions. Its first con-

tribution is to formally model this new problem and solve it by means of a powerful ALNS metaheuristic.

Its second contribution is to carry out extensive computational experiments and analyses in order to gain a

deep understanding into the interactions between the components of the problem. Its third contribution is

to provide managerial insights.

The remainder of this paper is structured as follows. Section 2 presents a general framework for our analy-

sis. Section 3 provides a formal description of the problem and a mathematical formulation. Section 4 con-

tains a brief description of the proposed metaheuristic. Extensive computational experiments, including a

validation of our algorithm and sensitivity analyses, are presented in Section 5, followed by conclusions

and managerial insights in Section 6.

4



2 General Description of the Problem Setting

We will first briefly provide our fuel consumption and CO2 emissions model in Section 2.1. We will then

describe the vehicle types and their characteristics in Section 2.2, followed by the specification of speed

zones in Section 2.3, by the network structure in Section 2.4, and by the depot costs in Section 2.5.

2.1 Fuel consumption and CO2 emissions

We use the comprehensive emissions model of Barth et al. (2005), Scora and Barth (2006), and Barth and

Boriboonsomsin (2008) to estimate fuel consumption and emissions at a given time instant. This model has

already been successfully applied to the PRP (Bektaş and Laporte, 2011; Demir et al., 2012) and to some of

its extensions (Franceschetti et al., 2013; Demir et al., 2014a; Koç et al., 2014). In what follows, we briefly

recall the heterogeneous fleet version of this model (Koç et al., 2014), where the index set of vehicle types is

denoted byH. The fuel consumption rate FRh (L/s) of a vehicle of type h ∈ H is given by

FRh = ξ(khNhV h + Ph/η)/κ, (1)

where the variable Ph is the second-by-second engine power output (in kW) of vehicle type h, and other

parameters that appear in the equation are given in Tables 1 and 2. Variable Ph can be calculated as

Ph = Phtract/ntf + Pacc, (2)

where the engine power demand Pacc is associated with the running losses of the engine and the operation

of vehicle accessories such as air conditioning and electrical loads. We assume that Pacc = 0. The total

tractive power requirement Phtract (in kW) for a vehicle of type h is

Phtract = (Mhτ +Mhg sin θ + 0.5Chd ρAv
2 +MhgCr cos θ)v/1000, (3)

where Mh is the total vehicle weight (in kg) and v is the instantaneous vehicle speed (m/s). The fuel

consumption Fh (L) of vehicle type h over a distance d traveling at constant speed v is calculated as

Fh =khNhV hλd/v (4)

+ Phλγd/v, (5)
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where λ = ξ/κψ and γ = 1/1000ntfη are constants. Let βh = 0.5Chd ρA
h be a vehicle-specific constant and

α = τ + g sin θ + gCr cos θ be a vehicle-arc specific constant. Therefore, Fh can be rewritten as

Fh = λ(khNhV hd/v +Mhγαd+ βhγdv2). (6)

In this expression the first term khNhV hd/v is called the engine module, which is linear in travel time. The

second term Mhγαd is referred to as the weight module, and the third term βhγdv2 is the speed module,

which is quadratic in speed. These functions will be used in the objective function of the mathematical

formulation in Section 3.

2.2 Vehicle types and characteristics

We consider three vehicle types produced by MAN (2015a), a major truck manufacturer whose market

share in Western Europe was around 16.3% in 2013 (Statista, 2013). These three vehicle types include two

light duty (TGL) vehicles and one medium duty (TGM) vehicle, classified as single-unit trucks by FHWA

(2011). Table 1 lists the values of the parameters (Demir et al., 2012, 2014a; Franceschetti et al., 2013; Koç

et al., 2014) common to all vehicle types, while Table 2 lists specific parameters (MAN, 2015a,b,c) for each

vehicle type. We refer the reader to MAN (2015a,b,c) for further details on TGL and TGM vehicles and their

engines.

Table 1: Parameters common to all vehicle types
Notation Description Typical values
ξ fuel-to-air mass ratio 1
g gravitational constant (m/s2) 9.81
ρ air density (kg/m3) 1.2041
Cr coefficient of rolling resistance 0.01
η efficiency parameter for diesel engines 0.45
fc fuel and CO2 emissions cost (£/liter) 1.4
κ heating value of a typical diesel fuel (kj/g) 44
ψ conversion factor (g/s to L/s) 737
ntf vehicle drive train efficiency 0.45
θ road angle 0
τ acceleration (m/s2) 0

The fuel consumption function (6) per unit distance traveled as a function of speed is typically U-shaped

(Figure 1) and results in an optimal speed that minimizes the fuel consumption. This function is the sum

of two components, one induced by (4) and the other by (5), and is plotted for the three vehicle types

considered in this paper.
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Table 2: Vehicle-specific parameters
Notation Description Light duty 1 (L1) Light duty 2 (L2) Medium duty (M)
wh curb weight (kg) 3500 4500 5500
Qh maximum payload (kg) 4000 7500 12500
µh vehicle fixed cost (£/day) 42 49 60
kh engine friction factor (kj/rev/liter) 0.25 0.23 0.20
Nh engine speed (rev/s) 38.34 37.45 36.67
V h engine displacement (liter) 4.5 4.5 6.9
Chd coefficient of aerodynamics drag 0.6 0.64 0.7
Ah frontal surface area (m2) 7.0 7.4 8.0
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Figure 1: Fuel consumption as a function of speed
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2.3 Arc-specific speeds and speed zones

Road speed limits are commonly set by national or local governments (Wikipedia, 2015). They play a key

role in ensuring the safety of road users and of the public at large (UK Government, 2014). While most

cities impose arc-specific speed limits, some are often divided into speed zones (e.g., Dublin City Council

(2015)), which can be viewed as a special case of arc-speed limits. Speed zones help traffic flow more

safely and efficiently. They provide a reasonable balance between the needs of drivers, pedestrians and

cyclists who use public roads for travel, and the concerns of residents who live along these roads (Oregon,

2015). Studies have been performed in the United Kingdom by the Department for Transport (2013), in

Canada by the City of Ottawa Transportation Committee (2009) and in the United States by the Oregon

Department of Transportation (2015) on the best way to establish speed zones. These studies indicate that

setting reasonable vehicle speeds for a variety of weather conditions results in fewer accidents. When

reasonable speeds are imposed, less overtaking occurs, and one also observes smaller delays and fewer

rear-end collisions. According to the above studies, speed zones in cities are generally classified under

three categories:

• 15 mph (25 km/h): alleys, narrow residential roadways,

• 20 mph (32 km/h): business districts, school zones,

• 25 mph (40 km/h): residential districts, public parks, ocean shores.

Speed zones also yield environmental benefits. For example Kirkby (2002) states that 20 mph (32 km/h)

speed zones, significantly improve the quality of life of the concerned community, and encourage healthier

and more sustainable transportation. This speed limit favors slower driving, saves fuel and reduces pol-

lution, unless an unnecessarily low gear is used (DfT, 2013). Van Woensel et al. (2001) noted that vehicles

must often travel at traffic speed in urban areas, and changes in speed have a significant impact on CO2

emissions. The model we introduce in Section 3 works with a constant speed throughout the day, which

does not capture potential speed variations due traffic congestion that may occur over time. A natural ex-

tension to this paper would be to add a temporal dimension to the problem enabling the incorporation of

time-dependent speeds to account for traffic congestion.
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2.4 Network structure

We consider cities represented by a finite graph Ḡ = (N̄ , Ā) in which distances are measured using the

Taxicab geometry (see Krause, 2012). The Taxicab geometry is also known as the rectilinear distance, the L1

distance, the city block distance or the Manhattan distance. It implies that the shortest path between two

nodes is the sum of horizontal and vertical distances between them. This metric is appropriate in several

grid cities, such as Glasgow, Ottawa and Portland, shown in Figure 2.

(a) Glasgow (b) Ottawa (c) Portland

Figure 2: Grid city examples (Google Maps, 2015)

In the primary setting considered in this study (see Section 5.7 for an exception), we assume that the city

center is divided into several zones, each belonging to one of the three categories described in Section 2.3.

For example, if there are three zones then, zone 1 would correspond to the city center, zone 2 would be an

outer urban area, and zone 3 would be a suburb. In this case, let V1, V2, V3 be the fixed speeds in zones

1, 2, 3, respectively, where V1 < V2 < V3. Figure 3 illustrates a city divided into three such speed zones.

We assume that the depots and the customers are located on a grid superimposed on the zones and that

the zone boundaries coincide with segments of the horizontal or vertical lines of the grid. As a result,

any segment linking two consecutive points of the grid will lie entirely within the same speed zone. The

granularity of the grid can be arbitrarily small. When a vehicle travels within the same zone, its speed is

equal to the speed of that zone. When it travels on the boundary of two speed zones, it uses the faster speed

of the two zones.

In a city, a shortest path between i and j is not necessarily a cheapest or a least polluting path. In urban

areas where a maximum speed limit of 40 km/h is imposed, a fastest path is also a least-polluting path

according to Figure 1. However, as in Ehmke et al. (2014), this path is not always a shortest path. For

example, consider the corners (A,B,C,D) of zone 2 in Figure 3, and nodes i and j located in zone 3. When

traveling from i to j, a vehicle may not travel on a straight line from i to j with speed V2 between points K
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Zone 1

Zone 2

Zone 3

i j

A

B D

C

K L

Figure 3: Illustration of speed zones

and L, but may instead travel on the boundaries of zone 2 with speed V3 ≤ 40 km/h to avoid driving at a

slower speed through congested traffic. A fastest path from customer i to j could well be (i,K,A,C, L, j)

instead of (i,K,L, j), particularly in urban settings.

