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Abstract 13	

Long-term irrigation of agricultural fields with distillery effluent (DE) may alter the physical, 14	

chemical and biological properties of the soil. Microorganisms are critical to the maintenance 15	

of soil health and productivity. However, the impact of DE irrigation on activity and 16	

taxonomy of soil microorganisms is poorly understood. Here we studied plant-growth-17	

promoting (PGP) traits and taxonomic composition of bacterial communities in agricultural 18	

soil irrigated with DE in conjugation with irrigation water, using cultivation-dependent and -19	

independent methods. Most of the bacterial isolates obtained from DE irrigated soil were 20	

found to display PGP traits (phosphate solubilization, siderophore, indolic compounds and 21	

ammonia production). Diverse bacterial taxa were found in both culturable bacterial 22	

community and 16S rRNA gene clone library, which belonged to bacterial phyla 23	

Proteobacteria (Alpha-, Beta- and Gamma- subdivisions), Firmicutes, Actinobacteria, 24	

Acidobacteria, Bacteroidetes and Gemmatimonadates. Overall, these results indicate that 25	

PGP traits and taxonomic diversity of soil bacterial communities were not severely impacted 26	

by DE irrigation. 27	

 28	

Keywords: Agriculture, bacterial communities, distillery effluent, plant-growth-promoting 29	

traits, 16S rRNA gene 30	
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Introduction 31	

Partially treated or untreated anaerobically digested distillery effluent (DE) is mainly 32	

discharged in non-judicious manner on to the agricultural lands and in local waterways in 33	

India. Distillery effluent is of brown color with high salt levels and has high biological and 34	

chemical oxygen demands (BOD = 40,000-50,000 mg L
-1

 and COD = 80,000-100,000 mg L
-

35	

1
) [1]. In India, controlled and judicious application of DE in agriculture is considered as one 36	

of the viable option to transform industrial waste to value added resource as it contains 37	

considerable amounts of both macro- and micronutrients [2,3,4,5]. However, non-judicious 38	

application of DE has also been shown to adversely impact the growth and yield of crop 39	

plants [6,7].  40	

 41	

In an agroecosystem, the nutrient accessibility and productivity is largely depends on soil 42	

microorganisms, as they play some vital functions such as nutrient cycling [8], soil 43	

development [9] and organic matter decomposition [10]. Several studies have shown that DE 44	

irrigation alters the soil physico-chemical properties [3,11,12], which, in turn, influence the 45	

activity and biomass of soil microorganisms [13,14]. However, the impact of DE irrigation on 46	

plant-growth-promoting (PGP) traits and taxonomic composition of soil microbial 47	

communities is still poorly understood. Two previous studies have shown that application of 48	

industrial effluent to agricultural soils could increase the diversity and catabolic profile of 49	

microbial communities [15,16]. However, these studies only considered pulp and paper mill 50	

effluent irrigation. Therefore, it is important to study the impact of DE irrigation on PGP 51	

traits and taxonomic composition of soil microbial communities. 52	

 53	

It is now well documented that only a small proportion (1–5%) of the total soil 54	
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microorganisms can be cultured on currently known growth media [17]. The introduction of 55	

cultivation-independent methods has provided a more thorough insight into changes 56	

occurring in composition and function of microbial communities [18,19]. This study was 57	

designed to investigate the PGP traits and taxonomic composition of soil bacterial community 58	

from agricultural fields receiving DE irrigation from more than a decade. For assessing PGP 59	

traits, phosphate solubilization, siderophore, indolic compounds and ammonia production 60	

were measured for bacterial isolates, and taxonomic characterization of bacterial 61	

communities was performed using 16S rRNA gene amplicon sequencing of DNA extracted 62	

from bacterial isolates and of DNA directly extracted from soil.  63	

 64	

Materials and methods 65	

Sampling site and soil collection 66	

The agricultural fields around Gajraula, Uttar Pradesh, India were selected as sampling site, 67	

which are being irrigated with DE released from secondary treatment plant of Jubilant 68	

Organosys distillery industry for more than a decade. The chemical composition of DE used 69	

for irrigation is provided in Table 1. In March 2010, soil samples were randomly collected 70	

from a depth of approximately 15 cm using a soil auger along zigzag paths (Zigzag sampling). 71	

The samples were transported to the laboratory in an ice-box at 4 ˚C, and there stored at -20 72	

