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Abstract: Carbon emission reduction has become a worldwide concern on account of global sus-
tainability issues. Many existing studies have focused on the various socioeconomic influencing
factors of carbon dioxide (CO2) emissions and the corresponding transmission mechanisms, while
very few models have unified the scale effect, structure effect, and technique effect in the context of
China. This paper attempted to analyze the impact of economic growth, industrial transition, and
energy intensity on CO2 emissions in China by constructing an autoregressive distributed lag (ARDL)
model. The results showed that there are long-term cointegration relationships between the three
factors mentioned above and CO2 emissions. There is an inverted U-shaped relationship between
economic growth and CO2 emissions, which not only verifies the environmental Kuznets curve (EKC)
hypothesis, but also upholds the scale effect. In addition, the proportion of added value of secondary
industry and energy intensity has significant positive impacts on CO2 emissions. On one hand, this
confirms the structure effect and technique effect; on the other hand, it implies that the reduction
effect is the dominant effect in the case of China, instead of the rebound effect. This paper is expected
to make a valuable contribution to research in the field of sustainable development by providing both
theoretical support and implementation of path choice for CO2 reduction in China.

Keywords: carbon dioxide emissions; economic growth; industrial transition; energy intensity;
ARDL model

1. Introduction

As stated in the Paris Agreement, climate change is the biggest non-traditional security
challenge facing the world [1,2], and it is a major sustainable development issue that
needs to be solved urgently. Reducing greenhouse gas emissions to cope with climate
change has become a global consensus [3], which jeopardizes three aspects of global
sustainable development: economic sustainability, environmental sustainability, and social
sustainability [4].

At present, more than 50 countries have reached their carbon peaks. The United States
reached its carbon peak in 2007. The carbon peak time of EU member states was realized
in 1990 as a group. Japan attained its carbon peak in 2013 [5]. More than 130 countries
and regions have proposed “zero carbon” or “carbon neutral” climate goals. Developed
countries and regions represented by the United States, the European Union, and Japan
plan to achieve carbon neutrality by 2050, while the United Kingdom and Sweden have
included carbon neutrality into substantive legislation [6].

As the country with the world’s second largest economy, China is also a major global
energy consumer and CO2 emitter that plays an important constructive role in global
climate governance [5]. On 22 September 2020, China announced that it would enhance its
nationally determined contribution and adopt more effective policies and measures to reach
the peak of CO2 emissions by 2030 [7,8] and achieve carbon neutrality by 2060 [9]. Different
from developed countries and regions, such as the United States and Europe, China is still
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in the stage of rising CO2 emissions and has not yet reached its carbon peak. In order to
achieve sustainable development, China has been facing tremendous pressure to reduce
the CO2 emissions. Therefore, it is very important to explore the key influencing factors of
CO2 emission in China, and then to clarify the corresponding transmission mechanisms.

In the current literature on sustainable development, the influencing factors of CO2
emissions mainly include the following: fairness of income distribution, international
trade and transfer of greenhouse gas, industrial structure evolution, technological progress
and energy efficiency, governmental institutional framework, environmental policy, and
consumer preference [10]. The transmission mechanisms of the influencing factors for CO2
emissions lie primarily in the following three aspects: the scale effect, structure effect, and
technique effect [11]. Due to the differences in research areas and research methods, the
correlation of influencing factors and their corresponding transmission mechanisms are
not consistent.

There are many studies that are designed to explore the influencing factors of CO2
emissions from one single perspective of either the scale effect, structure effect, or technique
effect, but there are very few to unify the scale effect, structure effect, and technique
effect within the same research framework, and to clarify the transmission mechanisms of
influencing factors on CO2 emissions. This paper intends to contribute to this important
research area by providing theoretical support and the implementation of path choice for
CO2 reduction in China. The rest of this article is arranged as follows: Section 2 reviews
the current literature, Section 3 provides data and research methods, Section 4 displays
empirical results, and Section 5 discusses the results and summarizes the paper.

2. Literature Review and Related Hypotheses
2.1. Literature Review

With global warming and climate change, it is crucial to have a clear understanding
of the drivers of CO2 emissions [12] to formulate policies for the goal of CO2 emission
reduction [13].