Using Fh = λ(khNhV hd/v +Mhγαd+ βhγdv2), we now illustrate how the load on a vehicle can affect the

calculation of the cheapest path between a node pair. In Figure 3, assume that the total length of path is 8

km for (i,K,L, j), and 9 km for (i,K,A,C, L, j). More specifically it is 0.5 km for (i,K), (K,A), (L, J) and

(L,C), and 7 km for (K,L) and (A,C). When a medium duty vehicle going from i to j carries a load equal

to 1000 kg, then the cost of (i,K,L, j) is £1.85 and the cost of (i,K,A,C, L, j) is £1.95 with the former path

being the cheaper one. However, when the vehicle load is equal to 12500 kg, then the cost of (i,K,L, j) is

£2.20 and the cost of (i,K,A,C, L, j) is £2.05, where the cheapest path now is the latter.

2.5 Depot costs

There are four main categories of depot or warehouse costs: handling, storage, operations administration

and general administrative expenses (see Ghiani et al., 2013). Storage expenses are the cost of occupying a

facility (Speh, 2009). Depot location affects the storage cost, e.g., locating a depot in the city center (zone 1)

is much more expensive than locating it in an outer zone (zone 2 or 3).
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3 Formal Problem Description and Mathematical Formulation

Our problem is defined on a complete directed graph G = (N ,A), where N = (N0 ∪ Nc) ⊆ N̄ is a set

of nodes in which N0 and Nc represent the potential depots and customer nodes, respectively. A storage

capacity Dk and a fixed opening cost gk are associated with each potential depot k ∈ N0. Each customer

i ∈ Nc has a positive demand qi. The arc set A is defined as A = {(i, j) : i ∈ N , j ∈ N , i 6= j} \ {(i, j) :

i ∈ N0, j ∈ N0, i 6= j}. We assume that an unlimited heterogeneous fleet of vehicles operates with various

capacities and vehicle-related costs. The index set of vehicle types is denoted by H. Let Qh and th denote

the capacity and fixed dispatch cost of a vehicle of type h ∈ H, respectively. Let fhij be the amount of

commodity carried by a vehicle of type h from node i to node j. We denote by c(i, j, fhij) fuel and CO2

emissions cost of traveling from node i to node j with a vehicle of type h having a load equal to fhij upon

leaving i. This cost is calculated using equation (6). Since an arc (i, j) in graph G corresponds to one or

more consecutive segments on the grid, the calculation of the cost function c(i, j, fhij) will take into account

the different speeds associated with these segments. If node i ∈ N0, then fhij is equal to the total load of the

route of a vehicle of type h assigned to depot i.

The problem consists of locating depots in a subset ofN0, assigning each customer to a depot, determining

a set of vehicle routes such that all vehicles start and end their routes at their depot, such that the load of

each vehicle does not exceed its capacity. The objective is to minimize the total cost which is made up of

three components: the depot operating cost, the vehicle fixed cost, and the fuel and CO2 emissions cost.

Furthermore, the speed of a vehicle depends on the speeds of the arcs it traverses while driving.

To formulate the problem, we define the following additional decision variables. Let xhij be equal to 1 if a

vehicle of type h ∈ H travels on arc (i, j) ∈ A and to 0 otherwise. Let uk be equal to 1 if depot k ∈ N0 is

opened and to 0 otherwise. Let zik be equal to 1 if customer i ∈ Nc is assigned to depot k ∈ N0 and to 0

otherwise.

A mathematical formulation of the problem is given as follows:

Minimize
∑
k∈N0

gkuk +
∑
h∈H

∑
k∈N0

∑
j∈Nc

thxhkj +
∑
h∈H

∑
(i,j)∈A

c(i, j, fhij)x
h
ij (7)
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subject to

∑
h∈H

∑
j∈N

xhij = 1 i ∈ Nc (8)

∑
h∈H

∑
j∈N

xhji =
∑
h∈H

∑
j∈N

xhij i ∈ N (9)

∑
h∈H

∑
j∈N

fhji −
∑
h∈H

∑
j∈N

fhij = qi i ∈ Nc (10)

fhij ≤ Qhxhij i ∈ N0, j ∈ N , i 6= j, h ∈ H (11)∑
h∈H

∑
j∈Nc

fhkj =
∑
j∈Nc

zjkqj k ∈ N0 (12)

∑
h∈H

∑
j∈Nc

fhjk = 0 k ∈ N0 (13)

fhij ≤ (Qh − qi)xhij i ∈ Nc, j ∈ N , h ∈ H (14)

fhij ≥ qjxhij i ∈ N , j ∈ Nc, h ∈ H (15)∑
i∈Nc

qizik ≤ Dkuk k ∈ N0 (16)

∑
k∈N0

zik = 1 i ∈ Nc (17)

xhij +
∑

q∈H,q 6=h

∑
r∈N ,j 6=r

xqjr ≤ 1 i ∈ N , j ∈ Nc, i 6= j, h ∈ H (18)

∑
h∈H

xhik ≤ zik k ∈ N0, i ∈ Nc (19)∑
h∈H

xhki ≤ zik k ∈ N0, i ∈ Nc (20)∑
h∈H

xhij + zik +
∑

m∈N0,m6=k

zjm ≤ 2 k ∈ N0, (i, j) ∈ Nc, i 6= j (21)

xhij ∈ {0, 1} i, j ∈ N , h ∈ H (22)

uk ∈ {0, 1} k ∈ N0 (23)

zik ∈ {0, 1} k ∈ N0, i ∈ Nc (24)

fhij ≥ 0 (i, j) ∈ N , h ∈ H. (25)

The objective function (7) minimizes the total cost including fixed depot and vehicle costs, as well as fuel

and CO2 emissions cost. Constraints (8) and (9) ensure that each customer is visited exactly once. Con-

straints (10) imply that the demand of each customer is fully served. Constraints (11) mean that the total

load on any path cannot exceed the capacity of the vehicle traversing it. Constraints (12) ensure that the

total load of the vehicles departing from a depot is equal to the total demand of the customers assigned to it.

Constraints (13) state that the load on all vehicles returning to each depot must be equal to zero. Constraints
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(14) and (15) are the bounds on the load variables. Constraints (16) guarantee that total demand associated

with a depot cannot exceed its capacity. Constraints (17) and (18) ensure that each customer is assigned to

only one depot and one vehicle, respectively. Constraints (19)–(21) forbid the formation of routes that do

not start and end at the same depot. Constraints (22) define the load of a vehicle of type h upon leaving

node i as the total amount of commodity on the arc (i, j) it uses to leave i. Finally, constraints (22)–(25)

enforce the integrality and non-negativity restrictions on the variables.

4 Description of the ALNS Metaheuristic

The mathematical formulation just presented is of large scale and cannot be solved for most practical in-

stances. We have therefore devised a metaheuristic algorithm, called pollution-and-location-heterogeneous

adaptive large neighborhood search (P-L-HALNS), to solve the problem. This algorithm is partly based on

the ALNS framework of Demir et al. (2012) which was initially put forward by Ropke and Pisinger (2006a,b)

to solve several variants of the VRP (see Laporte et al., 2014). This metaheuristic has since provided very

good results on several complicated variants of the VRP (see Pisinger and Ropke, 2007; Koç et al., 2015a),

of the LRP (see Koç et al., 2016a), and of the PRP (see Demir et al., 2012, 2014a; Koç et al., 2014).

The P-L-HALNS consists of two basic procedures: removal or destroy, followed by insertion or repair. In

the removal procedure, n′ nodes are iteratively removed by destroy operators and placed in the removal

list, where n′ lies in the interval [bl, bu] for the destroy operators. In the insertion procedure, the nodes

of the removal list are iteratively inserted into a least-cost position of the incomplete solution by means

of an insertion operator. The removal and insertion operators are selected dynamically according to their

past performance. To this end, each operator is assigned a score which is increased whenever it improves

the current solution and is periodically reset to one. Simulated annealing is used as an outer local search

framework for the P-L-HALNS in order to define the acceptance rule of candidate solutions.

In order to perform least-cost insertions, it is necessary to frequently make use of cheapest path values

during the course of the algorithm. We explain in Section 4.1 how these computations are handled in the

ALNS metaheuristic. This is followed in Section 4.2 by an overview of the metaheuristic itself.
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4.1 Cheapest Path Calculation for Speed Zones

The number of undominated paths between any two nodes in Ḡ is finite, but the identification of such paths

is not trivial since the cost of a path depends on the type of vehicle traveling a path from i to j, on its load

upon leaving i, and on the speed of each arc of the path (see equation (6)). To overcome the complexity

of this task, we introduce the CHEAPEST PATH CALCULATION heuristic which simplifies computations in

speed zone settings. This heuristic computes z paths between i and j for z speed zones and selects the

cheapest one. This procedure does not guarantee the calculation of the minimum cost path over all possible

paths, but is suitable for iterative use within an algorithm like the P-L-HALNS described here.

Algorithm 1 presents this procedure for a node pair (i, j) and for finite z speed zones. We first find a path

between i and j by Algorithm 2 (lines 2–4). According to the Taxicab geometry (see Section 2.4), if node i

and j are not located on the same horizontal nor on the same vertical coordinate, there exist several shortest

paths with the same length, but not necessarily with the same cost for a vehicle with a fixed load, because of

the possibility for the vehicle to travel through several zones. In Algorithm 2, we form two paths, one that

first traverses the X coordinate, and then the Y coordinate. The rule for the other path is the opposite, first

Y, then X. We identify the cheapest path p0 of the two and discard the other one. We then iteratively contort

p0 to generate alternative paths p1, . . . , pz−1 (lines 5–9) in Algorithm 3, in which we compare the costs of

p0, p1, . . . , pz−1, and take the cheapest path (line 10). In this algorithm, a path pν follows the boundary of

zone ν on which it travels at a speed Vν+1 based on the assumption made in Section 2.4. We do not consider

travel on or outside the boundary of zone z since this is not defined. It should be noted that in the P-L-

HALNS, we calculate the cheapest path between each pair of nodes a priori, as is commonly done in the

VRP.