˚C for microbiological analyses. The soil was sandy loam in texture with pH 7.64; electrical 73	

conductivity (EC), 0.37 dSm
-1

; organic carbon (OC), 0.64%; total N, 0.08%; Olsen P, 15.86 74	

Kg ha
-1

, extractable K, 367.62 Kg ha
-1

 and, Na
+
, 132 Kg ha

-1
.  75	

 76	

Cultivation of bacterial isolates 77	
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Triplicate soil samples (1 g) were taken from each core subsample, homogenized in 10 ml of 78	

0.85% saline, and serially diluted (10-fold dilution) in the same saline. Aliquots (100 µl) were 79	

spread on tryptic soy broth agar medium (TSBA; Difco, USA) and Reasoner’s 2A medium 80	

(R2A; Difco, USA) plates. Based on morphological differences like shape, size, colour and 81	

margin, single colonies were picked at random from the culture plates, purified and 82	

maintained on the respective media for further analyses.  83	

 84	

In vitro screening of bacterial isolates for PGP traits 85	

All the bacterial isolates were screened for phosphate solubilization on Pikovskaya’s agar 86	

plates [20], siderophore production on chrome-Azurol-S agar medium [21], indolic 87	

compounds production by Salkowski colorimetric method (indole-3-acetic acid, indole 88	

pyruvic acid and indole acetamide) [22] and ammonia production in peptone water [23]. 89	

 90	

Taxonomic identification of bacterial isolates 91	

Genomic DNA was extracted from all the bacterial isolates using the method described by 92	

Pospiech and Neumann [24], and stored at -20 ˚C prior to PCR amplification. The 16S rRNA 93	

gene was PCR amplified using universal primer pair pA (5′-94	

AGAGTTTGATCCTGGCTCAG-3′) and pH (5′-AAGGAGGTGATCCAGCCGCA-3′) by 95	

following the conditions described by Edwards et al. [25]. Approximately 1 µg of PCR 96	

products were restricted with endonucleases Dde I, and Taq I (Fermentas, USA) separately at 97	

37 ˚C for overnight. The restricted PCR products were resolved by electrophoresis in 2.5% 98	

agarose gels and banding pattern was visualized in a gel documentation and analysis system 99	

(Alphaimager, USA) using ethidium bromide staining. Strong DNA bands were scored for 100	

similarity and clustering analysis using NTSYS pc2.0 program (Applied Biostatistics Inc., 101	
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USA). The purified PCR products (16S rRNA gene) of representative isolates from each 102	

dendrogram cluster was used as template in cycle sequencing reactions using both pA and pH 103	

primers with fluorescent dye-labelled terminators (Applied Biosystems, USA). The 104	

sequencing was performed in a 3130xl Genetic Analyzer (Applied Biosystems, USA).  105	

 106	

The resulting sequences were compared with 16S rRNA gene sequences available in the 107	

NCBI GenBank database by BLASTn search (https://blast.ncbi.nlm.nih.gov). The 16S rRNA 108	

gene sequences was aligned using CLUSTALW algorithm implemented in MEGA 6.0 [26], 109	

and a phylogenetic tree was also constructed in MEGA 6.0 using the neighbor-joining 110	

method with 1000 bootstraps. The 16S rRNA gene sequences of bacterial isolates were 111	

submitted to NCBI GenBank database under accession numbers HM480326 to HM480328, 112	

HM480330 to HM480333, HM480335 and HM480337. 113	

 114	

Soil DNA extraction and clone library construction 115	

Soil DNA was extracted (0.25 g of each sample in duplicate) using MoBio Powersoil
TM

 DNA 116	

extraction kit (MoBio Laboratories, USA) according to the manufacturer's instructions. To 117	

remove humic acid contaminations, extracted soil DNA was further purified by using Wizard 118	

DNA clean up system (Promega, USA). The 16S rRNA gene was PCR amplified from soil 119	

DNA using the same universal primer set (pA and pH) and conditions as used for the DNA of 120	

bacterial isolates. All PCR products were purified using QIAEX II Gel Extraction Kit 121	

(Qiagen, Germany) and ligated into the plasmid vector pCRII-TOPO (Invitrogen, USA) 122	

following the manufacturer's instructions. The plasmid vectors containing the 16S rRNA 123	

gene fragments were transformed into electrocompetent Escherichia coli TOP10 cells 124	

