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Abstract: El-Niño and La-Niña are believed to change the intensity and frequencies of extreme
weather events globally. The present study aims to analyse the impact of El-Niño and La-Niña on the
lightning activities of cloud systems and their associated precipitation and thermodynamic indices
over the Eastern India regions (Odisha, Jharkhand, and West Bengal) during the pre-monsoon season
(March–May). Eastern India receives catastrophic thunderstorm events during the pre-monsoon
season. The results suggest that the number of lightning flashes was higher in the El-Niño years
than in the La-Niña periods, which helps convective activities to be developed over the study region.
The precipitation variations showed similar patterns during El-Niño and La-Niña periods, but the
magnitudes were higher in the latter. Results from the analysis of thermodynamic indices show that,
during the La-Niña phase, the convective available potential energy (CAPE), convective inhibition
(CIN), severe weather threat index (SWEAT), humidity index (HI), and total totals index (TTI) values
increased, while the cross total index (CTI) and K index (KI) decreased. In contrast, the vertical
total index (VTI) and Boyden index (BI) values showed less significant changes in both El-Niño and
La-Niña periods. The anomalies of flash rate densities over most parts of our domain were positive
during the El-Niño years and negative during the La-Niña years. Precipitation anomalies had a
higher positive magnitude during the La-Niña phase, but had spatial variability similar to the El-Niño
phase. The anomalies of most of the thermodynamic indices also showed noticeable differences
between El-Niño and La-Niña periods, except for the HI index. El-Niño periods showed higher
lightning and increased values of associated thermodynamic indices over eastern India, indicating
more pronounced convective systems.

Keywords: El-Niño; La-Niña; thermodynamic indices; precipitation; FRD

1. Introduction

El-Niño and La-Niña are associated with El-Niño Southern Oscillations (ENSO), an
ocean and atmospheric coupled phenomenon generally observed in the tropical Pacific
Ocean. ENSO occurs due to irregular sea surface temperature (SST) and wind pattern
changes. The warm and cold phases of ENSO are termed El-Niño and La-Niña, respec-
tively [1]. The El-Niño period can last up to 9 to 12 months and can potentially destroy
marine life during extreme conditions in the tropical Pacific Ocean [2]. During El-Niño, the
SST changes drastically, switching convective activities from west to east in the tropical
Pacific Ocean. During La-Niña, the SST reduces, facilitating the westward drift of wind
stress. The climatic surroundings of the maritime continent and south-eastern China are
heavily impacted by both El-Niño and La-Niña phases in the Asian sector. As a result, there
is an unusual dispersal of rainfall and an increase in lightning flashes in that area [3,4].
El-Niño and La-Niña are also responsible for inter-annual lightning anomalies on regional
and global scales [5].
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El-Niño years are associated with warmer atmospheric conditions favourable for the
generation of convective activities far eastward from the western Pacific Ocean. Many
studies have reported lightning activities and associated storms during El-Niño and La-
Niña over different parts of the globe [6–12]. An increase in the number of lightning flashes
during El-Niño and a decrease during La-Niña periods over east Asia was revealed by
Shinji et al. [11]. Kulkarni et al. [13] studied the association of thunderstorms during El-
Niño over Indian land regions and suggested that the thunderstorm days decreased during
the El-Niño periods. Moreover, Roy et al. [14] found the El-Niño and La-Niña years to be
associated with drought and excess rainfall years, respectively. Saha et al. [15] analysed
the spatial and temporal lightning variability associated with convection during El-Niño
and La-Niña episodes for the years 1997–2013 over the whole Indian subcontinent for all
the seasons. The total lightning flash rate density study using the TRMM-LIS data has
been carried out in many regions of the globe, including Northeast Brazil [16], Northern
Alabama [17], Southwest Iran [18], and India [19]. As per the findings of Saha et al. [15],
El-Niño periods are associated with reduced convective activities and enhanced lightning
activities over the Indian region compared to La-Niña.

The pre-monsoon season over eastern India is usually associated with catastrophic
thunderstorms [20,21]. These thunderstorms, aided by an immense moisture supply from
the Bay of Bengal, are accompanied by severe rainfall, wind speed, and lightning [22,23].
They are not only responsible for the deaths of numerous human beings and livestock but
also for the destruction of agricultural crops [24–26]. Since thermodynamic indices for
thunderstorm analysis are known to be important, established thermodynamic indices are
already widely utilized by researchers over the region, but many new indices have also been
developed for eastern India [27–29]. Given the severity of thunderstorms associated with
the region [30], a detailed analysis of the variability of thermodynamic indices during the
El-Niño and La-Niña phases is still missing for most parts of India. Thermodynamic indices
are widely used as a valuable tool for predicting thunderstorms [31,32]. The persistent
rise in CAPE over India was observed by Murugavel et al. [33]. Chakraborty et al. [34]
discussed the thermodynamic instability constraints, large-scale dynamics, and a drop in
upper-tropospheric temperatures for the period 1998–2014. Previous studies have found
that the lightning activities over the Indian region are modulated by the El-Niño and
La-Niña phases. As the lightning activities change, the thunderstorm frequencies and
intensities also evolve, thereby changing the thermodynamic indices.