Algorithm 1 CHEAPEST PATH CALCULATION

1: Consider nodes i ∈ N and j ∈ N \ {i}. ν ← 0.
2: Apply TWO PATHS (i, j)
3: ν ← ν + 1
4: while ν < z do
5: Apply ALTERNATIVE PATHS (i, j, p0)
6: ν ← ν + 1
7: end while
8: Return Least cost path pk where k = arg min {χ0, χ1, . . . , χz−1}
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Algorithm 2 TWO PATHS

1: Input: i, j
2: if i and j are located neither on the same horizontal nor the same vertical coordinate then
3: Find two paths 1 (p10) and 2 (p20) between i and j. p10 that first traverses the X coordinate, and then

the Y coordinate. The rule for the p20 is the opposite, first Y, then X.
4: Calculate costs χ1

0 and χ2
0 of paths p10 and p20

5: if χ1
0 ≤ χ2

0 then
6: p0 ← p10
7: χ0 ← χ1

0

8: else
9: p0 ← p20

10: χ0 ← χ2
0

11: else
12: Find shortest path p0 between (i, j)
13: Calculate the cost χ0 of path p0
14: Return p0 and χ0

Figure 4 illustrates the CHEAPEST PATH CALCULATION procedure for a given node pair (i, j), the three

speed zones considered in this paper and a vehicle with a fixed load traveling between these nodes. Figure

4.a shows the formation of two paths by the TWO PATHS algorithm, (i, A, j) and (i, B, j) that are the shortest

with respect to the Taxicab geometry, but the cheapest path would always be (i, B, j) since V2 < V3 ≤ 40

km/h. We then calculate the cost χ0 of p0 = (i, B, j). Figures 4.b and 4.c show the formation of the two

paths described in Algorithm 3. In Figure 4.b, we first find the shortest path from node i to nearest pointAν

of zone 1. We then find the shortest path, on the border of zone 1, from point Aν to nearest point Bν of zone

1 to node j. We finally find the shortest path from point Bν to node j. As in Step 1, if there are two same

length shortest paths between points, such as (Bν , B1
ν , j) and (Bν , B2

ν , j), we select the cheapest one, in this

case (Bν , B1
ν , j). We calculate the cost χ1 of p1 = (i, Aν , Bν , B

1
ν , j). In Figure 4.c, we first find the shortest

path from node i to nearest pointAν of zone 2. We then find the shortest path, on the border of zone 2, from

point Aν to nearest point Bν of zone 2 to node j. We finally find the shortest path from point B2 to node j.

We calculate the cost χ2 of p2 = (i, Aν , Bν , j).

It is relatively easy to find cases for which this procedure does not identify an optimal path. However, the

precise calculation of departure from optimality requires further research.

4.2 Overview of the metaheuristic

The general framework of the P-L-HALNS metaheuristic is sketched in Algorithm 4. We now briefly explain

its steps. Given the complexity of implementing the CHEAPEST PATH CALCULATION procedure at every

step of the P-L-HALNS, we work with average route demand lengths. At the beginning of the algorithm,
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Algorithm 3 ALTERNATIVE PATHS

1: Input: i, j and p0
2: Step 1
3: Find the shortest path from node i to nearest point (Aν) on an edge of zone ν
4: if there are several same length shortest paths between i and Aν then
5: Select two paths: p(i, A1

ν , Aν) and p(i, A2
ν , Aν) where A1

ν and A2
ν are the intersection points of X and

Y coordinates
6: Calculate costs χ(i, A1

ν , Aν) and χ(i, A2
ν , Aν) of paths p(i, A1

ν , Aν) and p(i, A2
ν , Aν)

7: if χ(i, A1
ν , Aν) ≤ χ(i, A2

ν , Aν) then
8: p(i, Aν)← p(i, A1

ν , Aν)
9: χ(i, Aν)← χ(i, A1

ν , Aν)
10: else
11: p(i, Aν)← p(i, A2

ν , Aν)
12: χ(i, Aν)← χ(i, A2

ν , Aν)

13: else
14: Calculate the cost χ(i, Aν) of path p(i, Aν)

15: Step 2
16: Find the shortest path from point Bν to node j
17: if there are several same length shortest paths between Bν and j then
18: Select two paths: p(Bν , B1

ν , j) and p(Bν , B2
ν , j) where B1

ν and B2
ν are the intersection points of X and

Y coordinates
19: Calculate costs χ(Bν , B

1
ν , j) and χ(Bν , B

2
ν , j) of paths p(Bν , B1

ν , j) and p(Bν , B2
ν , j)

20: if χ(Bν , B
1
ν , j) ≤ χ(Bν , B

2
ν , j) then

21: p(Bν , j)← p(Bν , B
1
ν , j)

22: χ(Bν , j)← χ(Bν , B
1
ν , j)

23: else
24: p(Bν , j)← p(Bν , B

2
ν , j)

25: χ(Bν , j)← χ(Bν , B
2
ν , j)

26: else
27: Calculate the cost χ(Bν , j) of path p(Bν , j)
28: Step 3
29: Find the shortest path p(Aν , Bν), on the border of zone ν, from point Aν to nearest point (Bν) of zone ν

to node j
30: Let the cost χ(Aν , Bν) of path p(Aν , Bν)
31: Step 4
32: pν ← p(i, Aν) + p(Aν , Bν) + p(Bν , j)
33: χν ← χ(i, Aν) + χ(Aν , Bν) + χ(Bν , j)
34: Return pν and χν
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Figure 4: Illustration of the three main steps of the CHEAPEST PATH CALCULATION procedure

we first define a set B of average route demand levels. The total demand of customers is known a priori.

For example, let |B| = 4 and the total demand be 2000 kg, which results in the following intervals: level

1 ranges from zero to 500 kg, level 2 ranges from 501 to 1000 kg, level 3 ranges from 1001 to 1500 kg, and

level 4 ranges from 1501 to 2000 kg. Let υβhij be the fixed cost associated with the path for each average route

demand level β ∈ B and for each vehicle of type h ∈ H. The fixed costs υβhij are calculated at the beginning of

the algorithm (line 1). These fixed costs are used to compute the route costs quickly. During the algorithm,

for each solution, the average route demand is calculated as (total demand of customers)/(total number

of vehicle routes). In the above example, if the number of vehicle routes is three, then the average route

demand is 2000/3 which is at level β = 2 (β ∈ B).

An initial solution ω0 is generated by using a modified version of the classical Clarke and Wright (1964)

savings algorithm for the VRP (line 2). The selection probabilities are initialized for each destroy and repair

operator (line 3). In line 4, ωb is the best solution found during the search, ωc is the current solution obtained

at the beginning of an iteration, and ωt is a temporary solution found at the end of the iteration which can

be discarded or become the current solution. The temperature is denoted by T , the iteration counter is

denoted by j, and the current and the best solutions are initially set equal to the initial solution (line 4).

The temperature T is initially set at c(ω0)P0, where c(ω0) is the cost of initial solution and P0 is the initial

temperature.

Every σ iterations, a diversification based removal operator is selected (lines 6–8) and applied to ωc; other-

wise an intensification based removal operator is selected (lines 9–11). An insertion operator is then selected

and applied to the destroyed solution, and a feasible solution ωt is obtained (line 12).

The operators are iteratively applied using the average costs up until the counter p reaches ς , following
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which the actual costs for ωc, ωt and ωb are calculated using the CHEAPEST PATH CALCULATION procedure

(Algorithm 1), and the counter p is reset to zero (lines 13–15); otherwise, the fixed costs are used to compute

c(ωt) (lines 16–18). If the cost of a repaired solution c(ωt) is less than that of the current solution c(ωc), then

ωc is replaced by ωt (lines 19–20); otherwise, the probability ϑ of accepting a non-improving solution is

computed (line 21–22) as a function of the current temperature and of the value of c(ωt)− c(ωc). A random

number ε is then generated in the interval [0, 1] (line 23). If ε is less than ϑ, ωc is then replaced by ωt (lines

24–25). If the cost of ωc is less than that of ωb, ωb is replaced by ωc (lines 26–27). The current temperature is

gradually decreased during the algorithm as δT (line 28), where 0 < δ < 1 is a fixed cooling parameter. The

probabilities are updated by means of an adaptive weight adjustment procedure (AWAP) every ζ iteration

(line 29). When the maximal number $ iterations is reached, the algorithm terminates (line 31) and returns

the best found solution. For further information on the operators and on other algorithmic details the reader

is referred to Demir et al. (2012) and Koç et al. (2016a).

Algorithm 4 GENERAL FRAMEWORK OF THE P-L-HALNS

1: Fixed cost calculation: Calculate the fixed costs υβhij
2: Initialization: Generate an initial solution
3: Initialize probabilities associated with the operators
4: T ← c(ω0)P0, q ← 1, p← 1, l← 1, ωc ← ωb ← ω0

5: while q < $ do
6: if l = σ then
7: Diversification based destroy
8: l← 1
9: else

10: Intensification based destroy
11: l← l + 1

12: Repair
13: if p = ς then
14: Calculate real costs
15: p← 1
16: else
17: Calculate the solution cost using fixed costs υβhij
18: p← p+ 1

19: if c(ωt) < c(ωc) then
20: ωc ← ωt
21: else
22: ϑ← e−(c(ωt)−c(ωc))/T

23: Generate a random number ε
24: if ε < ϑ then
25: ωc ← ωt
26: if c(ωc) < c(ωb) then
27: ωb ← ωc
28: T ← δT
29: AWAP: update probabilities of operators
30: q ← q + 1
31: end while
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5 Computational Experiments and Analyses

We now present the results of our computational experiments. All experiments were conducted on a server

with one gigabyte RAM and an Intel Xeon 2.6 GHz processor. The P-L-HALNS was implemented in C++.