(Invitrogen, USA). Standard blue/white selection method was used to screen positive clones 125	
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and checked for right insert size by PCR. All the positive PCR products were restricted with 126	

endonucleases DdeI and HhaI, and restricted PCR fragments were resolved by 127	

electrophoresis on 2.5% agarose gels. 128	

 129	

Sequence processing 130	

Representatives of each unique restriction pattern of 16S rRNA gene clones were sequenced 131	

on 3130xl Genetic Analyzer (Applied Biosystems, USA) using vector specific M13 forward 132	

and reverse primers. All the resulting sequences were analysed using mothur program [27]. 133	

First, a set of unique sequences was generated by binning identical 16S rRNA gene 134	

sequences. Next, the chimeric sequences were removed using the mothur implementation of 135	

UCHIME algorithm [28] in denovo mode. Finally, the sequences were clustered into 136	

operational taxonomic units (OTUs) at a threshold of ≥97% sequence similarity using the 137	

average neighbor clustering algorithm [29]. Phylogenetic analysis of representatives of each 138	

OTU was performed in similar manner as described for bacterial isolates. Representative 139	

sequences of each OTU were submitted to GenBank under accession numbers HQ450123 to 140	

HQ450150. 141	

 142	

Results and discussion 143	

Cultivation of bacterial isolates and analysis of PGP traits 144	

A total of 87 bacterial isolates were obtained on TSBA and R2A media. Of these, 45 bacterial 145	

isolates were found positive for the PGP traits, including phosphate solubilization (57.3% 146	

isolates), ammonia production (54.0% isolates), indolic compounds production (52.4% 147	

isolates) and siderophore production (47.5% isolates) (Table 2). Phosphorus availability in 148	

soil is vital for growth and development of plants. Phosphate-solubilizing bacteria increase 149	
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phosphorus availability in soil through solubilization and mineralization of inorganic 150	

phosphates, such as Ca3(PO4)2, AlPO4, and FePO4 [30,31,32]. A high percentage of bacterial 151	

isolates recovered form DE irrigated soils showed phosphate solubilization activity, which 152	

indicates that DE irrigation did not suppress the growth of phosphate-solubilizing bacterial 153	

community. An increase in population size of phosphate-solubilizing bacterial is also 154	

reported earlier in agricultural soils irrigated with textile effluent [33]. We have also observed 155	

a higher proportion of bacterial isolates positive for ammonia, siderophore and indolic 156	

compounds production. Similar to our results, Tripathi et al. [15] found a higher fraction of 157	

Streptomyces isolates displaying siderophore and indolic compounds production in pulp and 158	

paper mill effluent irrigated agricultural soils. Microorganisms produce siderophore to 159	

chelate various metals that could be inhibitory to their growth [34], and it has also been 160	

reported that production of siderophore enhances production of indolic compounds [35], 161	

which possibly explains why we recovered a high percentage of bacterial isolates showing 162	

production of both siderophore and indolic compounds. 163	

 164	

Culturable bacterial community 165	

Cluster analysis based on 16S rRNA gene restriction pattern, grouped bacterial isolates into 166	

nine clusters. The 16S rRNA gene sequences of one representative isolate from each cluster 167	

were identified as Bacillus megaterium, Bacillus simplex, Bacillus thuingiensis, Bacillus 168	

subtilis, Paenibacillus pabuli, Arthrobacter crystallopoites, Sinorhizobium fredii, Mitsuaria 169	

chitosanitabida and Lysobacter yangpyeongensis (Table 3). A phylogenetic reconstruction of 170	

16S rRNA gene sequences of these isolates together with sequences of their nearest relatives 171	

is shown in Fig. 1. The collection of bacterial isolates was dominated by Bacillus and 172	

Bacillus derived genera belonged to phylum Firmicutes (61%) (Fig. 2a), followed by 173	
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bacterial genera from Alpha- Beta and Gamma- subdivisions of Proteobacteria (31%), and 174	

Actinobacteria (8%) (Fig. 2a). Members of the phyla Firmicutes, Proteobacteria and 175	

Actinobacteria are commonly reported to dominate in culturable soil bacterial communities 176	

[16,36,37,38,39]. 177	

 178	

Bacterial 16S rRNA gene clone library 179	

A total of 107 bacterial 16S rRNA gene clones were picked, and after restriction analysis 180	

these were grouped in to 57 different clusters. Sequence analysis of these 57 clones indicated 181	

presence of 6 chimeric 16S rRNA gene sequences, which were removed prior to further 182	

analysis. Chimeric sequences are generated in PCR amplification of environmental DNA by 183	

sequence hybridization between closely related microbial taxa [40]. A total of 28 OTUs were 184	

detected based on ≥97% sequence similarity. These OTUs were affiliated with six bacterial 185	

phyla, including Proteobacteria (Alpha-, Beta-, Gamma- and Delta- subdivisions) (46%), 186	