Studies on the relationship between economic growth and CO2 emissions have been
presented in a lot of the literature [14–17], with most studies focusing on the theoretical
framework of Environmental Kuznets Curve [18]. In 1991, for the purpose of cognizing
the possible impact of the North American Free Trade Agreement on the environment,
Grossman and Krueger used a simplified regression model to conduct an empirical analysis
on per capita GDP and environmental degradation for the first time. They found that
the relationship between per capita GDP and environmental degradation presented in
an inverted U-shaped curve [19]. Built on this groundbreaking work, Grossman and
Krueger discovered that among the most considered environmental degradation indicators,
economic growth leads to environmental degradation in the initial stage, and environmental
quality is improved with further growth of the economy [20]. These conclusions have been
confirmed by other studies. For example, with the cross-country panel data, Panayotou
investigated the relationship between environmental degradation and per capita GDP. His
result showed an inverted-U shaped curve, namely an EKC relationship [21].

The first batch of EKC empirical studies appeared in the early 1990s [22], and the
main data source of pollutants and CO2 came from the Global Environmental Monitoring
System, the Oak Ridge National Laboratory, and OECD Environmental Data Program [11].

Many economists believe that GDP (or income) has significant impact on most envi-
ronmental quality indicators [20,23]. In the early stage of economic development, most of
environmental indicators deteriorate with GDP growth; as countries become richer, envi-
ronmental degradation can be ameliorated. Empirical research also suggests that countries
are likely to “get out” of environmental degradation eventually, although this process will
not happen spontaneously. These studies lay a theoretical and empirical foundation for
further research on EKC, and the main challenge of subsequent research will be to find
influencing factors other than GDP that lead to the EKC type relationship.
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2.1.1. Scale Effect, Structure Effect, and Technique Effect

Many scholars agree that structural change and technological progress are the main
factors leading to different EKC modes [24]. Structural change includes the shift of produc-
tion from high-emission industries to information technology-based services (which are
called low-emission industries); technological progress includes technological improve-
ment that leads to the reduction of the factor effect in the production process, or the use of
production technology that is beneficial to the reduction of pollution output [25].

As it is shown in Figure 1, during the primary (or agricultural) production stage,
the consumption of natural resources and the expansion of production scale cause envi-
ronmental degradation (which is called the scale effect of production on environmental
degradation), and EKC is on the rise. With the transformation of production from agricul-
ture to industrialization, economic growth leads to the development of high-tech industry
and tertiary industry, accompanied by the improvement of production technology and
clean energy technology, which are called the structure effect and technique effect, respec-
tively. Both of these effects can overcome the scale effect, and make EKC into a downward
trend [26].
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The structure effect is caused by the transformation of the production mode from high-
energy-input industries to environmentally friendly industries. The initial CO2 increase
is due to a shift in the industrial structure from light industry to heavy industry, but the
subsequent shift to low-emission information-based industries and services would drive
CO2 emissions down [25].

The technique effect is the result of technological progress. On one hand, technological
progress improves the efficiency of factor allocation and drives the factor input of per
unit output to decrease. On the other hand, the investment in environmental research
and development promotes the development of clean technology, which makes it possible
to replace “dirty” or outdated technologies with cleaner technologies. The investment
in environmental research also needs to be supported by a certain level of economic
development [27].

Technological progress is the main reason for improving environmental quality [13].
By selecting the instrumental variables of structural change and technological progress,
Bruyn et al. [28] concluded that the decline in emissions is due to technological progress
and structural change, rather than to economic growth. Considering suspended particulate
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matter (SPM), the variation in pollution level in spatio-temporal dimensions is attributed
to the progress of production technology and the evolution of industrial structure [24].
Taking Ecuador as an example, improving the level of fossil fuel technology and optimizing
the industrial structure make it possible to control CO2 emissions with the continuous
growth of GDP [29]. Studies on Malaysia and OECD members have also reached similar
conclusions [30].