We used CPLEX 12.6 with its default settings as the optimizer to solve the integer programming formula-

tion.

In generating the instances, we assume an area divided into three nested squares centered in the middle

of the area, each corresponding to a fixed speed zone, as shown in Figure 3. The fixed speeds are set at

25, 32 and 40 km/h and the sizes of the nested squares are 3 km × 3 km, 6 km × 6 km and 10 km × 10

km, respectively. We assume a grid of Taxicab geometry with a distance of 100 m between each pair of

neighboring points (starting from the bottom left corner) on each axis in the Cartesian plane. We generated

four sets of instances where the first set contains 25 customers and four potential depots locations, the

second set contains 50 customers and six potential depots locations, the third set contains 75 customers

and eight potential depots locations, and the fourth set contains 100 customers and 10 potential depots.

Each set includes three subsets: 1) customers concentrated in the city centre, denoted by CC, 2) customers

concentrated in the outer city area and in the suburb, denoted by SU, and 3) customers located randomly,

denoted by R. These three subsets of benchmark instances are illustrated in Figure 5. These configurations

cover a wide variety of realistic urban settings.

(a) CC (b) SU (c) R

Depot

Depot

Depot

Depot

Depot

Depot

Depot

Depot

Depot

Figure 5: Geographical customer distribution in the benchmark instances

Each subset includes five instances, resulting in a total of 60 instances. To generate the depot characteristics,

we used a procedure similar to that used for the standard LRP benchmark instances (see Barreto, 2004;

Albareda-Sambola et al., 2005; Prodhon, 2006). The customer demands and the depot capacities (in kg) were

randomly generated using a uniform distribution in the range [100, 1100] and [10000, 15000], respectively.
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The fixed depot costs are dependent on their location (see Speh 2009, Ghiani et al. 2013), i.e., zone 1 has

the highest fixed cost (£5000/day per depot), followed by zone 2 (£3500/day per depot) and finally zone 3

(£2000/day per depot). All costs relate to the same planning horizon.

The parameters used in the P-L-HALNS are provided in Table 3. All algorithmic parametric values, except

ς and σ, are as described in Demir et al. (2012), who applied an extensive meta-calibration procedure to

generate effective parameter values for their ALNS heuristic for the PRP. In the experiments, ten runs were

performed for each instance and the result of the best one is reported.

Table 3: Parameters used in the P-L-HALNS
Description Typical values
Total number of iterations ($) 25000
Number of iterations for roulette wheel (ζ) 450
Startup temperature parameter (P0) 100
Cooling parameter (δ) 0.999
Lower limit of removable nodes 5–20% of |Nc|
Upper limit of removable nodes 12–30% of |Nc|
Route cost calculation parameter (ς) 100
Diversification parameter (σ) 50

To empirically assess the quality of the approximation used to calculate the route lengths, we compare two

versions of the P-L-HALNS. Version 1 corresponds to the original P-L-HALNS which uses average route

demand lengths, while Version 2 uses actual costs at every iteration. We present two sets of experiments

on selected 100-customer instances: CC100 1, SU100 1 and R100 1. The columns display the instance type,

the total cost in (£) and the computation time in seconds (Time). The results are reported in Table 4. The

columns DevTC and DevT show the percentage deterioration in solution quality and in computation time

of Version 2 with respect to Version 1. The last row named Avg (%) shows the average deviations across the

three instances. These results clearly indicate the benefit of using average route demand lengths (Version

1) in the P-L-HALNS. In terms of computation time, Version 2 performs on average 29.06% worse than

Version 1. The solution costs between the two versions differ by 0.01% on average.

Table 4: Sensitivity analyses of the P-L-HALNS components
Instance |Nc| |N0| Version 1 Version 2 DevTC DevT

Total cost (£) Time (sec.) Total cost (£) Time (sec.)
CC100 1 100 10 21084.52 169.51 21090.52 231.55 0.03 26.79
SU100 1 100 10 15322.76 151.15 15324.86 201.17 0.01 24.86
R100 1 100 10 14028.78 158.13 14030.78 245.20 0.01 35.51
Avg (%) 0.01 29.06

The rest of this section presents the full experiments, the aim of which is sevenfold: 1) to validate the

heuristic in terms of accuracy, 2) to solve the problem described in Section 3, 3) to empirically calculate the

savings that achievable by using a comprehensive objective function instead of using individual functions
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for each performance indicator, 4) to analyze the effect of variations in potential depot locations and cus-

tomer distribution, 5) to investigate the effect of variations in depot costs, 6) to quantify the benefits of using

a heterogeneous fleet over a homogeneous one, and 7) to analyze the arc-based network structure.

5.1 Validation test

We have conducted a preliminary experiment on small-size instances, aimed at assessing the accuracy of

the P-L-HALNS. To this end, we have compared the solution values of our heuristic with the optimal values

obtained by solving the integer programming formulation by CPLEX. We have generated five 10-customer

instances, five 15-customer instances and five 20-customer instances, with three potential depots and two

vehicle types, L1 and L2. Three values of demands, 500, 1000 or 1500 kg, were randomly assigned to

each customer. We used a network in which the speeds are arc-dependent. We computed the fuel and CO2

emission cost c(i, j, fhij) a priori for each arc (i, j) ∈ A, for each vehicle type h ∈ H and for each possible load

value. For example, consider three customers with having a demand of 500, 1000 and 1500, respectively.

The total customer demand is 3000. We then calculate c(i, j, fhij) for the following six load values: 500,

1000, 1500, 2000, 2500 and 3000. Each instance was solved five times with the P-L-HALNS, and once with

CPLEX. The results are shown in Table 5. The P-L-HALNS time is the total time needed for the five runs

of the heuristic. These results clearly indicate that our heuristic always yields optimal solutions on these

instances within short computation times.

5.2 Results obtained on the test instances

This section presents the results obtained by P-L-HALNS on the 25-, 50-, 75- and 100-customer instances.

Table 6 presents the average results for each instance set where the columns display the average distance

(km), CO2 emissions (kg), fuel and CO2 emissions cost (£), depot cost (£), vehicle cost (£), total cost (£) and

time (s). We also report the average number of opened depots for each subset. In this column, the first,

second and third elements within the parentheses represent the number of opened depots in zone 1, 2 and

3, respectively. To evaluate the environmental impact of the solutions, we also report the average amount

of CO2 emissions (in kg) based on the assumption that one liter of gasoline contains 2.32 kg of CO2 (Coe,

2005). For detailed results, the reader is referred to Tables A.1–A.4 in the Appendix.

From Table 6, it is clear that the total cost is dominated by the large depot costs which force the P-L-HALNS

to first minimize the number of depots, then minimize the vehicle fixed costs, and lastly fuel and CO2
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Table 5: Computational results on the 10-,15 and 20-customer instances
Instance |Nc| |N0| CPLEX P-L-HALNS

Total cost Time DevT Time
(£) (sec.) (sec.)

ARC10 1 10 3 298.74 1.21 0.00 9.05
ARC10 2 10 3 300.32 0.77 0.00 6.25
ARC10 3 10 3 300.15 0.81 0.00 7.05
ARC10 4 10 3 299.14 2.18 0.00 7.90
ARC10 5 10 3 298.79 0.82 0.00 8.60
Avg 299.43 1.16 0.00 7.77

ARC15 1 15 3 2604.13 7.08 0.00 22.80
ARC15 2 15 3 2106.09 9.63 0.00 24.10
ARC15 3 15 3 2649.13 36.61 0.00 21.90
ARC15 4 15 3 2605.19 5.57 0.00 21.85
ARC15 5 15 3 2605.22 65.42 0.00 20.05
Avg 2513.95 24.86 0.00 22.14

ARC20 1 20 3 2699.45 1031.39 0.00 28.40
ARC20 2 20 3 2657.22 2739.87 0.00 29.05
ARC20 3 20 3 2649.72 489.18 0.00 27.45
ARC20 4 20 3 2649.92 3531.00 0.00 30.20
ARC20 5 20 3 2657.17 1008.88 0.00 29.85
Avg 2662.70 1760.06 0.00 28.99

Table 6: Average results on the instances
Instance |Nc| |N0| Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost Time

depots (km) (kg) emissions costs (£) (£) (£) (£) (s)
CC25 25 4 (1.2, 0.2,0.5) 37.40 21.56 13.01 7900.00 106.20 8019.21 5.46
SU25 25 4 (0.4,0.8,0.6) 56.01 20.63 12.45 5400.00 102.60 5515.05 5.44
R25 25 4 (0.4,0.8,0.4) 64.78 19.48 11.76 5600.00 104.00 5715.76 5.41
CC50 50 6 (1.6,0.6,0.8) 80.66 23.68 14.29 11700.00 175.60 11889.88 32.11
SU50 50 6 (0.4,0.6,2.0) 125.15 21.44 12.94 8100.00 175.60 8288.53 31.00
R50 50 6 (0.2,1.0,1.8) 128.60 23.40 14.12 8100.00 169.00 8283.12 31.53
CC75 75 8 (2.2,1.0,0.8) 106.14 28.43 17.16 16100.00 256.80 16373.96 68.21
SU75 75 8 (0.0,2.0,2.0) 200.39 32.73 19.75 11300.00 288.80 11608.54 64.29
R75 75 8 (0.0,2.2,1.8) 197.89 38.22 23.06 11000.00 300.00 11323.04 64.02
CC100 100 10 (2.6,1.4,1.4) 140.24 43.61 26.31 20700.00 358.20 21084.52 169.51
SU100 100 10 (0.0,2.2,3.0) 244.44 42.02 25.35 14900.00 397.40 15322.76 151.15
R100 100 10 (0.0,3.0,2.2) 259.42 54.66 32.98 13600.00 395.80 14028.78 158.13
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emission costs.