Acidobacteria (14%), Firmicutes (14%), Actinobacteria (11%), Bacteroidetes (4%) and 187	

Gemmatimonadates (4%) (Fig. 2b). Phylogenetic analysis of 16S rRNA gene sequences of 188	

these OTUs together with sequences of their nearest relatives is shown in Fig. 3. Bacterial 189	

OTUs corresponding to the phylum Proteobacteria were most abundant in clone library (Fig. 190	

2b). Proteobacteria is the most abundant bacterial phylum in soil clone libraries [41], which 191	

is known to contain a great level of physiological and metabolic diversity, and play a crucial 192	

role in cycling of carbon, nitrogen and sulfur [42]. Proteobacteria is also designated as 193	

copiotrophic bacterial taxa [43], which are highly responsive to nutrient amendment [44], and 194	

their dominance in clone library could be the result of increased nutrient status of DE 195	

irrigated soil. The OTUs belonging to Acidobacteria, Firmicutes and Actinobacteria were the 196	

other abundant bacterial phyla in clone library (Fig. 2b). Acidobacteria is one of the most 197	
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dominant soil taxa [45,46], however, due to difficulties associated with cultivation of these 198	

taxa, very little is known about their physiology and potential functions [47]. Recent 199	

comparative genomic studies have suggested that Acidobacteria may play an important role 200	

in organic matter decomposition [48]. The proportion of Firmicutes OTUs was lower in clone 201	

library compared to culturable bacterial community (Fig. 2). This discrepancy is also reported 202	

earlier [49,50], and there have been several reasons put forth to explain this difference, which 203	

include difficulties associated with lysing endospores during soil DNA extraction and bias in 204	

PCR amplification [51]. The members of Actinobacteria processes cellulolytic activities 205	

which enable them to degrade a wide range of soil organic matter [52]. The increase in 206	

actinobacterial population has been reported earlier in soils receiving industrial effluent 207	

irrigation [15,53].  208	

 209	

In summary, DE irrigation did not seem to have an adverse effect on PGP traits of culturable 210	

bacterial community, therefore using DE in conjugation with irrigation water could be a 211	

viable water reuse method in regions facing water scarcity. The cultivation-dependent and -212	

independent methods provided a holistic picture of the bacterial community composition in 213	

DE irrigated soil. Further studies focusing on more extensive sampling of DE irrigated 214	

agricultural soils in different regions and times of year are necessary to gain better 215	

understanding of structure and function of microbial communities. 216	

 217	
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Figure legends 370	

Fig. 1 Phylogenetic tree based on the 16S rRNA gene sequences of bacterial isolates 371	

cultivated from DE irrigated agricultural soil. The tree was created by the neighbour-joining 372	

method. The numbers on the tree indicate the percentage of bootstrap sampling derived from 373	

1000 replicates. 16S rRNA gene sequence of Ferroplasma thermophilum used as an out-374	

group. 375	

 376	

Fig. 2 Relative abundance of bacterial phyla in (a) culturable bacterial community and (b) 377	

16S rDNA gene clone library. 378	

 379	

Fig. 3 Neighbour-hood joining phylogenetic tree of bacterial OTUs recovered from 16S 380	

rRNA gene clone library of DE irrigated soil.  381	
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Table 1. Chemical nature of DE used for irrigation. 388	

Compositions  values 

pH 7.8 

EC (dS m
-1

) 8.2 

TDS (mg L
-1

) 5370.0 

BOD (mg L
-1

) 4760.0 

COD (mg L
-1

) 28000.0 

Organic carbon (mg L
-1

) 154000.0 

N (mg L
-1

) 1900.0 

P (mg L
-1

) 43.0 

K (mg L
-1

) 5736.0 

Na (mg L
-1

) 525.0 

 389	

Table 2. Phylogenetic affiliations of representative bacterial isolates. 390	

Representative 

isolate 

16S rRNA sequence homology 

Species identified NCBI accession 

number  

% homology  

WIFD5 Bacillus subtilis HM480326 99 

WIFD12 Bacillus megaterium HM480327 97 

WIFD13 Paenibacillus pabuli HM480328 98 

WIFD20 Bacillus thuringiensis. HM480330 98 

WIFD26 Sinorhizobium freddi HM480331 99 

WIFD28 Bacillus simplex HM480332 99 

WIFD31 Mitsuaria chitosanitabida HM480333 98 

WIFD46 Lysobacter yangpyeongensis HM480335 97 

WIFD49 Arthrobacter crystallopoites HM480337 97 
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Table 3. Plant-growth-promoting traits of bacterial isolates cultivated from DE irrigated soil. 391	

Isolate no. 