However, structural change and technological progress may only have short-term
effects on environment [22]. Grossman and Krueger [20] pointed out that the improvement
of the environment not only comes from technological innovation, but it also reflects
specific external conditions, such as politics, the economy, and technology, within the
research time range. EKC may reflect the cycle of internal and external effects caused
by technological innovation in the short term. In the long term, nonlinear EKC is a set
of economic-environmental relationships corresponding to different technologies [11].
Different countries have heterogeneous characteristics, and there is no definitive evidence
that China may follow the evolutionary trajectory of other countries’ EKC.

2.1.2. Energy Intensity

Energy is the core of environmental problems, so energy should also be the core of
solutions to environmental problems. The key to improve environmental degradation
lies in the reduction of energy intensity (which refers to energy consumption per unit
GDP) [7,31]. In order to mitigate energy intensity, many policy frameworks have emerged.
For example, the EU’s “2050 Energy Route” aims to achieve its reduction target through
the implementation of energy efficiency policies, with the intention of mitigating climate
change [31]. According to the literature, the impact of energy intensity on CO2 emissions
mainly has the following two divergent mechanisms: many studies argue that energy
intensity has a reduction effect on CO2, while some scholars support a rebound effect.

The decoupling assessment between economic growth and energy consumption is
a core issue in the field of sustainable development [32]. Many studies emphasize the
importance of the reduction of energy intensity, the optimization of energy structure, and
the improvement of conversion efficiency. The reduction effect can be understood as
the following: by reducing energy consumption per unit of GDP, the amount of energy
consumption may be lower, hence, CO2 emissions will be lessened [33]. Due to the oil crisis
of the 1970s, energy intensity has become a critical issue. Oil-based economic structures
must be transformed with new technologies to reduce energy consumption per unit of
output, and to strengthen the development of low-polluting services [33].

Most EKC empirical studies state that both CO2 emissions and energy consumption
are highly relevant to economic growth. In the long run, industrial growth will affect
energy consumption, and then CO2 emissions [5]. The main reason is that economic growth
is always accompanied by energy consumption, which is mainly based on fossil fuels that
produce CO2 emissions [6,7]. Based on the boundary test method of the ARDL model,
Begum et al. [34] tested the dynamic impact of GDP, energy consumption, and population
growth on CO2 emissions in Malaysia. Their results confirmed that per capita energy
consumption and per capita GDP have long-term positive impacts on per capita CO2
emissions. Empirical studies on India also show that energy consumption is the Granger
cause of CO2 emissions and economic growth [35], and similar conclusions have been
confirmed in EU member states [36] and sub-Saharan African countries [37].

The evolution of energy intensity depends on a variety of factors, such as energy price
and energy structure [12], and many EKC studies focus on this field. Stern [38] believes
that the main reason for the decline in energy intensity over time is the shift from the direct
use of fossil fuels to higher quality fuels, especially electricity. Fuel structure change is
closely related to technological innovation [38,39]. Moreover, energy intensity changes are
not uniform in all countries [5,6].

Technological advances can improve energy efficiency, and thereby reduce energy use,
which leads to less frequent use of natural resources to produce energy. This consequently
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improves environmental degradation. It is important to mention that, although over time
energy intensity is decreasing, which implies that energy efficiency is increasing [38], many
studies have shown that increased energy efficiency may lead to increased energy con-
sumption, which may ultimately lead to increased environmental degradation or increased
CO2 emissions [40]. This phenomenon, known as the rebound effect of energy intensity on
CO2 emissions, is essential to understanding sustainable development.

Empirical estimations of the rebound effect tend to focus on producer behavior and
consumer behavior at the same time [40]. Due to different assumptions, relevant data,
and the negotiation power of both parties in the market, the estimated results are quite
different [41]. The logic of these studies is that increased energy efficiency leads to lower
energy prices, which may lead to increased energy consumption [40]. Thus, in the long
run, CO2 reductions resulting from technological advances may be offset by increases in
energy consumption [42]. The research framework of sustainable development should not
understate the aforementioned scenario.

2.2. Research Hypotheses

To sum up, in the context of China’s sustainable development, it is meaningful to
explore the scale effect, structure effect, and technique effect on CO2 emissions. Within a
research framework, it is essential to probe whether the reduction effect or the rebound
effect is the dominant effect overall. Therefore, this paper intends to carry out some
explorations in this respect, in order to make a marginal contribution to research in the
field of sustainable development.