5.3 The effect of the various cost components of the objective function

In this section, we analyze the implications of using different objectives on a number of performance mea-

sures. To this end, we have conducted experiments using four special cases of the objective function, which

are presented in the first column of Table 7. The tests were run on all 100-customer R, SU and CC instances.

In the first version, we only consider minimizing the fuel and CO2 emissions costs (F). This setting also

implies minimizing CO2 since emissions are proportional to fuel consumption. We then consider the objec-

tive of minimizing only the depot cost (D) and the vehicle fixed cost (V) in the second and third versions,

respectively. The next objective corresponds to that of the HVRP which jointly minimizes distance and ve-

hicle fixed costs (DV). Finally, we present the comprehensive objective of minimizing the total cost function

(T) as defined by (7).

Table 7: The effect of cost components: objective function values.
Objective Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost

depots (km) (kg) emissions costs (£) (£) (£) (£)
R100 instances
Fuel and CO2 emissions cost (F) (1.0,3.1,1.0) 257.66 30.50 18.40 16443.79 363.51 16889.10
Depot cost (D) (0.0,3.1,2.2) 238.34 52.41 31.63 13600.00 399.97 14030.00
Vehicle fixed cost (V) (1.1,3.2,2.1) 248.40 36.34 21.93 18289.66 356.22 18666.46
Distance and vehicle fixed cost (DV) (4.0,3.1,3.2) 333.19 119.59 72.17 34234.48 962.42 35263.31
Total cost (T) (0.0,3.0,2.2) 259.42 54.66 32.98 13600.00 395.80 14028.78

SU100 instances
Fuel and CO2 emissions cost (F) (1.1,3.0,2.0) 244.44 42.02 25.35 20037.93 416.03 20480.95
Depot cost (D) (0.0,3.2,3.0) 304.11 43.62 26.32 16955.17 498.82 17480.01
Vehicle fixed cost (V) (1.0,3.1,2.0) 250.09 62.91 37.96 20037.93 361.18 20438.29
Distance and vehicle fixed cost (DV) (4.0,3.2,3.1) 340.56 92.48 55.81 37506.90 999.71 38562.30
Total cost (T) (0.0,2.2,3.0) 248.49 43.52 26.26 14900.00 397.40 15322.76

CC100 instances
Fuel and CO2 emissions cost (F) (3.0,2.0,1.1) 117.68 36.15 21.82 22080.00 369.49 22494.35
Depot cost (D) (3.1,1.2,2.1) 161.18 69.36 41.85 20700.00 408.49 21140.94
Vehicle fixed cost (V) (3.0,2.2,1.1) 124.22 43.97 26.53 22080.00 358.20 22467.62
Distance and vehicle fixed cost (DV) (4.3,3.1,3.0) 256.51 86.30 52.08 33580.00 991.46 34579.22
Total cost (T) (2.6,1.4,1.4) 140.24 43.61 26.31 20700.00 358.20 21084.52

Table 8 presents the average deviations of each component from the smallest value of each column. For

example, in the case of the R100 instances, the minimum average value for objective D is £13,600 across

the five objective functions, but objective V yields a solution in which the average depot cost is £18,289.66,

corresponding to an increase of 34.48% over the former. For the R100, SU100 and CC100 instances, it is

clear that objective F results in a poor total cost performance, yielding a 20.39%, 33.66% and 6.69% av-

erage increases over the value found through objective T, respectively. In the case of the R100 instances,

this increase is more substantial for objective V, which is on average 33.06% higher. For the R100, SU100

and CC100 instances, as for emissions, objective F yields an increase of 20.91%, 18.18% and 6.67% in de-
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pot cost over the value provided by objective D, respectively. For the R100, SU100 and CC100 instances,

objective DV performs very poorly on all cost components, yielding average increases of 151.36%, 151.67%

and 64.00%, respectively. These results indicate that traveling on a shortest path does not always result in

a cheapest solution. In urban settings, due to the effect of speed zones on the objective function, longer

paths outside the city centre have the potential to decrease the solution cost, a situation that was explained

in Section 2. Maden et al. (2010) reached a similar conclusion relative to long-haul transportation.

Table 8: The effect of cost components: percent deviation from the minimum value.
Objective Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost

(km) (kg) emissions costs (£) (£) (£) (£)
R100 instances
Fuel and CO2 emissions cost (F) 8.11 0.00 0.00 20.91 2.05 20.39
Depot cost (D) 0.00 71.86 71.86 0.00 12.28 0.01
Vehicle fixed cost (V) 4.22 19.15 19.15 34.48 0.00 33.06
Distance and vehicle fixed cost (DV) 39.79 292.13 292.13 151.72 170.18 151.36
Total cost (T) 8.84 79.22 79.21 0.00 11.11 0.00

SU100 instances
Fuel and CO2 emissions cost (F) 0.00 0.00 0.00 18.18 15.19 33.66
Depot cost (D) 24.41 3.82 3.82 0.00 38.11 14.08
Vehicle fixed cost (V) 2.31 49.73 49.73 18.18 0.00 33.39
Distance and vehicle fixed cost (DV) 39.32 120.12 120.12 121.21 176.79 151.67
Total cost (T) 1.66 3.57 3.57 0.00 10.03 0.00

CC100 instances
Fuel and CO2 emissions cost (F) 0.00 0.00 0.00 6.67 3.15 6.69
Depot cost (D) 36.97 91.85 91.85 0.00 14.04 0.27
Vehicle fixed cost (V) 5.56 21.63 21.63 6.67 0.00 6.56
Distance and vehicle fixed cost (DV) 117.97 138.73 138.73 62.22 176.79 64.00
Total cost (T) 19.18 20.62 20.62 0.00 0.00 0.00

5.4 The joint effect of variations in depot and customer locations

In this section, we investigate the joint effect of the variations in potential depot locations and customer

distribution in two sets of experiments. In the first set, we have selected instances with 100 customers and

10 potential depots. We consider three depot location variations, namely all depots are potentially located in

zone 1, in zone 2, and in zone 3, respectively. We also consider three customer location variations, i.e., R, CC

and SU type instances. In total, we have generated nine sets of depot and customer location combinations.

In the tables, the columns DevCO2
and DevT show the deviations in CO2 emissions (in kg) and in total cost

(£) between the various depot or customer location cases and the base case.

We report the effect of varying the depot location over different customer location in Table 9. For the R

instances, Table 9 shows that when all depots are located in zone 1, CO2 emissions increase by 21.68%.

When they are located in zones 2 and 3, CO2 emissions decrease by 7.82% and 13.66%, respectively. Table 9

suggests that the average increase in the total cost is 44.82% and 21.62% over the base case, when all depots

are located in zone 1 and 2, respectively. When all the depots are located in zone 3, the total cost decreases
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Table 9: The effect of variations in depot location over different customer positionings.
Instance All depots in zone 1 All depots in zone 2 All depots in zone 3 Base case

CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£) DevCO2

DevT CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£)

R100 1 110.68 25390.30 3.45 41.14 90.10 17866.20 −18.60 16.35 77.36 10367.00 −38.12 −44.15 106.86 14944.50
R100 2 52.29 25464.60 16.50 47.34 43.26 17917.10 −0.93 25.15 40.40 10461.00 −8.06 −28.19 43.66 13410.30
R100 3 50.77 25421.60 14.23 47.19 38.62 17907.30 −12.75 25.03 40.77 10422.60 −6.82 −28.80 43.55 13424.30
R100 4 54.14 25465.70 21.44 47.34 40.92 17946.70 −3.94 25.28 38.28 10488.10 −11.12 −27.86 42.53 13409.70
R100 5 77.70 25388.90 52.80 41.10 35.66 17866.50 −2.86 16.30 35.20 10366.30 −4.20 −44.27 36.68 14955.10
Avg (%) 21.68 44.82 −7.82 21.62 −13.66 −34.65

CC100 1 37.20 27969.60 8.06 18.23 33.20 24869.60 −3.01 8.04 31.20 19869.60 −9.62 −15.10 34.20 22869.60
CC100 2 39.67 24844.10 7.64 28.10 35.64 21061.10 −2.81 15.18 32.64 14994.10 −12.26 −19.14 36.64 17864.10
CC100 3 77.06 29473.30 9.08 23.89 68.06 24753.30 −2.94 9.37 65.06 20433.30 −7.69 −9.79 70.06 22433.30
CC100 4 41.36 30883.10 7.50 25.90 36.26 25183.10 −5.52 9.13 34.26 20783.10 −11.68 −10.10 38.26 22883.10
CC100 5 42.88 26378.50 9.33 26.56 36.88 22092.50 −5.42 12.31 34.88 16872.50 −11.47 −14.82 38.88 19372.50
Avg (%) 8.32 24.54 −3.94 10.81 −10.54 −13.79

SU100 1 51.44 23939.00 19.44 37.72 40.44 16919.00 −2.47 11.88 37.44 10909.00 −10.68 −36.67 41.44 14909.00
SU100 2 54.71 24962.40 20.11 40.10 41.40 17552.40 −5.57 14.81 36.71 10152.40 −19.07 −47.28 43.71 14952.40
SU100 3 47.64 22976.30 18.89 34.91 36.54 16906.30 −5.75 11.53 31.64 10956.30 −22.12 −36.51 38.64 14956.30
SU100 4 55.68 26887.00 19.76 37.19 43.68 18987.00 −2.29 11.06 37.68 12787.00 −18.58 −32.06 44.68 16887.00
SU100 5 50.61 25809.10 17.78 42.23 39.61 16609.10 −5.05 10.24 33.61 10909.10 −23.81 −36.67 41.61 14909.10
Avg (%) 19.20 38.43 −4.23 11.90 −18.85 −37.84

by about 34.65% on average. For the CC instances, Table 9 shows that when all depots are located in zone 1,

CO2 emissions increase on average by 8.32% because of the customers that are not located in the city center.