PGP traits 

P-solubilization
a
 

Siderophore 

production  

NH3 

production 

Indolic compounds 

(µg mg
-1

 protein) 

WIFD1 4.6 ± 0.9 8.1 ± 0.7 + 78.60 ± 29.45 

WIFD2 5.1 ± 0.9 6.2 ± 0.7 + 79.89 ± 29.45 

WIFD4 ND ND + 60.61 ± 29.45 

WIFD5 4.3 ± 0.9 7.1 ± 0.7 + 139.73 ± 29.45 

WIFD6 5.3 ± 0.9 5.8 ± 0.7 ND 76.25 ± 29.45 

WIFD9 6.8 ± 0.9 6.3 ± 0.7 + 102.40 ± 29.45 

WIFD10 5.1 ± 0.9 ND + 97.58 ± 29.45 

WIFD11 4.2 ± 0.9 6.5 ± 0.7 + 108.80 ± 29.45 

WIFD14 5.7 ± 0.9 ND ND 98.66 ± 29.45 

WIFD15 ND 7.2 ± 0.7 + 128.43 ± 29.45 

WIFD16 5.1 ± 0.9 7.1 ± 0.7 + 128.75 ± 29.45 

WIFD17 4.4 ± 0.9 6.7 ± 0.7 ND ND 

WIFD18 4.1 ± 0.9 ND + ND 

WIFD19 4.7 ± 0.9 ND + 117.92 ± 29.45 

WIFD21 6.9 ± 0.9 6.1 ± 0.7 ND ND 

WIFD23 ND ND + 90.57 ± 29.45 

WIFD24 5.3 ± 0.9 7.3 ± 0.7 ND 130.45 ± 29.45 

WIFD25 4.9 ± 0.9 6.1 ± 0.7 + ND 

WIFD26 4.1 ± 0.9 5.5 ± 0.7 + 108.07 ± 29.45 

WIFD27 ND ND + 92.63 ± 29.45 

WIFD28 4.4 ± 0.9 7.2 ± 0.7 ND 137.23 ± 29.45 

WIFD31 6.1 ± 0.9 ND + ND 

WIFD32 5.4 ± 0.9 ND ND ND 

WIFD34 6.4 ± 0.9 6.7 ± 0.7 + 126.24 ± 29.45 

WIFD35 6.1 ± 0.9 7.4 ± 0.7 + 113.02 ± 29.45 

WIFD36 ND 7.2 ± 0.7 ND 149.66 ± 29.45 

WIFD37 ND ND + 82.36 ± 29.45 

WIFD38 5.5 ± 0.9 ND + ND 

WIFD39 4.2 ± 0.9 ND + ND 

WIFD40 5.3 ± 0.9 7.4 ± 0.7 ND 150.62 ± 29.45 

WIFD41 ND 5.3 ± 0.7 + 126.22 ± 29.45 

WIFD42 3.7 ± 0.9 6.4 ± 0.7 + 132.83 ± 29.45 

WIFD43 7.3 ± 0.9 7.2 ± 0.7 + 128.13 ± 29.45 

WIFD44 ND ND ND 51.71 ± 29.45 

WIFD45 6.1 ± 0.9 ND + 133.11 ± 29.45 
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WIFD46 5.5 ± 0.9 ND ND ND 

WIFD48 7.1 ± 0.9 6.8 ± 0.7 + ND 

WIFD49 6.2 ± 0.9 6.3 ± 0.7 + 117.99 ± 29.45 

WIFD50 5.8 ± 0.9 5.8 ± 0.7 + ND 

WIFD53 4.1 ± 0.9 7.3 ± 0.7 + 135.64 ± 29.45 

WIFD54 4.1 ± 0.9 6.4 ± 0.7 ND 118.87 ± 29.45 

WIFD58 7.2 ± 0.9 6.6 ± 0.7 + ND 

WIFD59 ND 7.3 ± 0.7 + 60.38 ± 29.45 

WIFD60 ND ND + 83.39 ± 29.45 

WIFD61 4.2 ± 0.9 7.8 ± 0.7 + ND 
 

392	
a
 Radius of halo zone in mm 393	

(–) Zone observed not observed, (ND) not detected, (+) positive for particular traits 394	
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