Hypothesis 1 (H1). There are long-term cointegration relationships between China’s economic
growth, industrial transition, energy intensity, and CO2 emissions.

As reviewed in Section 2.1, based on the EKC hypothesis, this paper is designed to
integrate the scale effect, the structure effect, and the technique effect into one research
framework. The effects of scale, structure and technique are represented by economic
growth, industrial transition, and energy intensity, respectively. It is assumed that there are
long-term cointegration relationships between them and CO2 emissions. The alternative
hypothesis is that there are no long-term co-integration relationships between China’s
economic growth, industrial transition, energy intensity, and CO2 emissions.

Hypothesis 2 (H2). China’s energy intensity has significant reduction effect on CO2 emissions.

As mentioned in Section 2.1, the role of energy intensity in carbon dioxide emissions
is debatable. The existing literature shows that there is a positive or negative correlation
between energy intensity and carbon dioxide emissions. Due to the different strengths
of reduction effect and rebound effect, it is impossible to judge the impact direction of
China’s energy intensity on carbon dioxide emissions. Therefore, this paper intuitively
assumes that China’s energy intensity has a significant reduction effect on carbon dioxide
emissions. The alternative assumption of Hypothesis 2 is that China’s energy intensity has
no significant reduction effect on CO2 emissions.

3. Data and Method
3.1. Data

According to the process of econometric analysis, the annual time-series data were
applied from 1980 to 2019. The variables’ descriptions and implications are shown in Table 1.
Specifically, the total amount of CO2 emissions in China is calculated by multiplying the
CO2 emission factors of various fossil energy sources and their consumption [43,44], and is
taken as the dependent variable.
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Table 1. Variable description.

Variable Name Code Unit Implication

CO2 emissions CARBON Ton Environmental degradation
GDP GDP 1980 constant price yuan Economic growth, scale effect

Proportion of the added value
of the secondary industry INDUSTRY % Industrial transition, structure effect

Energy intensity ENERGY Kilograms of standard coal
per unit added value Technique effect

Motivated by the EKC hypothesis, which serves as the benchmark regression frame-
work, the following variables were included: Economic growth (GDP) and its quadratic
term, industry transition (INDUSTRY), and energy intensity (ENERGY). To be specific:

1. Economic growth (GDP) and its quadratic term. GDP was treated as the proxy
variable of economic growth and the scale effect to eliminate the influence of price
factors, and GDP was converted to the constant price in 1980. These terms were
included in the independent variables to examine the EKC hypothesis [19,43,45].

2. Industry transition (INDUSTRY). The proportion of added value of secondary indus-
try in GDP calculated at current prices was not only chosen for the proxy variable of
the industrial transition, but also taken as the proxy variable of the structure effect.

3. Energy intensity (ENERGY). Since energy intensity is a measure of energy effi-
ciency [46–48], which can reflect the level of technology, this paper selects energy inten-
sity as the proxy variable of technique effect. Furthermore, whether energy intensity
has a significant reduction effect or rebound effect on CO2 emissions was explored.

3.2. Model Estimation

Based on the study of the EKC hypothesis, referring to the idea of the Stochastic
Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model [43,46],
an empirical model was established with environmental degradation (ED) as the dependent
variable and the scale effect (SCALE), structure effect (STRU), and technique effect (TECH)
as the independent variables:

EDt = aSCALEb
t STRUc

t TECHd
t et (1)

where t represents time (1980, 1981, . . . , 2019); a is a constant term; b, c and d represent
coefficients determining the effects of scale effect, structure effect, and technique effect,
respectively; and et represents the error term.