In this case, the vehicles must visit these outlying customers and return to a depot located in zone 1, which

increases fuel consumption and CO2 emissions. On the other hand, the emissions decrease by 3.94% and

10.54% when customers are located in zones 2 and 3, respectively. The average increase in the total cost

is 24.54% and 10.81% on average when all depots are located in zone 1 and 2, respectively. The total cost

decreases by 13.79% on average when all the depots are located in zone 3. For the SU instances, similar

results obtained as for the R instances. When all depots are located in zone 1, CO2 emissions increase on

average by 19.20% and decrease by 4.23% and 18.85% when they are located in zones 2 and 3, respectively.

The total cost increases by 38.43% and 11.90% on average when all depots are located in zone 1 and 2,

respectively. The total cost decreases by 37.84% on average when all the depots are located in zone 3. For

all types of instances, i.e., R, CC, SU, this analysis indicates that in terms of cost, it is preferable to locate the

depots in suburban areas rather than in the city center. This also helps reduce congestion in city centers.

A similar observation was made by Dablanc (2014) who conducted an empirical study on depot location

in the Los Angeles area and concluded that warehouses moved out an average of six miles from the area

barycentre between 1998 and 2009. Dablanc’s findings are mainly a consequence of the fact that land is

cheaper in the suburbs than in inner-cities, which translates into lower depot costs. Our study goes one

step further in that it shows that locating depots in peripheral zones also helps reduce pollution since more

travel can be made at an optimal speed. Locating depots outside the city center translates into larger driving

distances to the inner city customers but yields overall economic and environmental benefits.

In the second set of experiments, we analyze the effect of variations in customer locations. Table 10 provides
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a comparison of three variations, namely all customers located in zone 1, all customers located in zone 2,

and all customers located in zone 3. The depot locations are kept the same across all variations. Table

10 shows that when all customers are located in zone 3, CO2 emissions increase by 11.42%. On the other

hand, when all customers are located in zone 1 and 2, CO2 emissions decrease by 38.97% and 50.14%,

respectively. Table 10 suggests that the average total cost increase over the base case is 38.16%, 6.04% and

8.12% on average when all customers are located in zone 1, 2 and 3, respectively. For the case where all

customers are located in zone 1, 2 and 3, the increase in the total cost ranges from 33.25% to 41.50%, from

−0.33% to 10.36%, and from −0.29% to 20.57%, respectively. Our results suggest that when all customers

are located only in the city centre this is always more expensive than for the other settings.

Table 10: The effect of variations in customer location.
Instance All customers in zone 1 All customers in zone 2 All customers in zone 3 Mix

CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£) DevCO2

DevT CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£)

R100 1 63.6614 22411.30 −67.86 33.32 65.15 14906.20 −64.02 −0.26 107.55 14912.70 0.64 −0.21 106.86 14944.50
R100 2 29.6308 22877.90 −47.35 41.38 27.18 14938.40 −60.61 10.23 46.55 14950.10 6.22 10.30 43.66 13410.30
R100 3 30.663 22878.50 −42.02 41.32 25.80 14948.60 −68.83 10.20 47.04 14954.40 7.42 10.23 43.55 13424.30
R100 4 33.7631 22922.40 −25.98 41.50 40.16 14959.30 −5.92 10.36 54.87 16882.10 22.48 20.57 42.53 13409.70
R100 5 32.8477 22406.20 −11.66 33.25 24.24 14905.60 −51.34 −0.33 46.05 14911.80 20.35 −0.29 36.68 14955.10

Avg (%) −38.97 38.16 −50.14 6.04 11.42 8.12

5.5 The effect of variations in depot costs

In practice, it is very difficult to estimate depot costs because these depend on factors such as land and

building cost, staffing and technology. In general, these factors are highly variable and hard to quantify.

In our benchmark instances, the depot costs are high with respect to other costs and dependent on their

location, i.e., every zone has its own fixed depot cost. We now investigate the effect of variations in depot

costs.

Our first experiments analyze the effect of same depot costs on opened depots. To this end, we have selected

five R type instances with 100 customers and 10 depots. We consider five versions in which all depot costs

are fixed at £5000, £3500, £2000, £1000 and £500 per day in all zones. Table 11 shows that when the variable

depot cost (Mix) is used for each zone, 5.5 depots are opened in zones 2 and 3 on average. For the £5000,

£3500, £2000, £1000 and £500 fixed costs, 3.4, 3.8, 3.8, 4.0 and 4.0 depots are opened in zones 2 and 3 on

average. On the other hand, for these three fixed costs variants, 1.6, 1.2, 1.4, 1.2 and 0.0 depots are opened

in zone 1 on average. The average number of opened depots in the city centre is always lower than the

total of number of opened depots in the outer urban area and in the suburb. Our results clearly show that

even if depot costs are the same in everywhere, it is still preferable to locate depots outside the city centre

because of the pollution aspect (see Section 5.4).
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Table 11: The effect of same depot costs on opened depots.
Instance £5000 £3500 £2000 £1000 £500 Mix

Opened Opened Opened Opened Opened Opened
depots depots depots depots depots depots

R100 1 (2,3,0) (2,3,0) (2,3,0) (1,3,1) (1,3,1) (0,3,2)
R100 2 (2,3,0) (1,3,1) (1,3,1) (2,2,1) (1,3,1) (0,3,2)
R100 3 (2,3,0) (1,3,1) (1,3,1) (1,3,1) (1,3,1) (0,3,2)
R100 4 (1,3,1) (1,3,1) (2,2,2) (1,3,2) (2,2,2) (0,3,3)
R100 5 (1,3,1) (1,3,1) (1,3,1) (1,3,1) (1,3,1) (0,3,2)

Avg (1.6,3.0,0.4) (1.2,3.0,0.8) (1.4,2.8,1.0) (1.2,2.8,1.2) (1.2,2.8,1.2) (0.0,3.0,2.2)

Our next experiments investigate the effect of decreasing the variable depot costs. To this end, we have

conducted four series of tests on all 100-customer CC, SU and R instances using our original variable depot

costs structure. In these tests, we decrease the depot costs by 90%, 70%, 50% and 30%, respectively. For

example, decreasing the depot cost by 90% means that the depot costs in zone 1, 2 and 3 are £500, £350

and £200, respectively. Looking at the results presented in Table 12, we observe no change in the locations

of opened depots for all instances and for all variations. For example, for the CC100 instances, when we

decrease depot costs by 90%, 70%, 50% and 30%, it is still preferable to open three depots in zone 1, one

depot in zone 2 and two depots in zone 3. Even though customers are concentrated in the city centre, half

of the depots are still located in the suburb. When we look at the SU100 instances, no depot is located in

city centre, but six depots are located in outer city area and in the suburb. The R100 instances follows the

same pattern with no depot located in the city centre, but five depots located in the outer city area and in

the suburb. Again, these results clearly show that no matter what the depot cost is, it is still preferable to

locate the depots outside the city centre due to the impact of their location on CO2 emissions.

Table 12: The effect of decreasing the depot costs.
Instance Change in Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost

depot cost (%) depots (km) (kg) emissions costs (£) (£) (£) (£)
CC100 −90% (3,1,2) 106.74 63.93 38.58 2070.00 358.20 2424.02
SU100 −90% (0,3,3) 255.71 24.29 14.66 1695.52 372.56 2080.63
R100 −90% (0,3,2) 250.70 34.63 20.90 1360.00 395.80 1756.22

CC100 −70% (3,1,2) 155.11 71.33 43.05 6210.00 358.20 6576.01
SU100 −70% (0,3,3) 268.67 45.66 27.56 5086.55 372.56 5485.30
R100 −70% (0,3,2) 279.48 25.98 15.68 4080.00 407.26 4479.27

CC100 −50% (3,1,2) 129.82 66.44 40.09 10350.00 358.20 10722.59
SU100 −50% (0,3,3) 239.59 44.95 27.12 8477.59 372.56 8876.44
R100 −50% (0,3,2) 258.55 54.19 32.70 6800.00 395.80 7222.50

CC100 −30% (3,1,2) 115.79 60.75 36.66 14490.00 358.20 14868.95
SU100 −30% (0,3,3) 247.62 13.93 8.41 11868.62 372.56 12249.06
R100 −30% (0,3,2) 253.99 52.10 31.44 9520.00 399.97 9946.26
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5.6 The effect of fleet composition

This section analyzes the benefit of using a heterogeneous fleet of vehicles over a homogenous one. To this

end, we have conducted three sets of experiments on three 100-customer instances, each using a unique

vehicle type, i.e., only light duty 1 (L1), only light duty 2 (L2) and only medium duty (M). This results in

three instances of the homogeneous version of the problem which are solved with the P-L-HALNS. Table

13 provides the results of this comparison. The columns DevCO2
and DevT show the deviations in CO2

emissions (in kg) and in total cost between the various homogeneous cases and the heterogeneous case.