The coefficients a, b, c, and d can be estimated by ordinary least squares (OLS) in a
linear form by taking logarithms to Equation (1), that is:

lnEDt = lna + blnSCALEt + clnSTRUt + dlnTECHt + et (2)

Equation (2) is the benchmark regression established in our analysis. It can be seen as
a framework indicating three dimensions contributing to environment degradation. Moti-
vated by [44–46], including the variables shown in Table 1, Equation (2) can be extended
into Equation (3).

lnCARBONt = α0 + α1lnGDPt + α2(lnGDPt)
2

+α3lnINDUSTRYt + α4lnENERGYt + εt
(3)

In Equation (3), α0 is the constant and εt represents the error term; the subscript t
indicates the year (1980, 1981, . . . , 2019). The econometric model above is not linear [47].
In order to obtain consistent and useful results, all variables were converted into natural
logarithms [48].
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3.3. Econometric Methodology

Several methods were adopted in the econometric analysis; (i) Fisher-ADF and PP-
Fisher unit root tests were used to check the stationarity of all variables, and (ii) Bounds
test and ARDL model were constructed to investigate the presence of short-run and long-
run relationships among the series. It should be noted that existing studies suggest the
bounds test is a desirable cointegration method [49,50], because it is applicable regardless
of whether the variables are stationary, first-order differential stationary, or a mix of both.
It also works well for endogenous bias [51]. Meanwhile, it is more robust and suitable
for small samples than the Engle Granger two-step method and Johansen cointegration
test [52].

The form of ARDL model established in this paper is as follows:

∆lnCARBONt = α0 +
m1
∑

i=1
ϕ1∆lnCARBONt−i +

m2
∑

i=0
ϕ2∆lnGDPt−i+

m3
∑

i=0
ϕ3∆(lnGDPt−i)

2 +
m4
∑

i=0
ϕ4∆lnINDUSTRYt−i +

m5
∑

i=0
ϕ5∆lnENERGYt−i+

β1lnGDPt−1 + β2(lnGDPt−1)
2 + β3lnINDUSTRYt−1 + β4lnENERGYt−1 + εt

(4)

In Equation (4), lnCARBON is the dependent variable; ∆ is the difference operator;
β1, β2, β3, β4 represent the long-run coefficients; mi(i = 1, 2, 3, 4, 5) is the lag length; α0
indicates the constant; and εt shows the error correction term (the residual term is assumed
to be homo-variance and there is no sequence correlation [53]). The null hypothesis of the
bounds test assumes that there is no long-term cointegration relationship between the vari-
ables (namely H0 : β1 = β2 = β3 = β4 = 0), while the alternative hypothesis assumes the
existence of a long-term cointegration relationship (namely H1 : β1 6=, β2 6=, β3 6=, β4 6= 0).

4. Results
4.1. Unit Root Test

As far as modeling time-series data is concerned, it is necessary to investigate the
stationarity of time-series data firstly. Additionally, the bounds test cannot be used when
the variables are second order and above difference stationary [51]. In this paper, the
Fisher-ADF unit root test and PP-Fisher unit root test were carried out on the involved
time-series data. The null hypothesis is that there is unit root; that is, the time-series data
are not stable. The results are shown in Table 2, suggesting that all variables selected in this
paper are stationary in the level or the first difference.

Table 2. Unit root test.

Variables Augmented Dicey-Fuller Phillips-Perron

(ADF) (PP)

Level Test-Statistic Value

lnCARBONt 2.2704 4.2438
lnGDPt −1.7452 −1.7367

(lnGDP)2
t −0.2391 −2.3307

lnINDUSTRYt −0.7178 −1.1312
lnENERGYt −2.8692 *** −5.0581 ***

First Difference Test-Statistic Value

∆lnCARBONt −3.1115 ** −3.2551 **
∆lnGDPt −3.8251 *** −3.3237 **

∆(lnGDP)2
t −3.9623 *** −3.4891 **

∆lnINDUSTRYt −3.9028 *** −3.8744 ***
∆lnENERGYt −1.9751 ** −1.7283 *

*, **, *** indicate rejection of the null hypothesis at the 10%, 5%, 1% significance level, respectively.
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4.2. Bounds Test

When performing the bounds test, it is essential to select an optimal lag length. Differ-
ent lag length criteria, such as Akaike information criterion (AIC), Hannan Quinn (HQ)
information, and Schwarz Bayesian criterion (SBC) can be used to determine the optimal
lag length. In this paper, based on the principle of minimum error, the lag order of the
model was selected by the AIC criterion in order to obtain more consistent results [54].
Then the bounds test was utilized to assess the long-term cointegration relationship of the
variables. The results of bounds test are presented in Table 3. It is clear that the F-statistic
(4.968918) is above the upper bound critical value at 1% significance level (4.37), which
indicates a long-term cointegration relationship among the variables.