Table 13: The effect of using a heterogeneous fleet
Instance Only light duty 1 Only light duty 2 Only medium duty Heterogeneous fleet

CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£) DevCO2

DevT CO2 (kg) Total cost (£) DevCO2
DevT CO2 (kg) Total cost (£)

CC100 1 50.12 26286.20 46.55 14.94 28.56 23007.20 −16.48 0.60 29.33 22877.70 −14.22 0.04 34.20 22869.60
CC100 2 51.80 22745.30 41.40 27.32 35.47 21011.40 −3.19 17.62 32.82 19379.80 −10.43 8.48 36.64 17864.10
CC100 3 71.24 26251.50 1.69 17.02 55.17 22508.80 −21.25 0.34 55.14 22441.20 −21.29 0.04 70.06 22433.30
CC100 4 46.78 24784.20 22.27 8.31 39.50 23013.80 3.24 0.57 35.77 22981.60 −6.52 0.43 38.26 22883.10
CC100 5 52.06 22745.40 33.91 17.41 33.04 22509.90 −15.02 16.20 35.08 19441.20 −9.77 0.35 38.88 19372.50
Avg (%) 29.16 17.00 −10.54 7.06 −12.45 1.87

SU100 1 40.33 17280.30 −2.67 15.91 35.31 17011.30 −14.78 14.10 42.59 16885.70 2.77 13.26 41.44 14909.00
SU100 2 34.32 15234.70 −21.48 1.89 32.66 14960.70 −25.28 0.06 41.37 15445.00 −5.36 3.29 43.71 14952.40
SU100 3 41.72 15739.20 7.96 5.23 35.59 15511.50 −7.90 3.71 43.12 15446.00 11.60 3.27 38.64 14956.30
SU100 4 38.36 17295.10 −14.16 2.42 35.00 17511.10 −21.67 3.70 42.15 17445.40 −5.67 3.31 44.68 16887.00
SU100 5 35.40 15235.40 −14.92 2.19 29.83 15008.00 −28.31 0.66 42.67 14943.30 2.55 0.23 41.61 14909.10
Avg (%) −9.05 5.53 −19.59 4.45 1.18 4.67

R100 1 98.27 15237.10 −8.04 1.96 73.68 15010.30 −31.05 0.44 111.96 15145.30 4.77 1.34 106.86 14944.50
R100 2 38.89 15279.50 −10.92 13.94 34.67 15010.90 −20.59 11.94 44.55 15006.90 2.03 11.91 43.66 13410.30
R100 3 40.07 15280.20 −8.00 13.82 31.36 15008.90 −27.99 11.80 43.05 15004.20 −1.15 11.77 43.55 13424.30
R100 4 38.81 17279.40 −8.76 28.86 33.74 17010.40 −20.68 26.85 42.57 16885.70 0.09 25.92 42.53 13409.70
R100 5 36.10 15235.80 −1.57 1.88 32.49 14960.60 −11.41 0.04 40.59 15144.50 10.65 1.27 36.68 14955.10
Avg (%) −7.46 12.09 −22.34 10.21 3.28 10.44

Table 13 shows that for the CC instances, CO2 emissions increase by 29.16% when L1 vehicles are used, and

decrease by 10.54% and 12.45% when L2 and M vehicles are used, respectively. The results of the SU and R

instances yield similar values for CO2 emissions, which decrease by L1 and L2 vehicles and increase by M

type vehicles. Table 13 indicates that the average increase in total cost for the CC instances is 17.00%, 7.06%

and 1.87%, for the SU instances 5.53%, 4.45% and 4.67%, for the R instances 12.09%, 10.21% and 10.44%

when using L1, L2 and M homogeneous fleet over the heterogeneous case, respectively. These results

imply that if one is to use a homogeneous fleet, it is preferable to use vehicles of type M in city centres (CC).

For the suburban (SU) and randomly distributed customer (R) location scenarios, homogeneous vehicles

of types L2 and M yield almost the same average total cost increase. This result shows that both the L2

and M vehicles are suitable for the SU and R instances. Our results also show that using a heterogeneous

vehicle fleet is preferable to using a homogeneous one since the total cost decreases by about at most 17%.

For urban settings or short-haul transportation, using a heterogeneous fleet does not seem to have same

impact on the total cost as in long-haul transportation. Koç et al. (2014) have indeed shown that using a

heterogeneous fleet can decrease the total cost by up to 25% in inter-city travel.
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Our final experiments aim at providing some insight into the capacity utilization of the vehicle fleet, both

for the homogenous and the heterogeneous cases, and also into the capacity utilization of the depots. In

Table 14, we present the capacity utilizations for the three homogeneous settings of Table 13 as well as for

the heterogeneous version. The column DCU displays the average percentage of capacity utilization for

depots, which is calculated as 100 (total demand of customers assigned to corresponding depot)/(capacity

of the depot) for each depot, and the column VCU displays the average percentage capacity utilization of

the vehicle fleet, which is calculated as 100 (total demand of route)/(capacity of the vehicle) for each vehicle.

Table 14: Capacity utilization rates
Instance Only light duty 1 Only light duty 2 Only medium duty Heterogeneous fleet

DCU VCU DCU VCU DCU VCU DCU VCU
CC100 1 91.67 90.40 89.16 86.79 92.98 86.79 89.16 92.98
CC100 2 96.39 90.72 99.50 82.26 93.47 82.26 97.92 92.77
CC100 3 87.92 93.09 97.39 84.40 97.39 72.35 97.39 85.54
CC100 4 88.76 92.46 99.36 88.76 91.19 88.76 91.19 88.76
CC100 5 96.86 92.59 98.38 83.95 96.86 71.96 93.97 89.94
Avg (%) 92.32 91.85 96.76 85.23 94.38 80.42 93.93 90.00

SU100 1 88.22 94.35 88.22 90.57 88.22 90.57 88.22 90.57
SU100 2 93.28 91.90 94.69 92.59 99.20 71.42 99.20 88.65
SU100 3 97.13 89.99 97.13 81.59 97.13 69.94 97.13 78.96
SU100 4 92.07 94.95 98.01 81.02 96.45 69.45 98.01 86.19
SU100 5 95.78 94.37 95.78 85.56 95.78 73.34 97.23 82.27
Avg (%) 93.30 93.11 94.77 86.27 95.36 74.94 95.96 85.33

R100 1 94.37 92.99 97.28 84.31 94.37 72.26 94.37 91.64
R100 2 98.18 91.36 98.18 87.71 98.18 65.78 98.18 88.30
R100 3 98.92 90.68 97.44 87.05 97.44 65.29 97.44 83.70
R100 4 86.76 92.79 86.76 89.08 86.76 89.08 86.76 89.08
R100 5 94.20 92.82 94.20 93.51 94.20 72.13 94.20 89.53
Avg (%) 94.49 92.13 94.77 88.33 94.19 72.91 94.19 88.45

As can be seen from Table 14, for the CC, SU and R instances the VCU reaches its maximum average level

of 91.85%, 93.11% and 92.13% and its minimum average level of 80.42%, 74.94% and 72.91% when using

only L1 and M duty vehicles, respectively. Using L1 vehicles yields the maximum average VCU level over

all types of instances. Using a heterogeneous fleet yields an average VCU of 90.00%, 85.33% and 88.45% for

the CC, SU and R instances, respectively. These results indicate that for a heterogeneous fleet, the best VCU

is obtained with L1 vehicles for the CC instances, and with L2 vehicles for the SU or the R instances.

For all instance types and all homogeneous vehicle combinations, the DCU level reaches at least 92.00%,

which is very similar to the heterogeneous vehicle fleet level. Our results shows that because of the very

high effect of the depot costs in the objective function (see Section 5.2), increasing the DCU has more effect

than increasing the VCU in urban settings.
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5.7 Application to an arc-based speed structure

We have so far almost exclusively assumed that speed zones corresponds to distinct geographic regions

of the urban area, which is not always the case in a real-world urban setting. However, our analysis also

applies to situations in which speeds are not zone-dependent, but arc-dependent. To illustrate, we now an-

alyze a different network structure to further motivate the wide applicability of our model. To this end, we

consider a network in which the speed limits are arc-specific attributes. We have generated five instances,

ARC100 1, ARC100 2, ARC100 3, ARC100 4 and ARC100 5, containing 100 customers and 10 potential de-

pots located randomly in the 10 km × 10 km square. We randomly assigned one of the three speed values,

25, 32 or 40 km/h, to each arc (i, j) and one of the three depot costs values, £500/day per depot, £350/day

per depot or £200/day per depot. Table 15 presents the results of the arc-based speed structure on five

instances. These results indicate that our algorithm work just as well with arc-dependent speeds. They

also show that average values of CO2 emissions are 116.88 kg, fuel and CO2 emissions costs are £70.53,

the depot cost is £3570.00, the vehicle cost is £866.80, and the total cost is £4507.33. Depot and vehicle

utilization values are on average equal to 87.32% and 72.15%. As for speed zone-based networks, the total

cost is largely dominated by depot costs. Due to this effect, the DCU is 15.17% higher than the VCU in

urban settings.

Table 15: Computational results of the arc based network structure
Instance |Nc| |N0| Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost DCU VCU Time

(km) (kg) emissions costs (£) (£) (£) (£) (sec.)
ARC100 1 100 10 126.97 119.09 71.87 3450.00 823.00 4344.87 87.37 72.37 149.53
ARC100 2 100 10 142.05 121.30 73.20 3650.00 910.00 4633.20 89.84 68.53 171.07
ARC100 3 100 10 127.19 116.62 70.37 3450.00 753.00 4273.37 86.94 72.59 172.89
ARC100 4 100 10 129.52 116.71 70.43 3650.00 896.00 4616.43 84.15 72.59 168.28
ARC100 5 100 10 114.19 110.69 66.80 3650.00 952.00 4668.80 88.29 74.67 161.76
Avg 127.98 116.88 70.53 3570.00 866.80 4507.33 87.32 72.15 164.71

6 Conclusions and Managerial Insights

We have studied and analyzed the combined impact of depot location, fleet composition and routing on

vehicle emissions in city logistics. We have formulated a new problem arising in urban settings and de-

signed a powerful ALNS metaheuristic to solve it. We have derived managerial insights by investigating

the effect of various problem components on cost and CO2 emissions. In what follows we summarize our

main conclusions.