Table 3. Bounds test results.

Test Statistics Value

F-statistic 4.968918
Critical Value Bounds

Significance Lower Bound Upper Bound

10% 2.20 3.09
5% 2.56 3.49

2.50% 2.88 3.87
1% 3.29 4.37

4.3. Econometric Model Results

As mentioned above, both the short-term and long-term ARDL models are designed,
and the Ramsey RESET test is used to verify whether the model is set correctly. The null
hypothesis of the Ramsey RESET test is that the model is set correctly, and the test results
show that the p-value of the test statistic is 0.2917 (greater than 0.05). Therefore, at the
significance level of 5%, the null hypothesis cannot be rejected and the model presented
in this paper can be considered correct. The results of the ARDL model are shown in
Tables 4 and 5, respectively.

Table 4. ARDL short-run results.

Variable Coefficient t-Statistics

∆lnCARBONt−1 0.18 1.5431
∆lnCARBONt−2 0.25 ** 2.6302

∆lnGDPt 10.34 *** 4.5566
∆lnGDPt−1 5.72 ** 2.3315
∆(lnGDP)2

t −0.49 *** −4.1719
∆(lnGDP)2

t−1 −0.34 ** −2.5862
∆lnINDUSTRYt 0.46 *** 3.0803

∆lnENERGYt 1.23 *** 6.8269
∆lnENERGYt−1 −0.18 −0.6518
∆lnENERGYt−2 −0.70 *** −3.8473

ECMt−1 −0.60 *** −6.3749
** and *** indicate rejection of the null hypothesis at the 5% and 1% significance level, respectively.

Table 5. ARDL long-run results.

Variable Coefficient t-Statistics

lnGDP 2.56 *** 5.4005
(lnGDP)2 −0.05 ** −2.8085

lnINDUSTRY 0.60 ** 2.2700
lnENERGY 1.77 *** 9.4489

Constant −13.13 *** −3.8448
** and *** indicate rejection of the null hypothesis at the 5% and 1% significance level, respectively.
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4.3.1. ARDL Short-Run Results

The short-term estimation results of the ARDL model are shown in Table 4. The
results show that the short-term elasticity coefficients of GDP are significantly positive,
and the short-term elasticity coefficients of GDP square term are significantly negative,
which verifies the existence of an EKC relationship. The short-term elasticity coefficient
of energy intensity in the current period is positive and significant at the 1% significance
level, while the short-term elasticity coefficient of two-lag phase is negative and signifi-
cant at the 1% significance level. In other words, the impact of energy intensity on CO2
emissions in the short term is uncertain. More importantly, the coefficient of the error
correction term (ECTt−1) is about −0.6, and it is significant at 1% significance level. This
indicates that the short-term disequilibrium will be corrected and converge back towards
long-term equilibrium.

4.3.2. ARDL Long-Run Results

As presented in Table 5, the long-term elasticity coefficients of GDP and its square
term are about 2.56 and −0.05, respectively, which are significant at the significance level
of 5%. There is an inverted U-shaped relationship between GDP and CO2 emissions,
which indicates that there is an EKC relationship. Energy intensity has positive effect on
CO2 emissions. The long-term elasticity coefficient is 1.77, which is significant at the 1%
significance level. This means that when holding other variables constant, a 1% increase in
energy intensity will increase CO2 emissions by about 1.77% on average. The development
of the secondary industry has a positive effect on CO2 emissions, and its long-term elasticity
coefficient is about 0.60, which is significant at the 5% significance level. That is, while
controlling other factors, for every 1% increase in the value-added share of the secondary
industry, CO2 emissions will be increased by about 0.60% on average.