Our first observation relates to shortest paths. Because of the effect of speed zones, a shortest path is not
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always a fastest, cheapest or least polluting path in city logistics since it may be advantageous to follow

circuitous routes to achieve faster speeds and hence lower costs and CO2 emissions. The explanation lies

in the fact that emissions are a U-shaped function of speed (Figure 1) whose optimal value is reached at 40

km/h since this is the fastest speed used in this study. It is also often the maximal allowed speed in city

centers. Hence faster driving is clearly cheaper and less polluting in this context. This is consistent with

what was observed by Ehmke et al. (2014) for urban areas but different from what occurs in inter-city travel

where faster driving entails more pollution which must be weighted against reduced driver wages (Bektaş

and Laporte, 2011; Demir et al., 2014a).

We have also shown that the highest costs are attained when all customers are located only in the city center.

Our experimental results indicate that even for same depot costs or lower variable depot costs, it is prefer-

able to locate the depots outside the city center. This decreases the total cost by about 34.65% on average, a

finding in line with that of Dablanc (2014) on the Los Angeles data. We have further performed an extensive

analysis of the interactions between customer distribution and depot location, and we have shown that this

conclusion holds over a wide range of fixed depot costs and customer geographical distributions.

We have demonstrated that in an urban setting, using a heterogeneous fleet instead of a homogeneous one

can decrease average costs by up to 17%, but this is not as much as the 25% reduction observed by Koç

et al. (2014) for long-haul transportation. Furthermore, we have shown that the depot capacity utilization

levels tend to be higher than the vehicle capacity utilization levels. This has an important implication since

in practice depot costs are often considerably larger than vehicle costs and significantly affect the total

distribution cost.

Our results depend of course on the parameter values used in the experimental design but the extensive

sensitivity analyses we have carried out convince us that our conclusions are highly robust. Beyond the

computational comparisons we have just made, we stress the importance of the availability of a flexible

decision support tool, such as the one we have developed, capable of handling a wide variety of city config-

urations and of analyzing the trade-offs that can be established between depot location, fleet composition,

routing and polluting emissions reductions in city logistics networks.
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Appendix

Table A.1–A.4 present the detailed computational results on the 25-, 50-, 75- and 100-customer instances.

Table A.1: Computational results on the 25-customer instances.
Instance |Nc| |N0| P-L-HALNS

Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost Time
depots (km) (kg) emissions costs (£) (£) (£) (£) (s)

CC25 1 25 4 (1,1,0) 36.10 26.12 15.76 8500.00 109.00 8624.76 5.16
CC25 2 25 4 (2,0,0) 45.59 10.09 6.09 10000.00 109.00 10115.10 5.20
CC25 3 25 4 (1,0,1) 37.60 2.63 1.59 7000.00 102.00 7103.59 5.50
CC25 4 25 4 (1,0,1) 40.24 29.35 17.71 7000.00 109.00 7126.71 6.02
CC25 5 25 4 (1,0,1) 27.47 39.62 23.91 7000.00 102.00 7125.91 5.42
SU25 1 25 4 (0,1,1) 54.65 9.68 5.84 5500.00 102.00 5607.84 5.48
SU25 2 25 4 (1,0,1) 63.99 8.93 5.39 7000.00 109.00 7114.39 5.48
SU25 3 25 4 (0,1,0) 52.97 45.60 27.52 3500.00 98.00 3625.52 5.42
SU25 4 25 4 (1,1,0) 46.88 0.15 0.09 5500.00 102.00 5602.09 5.38
SU25 5 25 4 (0,1,1) 61.55 38.78 23.40 5500.00 102.00 5625.40 5.44
R25 1 25 4 (0,1,0) 73.07 28.63 17.28 3500.00 98.00 3615.28 5.36
R25 2 25 4 (0,1,1) 63.54 21.66 13.07 5500.00 102.00 5615.07 5.38
R25 3 25 4 (0,1,0) 68.13 10.17 6.14 3500.00 102.00 3608.14 5.36
R25 4 25 4 (1,1,0) 58.57 26.00 15.69 8500.00 109.00 8624.69 5.32
R25 5 25 4 (1,0,1) 60.58 10.95 6.61 7000.00 109.00 7115.61 5.62

Table A.2: Computational results on the 50-customer instances.
Instance |Nc| |N0| P-L-HALNS

Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost Time
depots (km) (kg) emissions costs (£) (£) (£) (£) (s)

CC50 1 50 6 (1,0,2) 92.86 20.74 12.52 9000.00 180.00 9192.52 33.56
CC50 2 50 6 (2,1,0) 70.76 19.83 11.97 13500.00 180.00 13692.00 33.80
CC50 3 50 6 (1,1,1) 75.47 36.37 21.94 10500.00 169.00 10690.90 31.08
CC50 4 50 6 (2,0,1) 77.13 21.10 12.73 12000.00 169.00 12181.70 31.14
CC50 5 50 6 (2,1,0) 87.07 20.34 12.27 13500.00 180.00 13692.30 30.97
SU50 1 50 6 (1,0,2) 144.13 24.37 14.71 10500.00 180.00 10694.70 30.92
SU50 2 50 6 (0,1,2) 134.87 41.57 25.08 7500.00 169.00 7694.08 30.93
SU50 3 50 6 (0,1,2) 123.49 1.76 1.06 7500.00 169.00 7670.06 31.30
SU50 4 50 6 (0,1,2) 123.17 20.70 12.49 7500.00 180.00 7692.49 30.85
SU50 5 50 6 (1,0,2) 100.09 18.79 11.34 7500.00 180.00 7691.34 31.00
R50 1 50 6 (1,1,1) 116.06 15.38 9.28 9000.00 169.00 9178.28 30.74
R50 2 50 6 (0,1,2) 133.68 21.97 13.26 7500.00 169.00 7682.26 31.62
R50 3 50 6 (0,1,2) 136.19 39.99 24.13 7500.00 169.00 7693.13 32.03
R50 4 50 6 (0,1,2) 131.86 19.17 11.57 7500.00 169.00 7680.57 31.16
R50 5 50 6 (0,1,2) 125.23 20.49 12.36 9000.00 169.00 9181.36 32.07
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Table A.3: Computational results on the 75-customer instances.
Instance |Nc| |N0| P-L-HALNS

Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost Time
depots (km) (kg) emissions costs (£) (£) (£) (£) (s)

CC75 1 75 8 (2,1,1) 110.65 27.51 16.60 15500.00 240.00 15756.60 71.18
CC75 2 75 8 (2,1,1) 113.19 29.38 17.73 15500.00 282.00 15799.70 71.62
CC75 3 75 8 (2,1,1) 117.68 30.03 18.12 15500.00 240.00 15758.10 68.32
CC75 4 75 8 (3,1,0) 95.75 28.62 17.27 18500.00 282.00 18799.30 64.60
CC75 5 75 8 (2,1,1) 93.41 26.61 16.06 15500.00 240.00 15756.10 65.33
SU75 1 75 8 (0,2,2) 219.38 35.14 21.20 11000.00 320.00 11341.20 64.55
SU75 2 75 8 (0,2,2) 201.09 32.91 19.86 11000.00 324.00 11343.90 64.72
SU75 3 75 8 (0,2,2) 169.80 26.54 16.02 11000.00 229.00 11245.00 63.34
SU75 4 75 8 (0,2,2) 201.77 33.19 20.03 11000.00 240.00 11260.00 65.21
SU75 5 75 8 (0,2,2) 209.93 35.85 21.64 12500.00 331.00 12852.60 63.64
R75 1 75 8 (0,2,2) 172.62 29.32 17.70 11000.00 289.00 11306.70 63.91
R75 2 75 8 (0,2,2) 212.28 33.72 20.35 11000.00 278.00 11298.30 64.69
R75 3 75 8 (0,2,2) 207.77 61.32 37.00 11000.00 324.00 11361.00 63.58
R75 4 75 8 (0,2,2) 191.46 34.50 20.82 11000.00 289.00 11309.80 64.13
R75 5 75 8 (0,3,1) 205.30 32.22 19.44 11000.00 320.00 11339.40 63.80

Table A.4: Computational results on the 100-customer instances.
Instance |Nc| |N0| P-L-HALNS

Opened Total distance CO2 emissions Fuel and CO2 Depot cost Vehicle cost Total cost Time
depots (km) (kg) emissions costs (£) (£) (£) (£) (s)

CC100 1 100 10 (3,1,2) 145.59 34.20 20.64 22500.00 349.00 22869.60 159.53
CC100 2 100 10 (2,1,2) 125.57 36.64 22.11 17500.00 342.00 17864.10 176.07
CC100 3 100 10 (3,2,0) 143.70 70.06 42.27 22000.00 391.00 22433.30 176.89
CC100 4 100 10 (3,1,2) 143.15 38.26 23.09 22500.00 360.00 22883.10 178.28
CC100 5 100 10 (2,2,1) 143.21 38.88 23.46 19000.00 349.00 19372.50 156.76
SU100 1 100 10 (0,3,3) 236.50 41.44 25.01 14500.00 384.00 14909.00 167.88
SU100 2 100 10 (0,2,3) 242.52 43.71 26.38 14500.00 426.00 14952.40 146.06
SU100 3 100 10 (0,2,3) 246.52 38.64 23.32 14500.00 433.00 14956.30 147.51
SU100 4 100 10 (0,2,3) 255.20 44.68 26.96 16500.00 360.00 16887.00 147.15
SU100 5 100 10 (0,2,3) 241.49 41.61 25.11 14500.00 384.00 14909.10 147.17
R100 1 100 10 (0,3,2) 250.47 106.86 64.48 14500.00 380.00 14944.50 148.83
R100 2 100 10 (0,3,2) 262.33 43.66 26.35 13000.00 384.00 13410.30 147.92
R100 3 100 10 (0,3,2) 263.72 43.55 26.28 13000.00 398.00 13424.30 159.90
R100 4 100 10 (0,3,3) 257.90 42.53 25.67 13000.00 384.00 13409.70 157.72
R100 5 100 10 (0,3,2) 262.70 36.68 22.13 14500.00 433.00 14955.10 176.27
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