4.3.3. Residual Diagnostics

In order to test whether the model has serial correlation and heteroscedasticity, the
Breusch-Godfrey LM test and Breusch-Pagan-Godfrey (B-P-G) test [55] were carried out
separately. The test results are shown in Table 6. The null hypothesis (H0) for LM test is
that there is no serial correlation. If the p-value is higher than 0.05, then the H0 of LM test
cannot be objected at the significance level of 5%; that is, there is no significant evidence
for the presence of a serial correlation. The null hypothesis of B-P-G test is that there is no
heteroscedasticity. Similar to the LM test, if the p-value of the test statistic is higher than
0.05, the null hypothesis cannot be rejected at the significance level of 5%. As shown in
Table 6, p-values of both tests are higher than 0.05, which means that the residual term of
the ARDL model constructed above has no sequence correlation and no heteroscedasticity.

Table 6. Diagnostic analysis results.

Breusch-Godfrey LM Test Breusch-Pagan-Godfrey Test

F-statistic 0.3355 1.6343
(p-value) (0.7189) (0.1466)

χ2-statistic 1.2011 18.8629
(p-value) (0.5485) (0.1703)

χ2-statistic represents the Chi-squared statistic which is calculated by multiplying the number of observations by
R-squared

4.3.4. Model Stability Diagnosis

In addition, the cumulative sum (CUSUM) test and the cumulative sum square
(CUSUMSQ) test [56] were used for stability diagnosis. As shown by Figures 2 and 3,
both the CUSUM line and the CUSUMSQ line do not exceed the error limit under the
significance level of 5%; therefore, the parameters used in the study are stable.
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5. Conclusions and Policy Implications

This paper empirically investigated the impact of economic growth, industry transition,
and energy intensity on CO2 emissions within the Environmental Kuznets Curve theoretical
framework, in the context of China’ sustainable development. The scale effect, structure
effect, and technique effect on CO2 emissions were designed within a research framework,
and this paper investigated whether the reduction effect or the rebound effect is the
dominant effect overall. The bounds test and the ARDL model were constructed in the
study with the annual time-series data from 1980 to 2019 in China. Furthermore, a CUSUM
test and a CUSUMSQ test were adopted to check the stability of the empirical model.
After a series of statistical tests, it can be shown that the model established in this paper is
considered to be effective and meaningful.

The results of the ARDL model show that the long-term and short-term elasticity
coefficients of GDP are significantly positive, while the long-term and short-term elasticity
coefficients of its square term are significantly negative, which verifies the inverted U-
shaped relationship between economic growth and CO2 emissions. This confirms that there
is a scale effect of economic growth on CO2 emissions (in other words, economic growth
leads to the increasing CO2 emissions) in the initial stage, and implies that economic growth
contributes to the reduction of CO2 emissions after passing the turning point of EKC. This
provides theoretical support for China’s CO2 emissions reduction; it is too poor to be low
carbon. That is, promoting the level of economic development to surpass the threshold is a
crucial way to mitigate CO2 emissions.

Regarding the proportion of added value of secondary industry in GDP, its short-term
and the long-term elasticity coefficients are positive. This means that the development of
secondary industry contributes to the increase in CO2 emissions in the short and long run;
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hence, the existence of the structure effect on CO2 emissions is confirmed. It suggests that
driving the transformation of secondary industry to service industry is an effective measure
to achieve of target of CO2 emissions reduction. Meanwhile, according to the National
Bureau of Statistics of China, as it is shown in Figure 4, the proportion of added value of
tertiary industry has been well improved and will continue to develop, which implies that
special attention should be paid to the low-carbon process of industry transition.
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As far as energy intensity is concerned, the directions of its short-term elasticity
coefficients are uncertain, but the long-term elasticity coefficient is positive. This argues
the existence of the technique effect on CO2 emissions and verifies that the reduction effect
is the dominant effect in the case of China, instead of the rebound effect. In other words,
driving energy intensity down to improve energy efficiency is an alternative path for China
to achieve a CO2 reduction.

Based on this work, future research can be divided into three directions: (1) It is worth
studying how to more reasonably and precisely select the proxy instrument variables of
scale effect, structure effect, and technique effect of CO2 emissions; (2) While defining
China’s regional industry transition model, the construction a panel data model is expected,
in order to explore the transmission mechanism of industry transition on CO2 emissions;
(3) In order to ensure the robustness of the research results, future studies can be based on
other valid CO2 emission databases.
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