As the thunderstorms during the pre-monsoon months are catastrophic and their
prediction and assessment are important for safeguarding the lives and property in the
region, it will be worth seeing if the ENSO is changing the frequency or intensity of these
thunderstorm events. The present work focuses explicitly on eastern India during the
pre-monsoon season, emphasising the thermodynamic indices of spatial variability for the
last seventeen years (1998–2014). We also use the lightning and precipitation maps over
the selected region to analyse the severity of convective activities. As the changing climate
is impacting the thunderstorms over the region during the pre-monsoon season [35,36],
the present study focuses on identifying the variations of (i) the lightning and associated
rainfall and (ii) the strength of thermodynamic indices during El- Niño and La-Niña periods
over eastern India during the pre-monsoon season.

2. Study Area, Data, and Methodology

The study area for the present study is eastern India: Odisha, Jharkhand, and West
Bengal states. Odisha is in the Eastern Ghats regions of the Deccan plateau, while Jharkhand
is situated over the Chhotanagpur region and West Bengal in the Indo-Gangetic plain.
These three states are in the humid subtropical area with gentle winter from November to
February, scorching summer from March to June, and monsoon from July to October with
substantial rainfall [36]. Most of the interior parts of these states have extremely hot and dry
climates during summer and winter; nonetheless, the entire area receives substantial rainfall
during the monsoon season. This area experiences more lightning and thunderstorms with
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higher frequency and intensity during the pre-monsoon season. Figure 1 depicts the study
domain for the present study: Odisha, Jharkhand, and West Bengal.
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Figure 1. Study area of Eastern India which covers Odisha, Jharkhand and West Bengal.

The spatial variation of the thermodynamic indices over this study domain was studied
for the pre-monsoon season (March–May) of 1998–2014 using the monthly mean ERA5:
European Center for Medium-Range Weather Forecast (ECMWF) reanalysis data 5. The
details of ERA5 data may be obtained from Hersbach and Dee [37]. The thermodynamic
indices used in this study were the Boyden index (BI), cross total index (CTI), convective
available potential energy (CAPE), convective inhibition (CIN), humidity index (HI), K
index (KI), total totals index (TTI), severe weather threat index (SWEAT), and vertical total
index (VTI). These thermodynamic indices are defined by Kunz [31] and Haklander and
Delden [32].

The geographic locations of the lightning flashes were obtained from the satellite
Tropical Rainfall Measuring Mission with the lightning imaging sensor (TRMM-LIS) for the
available pre-monsoon period 1998–2014 (https://ghrc.nsstc.nasa.gov/hydro/#/details?
ds=lislip (accessed on 4 September 2021)). The Tropical Rainfall Measuring Mission (TRMM)
satellite circles the Earth at 350 kilometres above sea level between 35◦ N and 35◦ S at a rate
of 16 orbits per day, providing the lightning observations used in this study [38]. With flash
detection efficiencies of 73.11% and 93.4%, these LISs can detect cloud-to-ground and intra-
cloud discharges, whether at day or night [39]. For the present study, the corresponding
flash rate density was estimated within a uniform 0.5◦ × 0.5◦ (lat × lon) grid by calculating
the number of flashes per unit area of the grid cell per year (km−2 yr−1), following the
methodology given in Cecil et al. [40]. The details of the lightning imaging sensors are
available from Christian et al. [38], Williams et al. [41], and Bond et al. [42]. We also used
TRMM/3B43 V7 L3 monthly mean rainfall data for the pre-monsoon period obtained from
the Tropical Rainfall Measuring Mission satellite with 0.25◦ × 0.25◦ (lat × lon) resolu-
tions (https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary?keywords=TRMM

https://ghrc.nsstc.nasa.gov/hydro/#/details?ds=lislip
https://ghrc.nsstc.nasa.gov/hydro/#/details?ds=lislip
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary?keywords=TRMM
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(accessed on 6 September 2021)). The details of the El-Niño and La-Niña years were
collected from the National Oceanic Atmospheric Administration’s Climate Prediction
Center (NOAA/CPC) of the National Weather Service (https://origin.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 10 September 2021)).
The El-Niño years considered in our study were in consecutive monthly periods: 1998,
2006, and 2010, and the La-Niña years were 1999, 2000, 2008, 2009, 2011 and 2012 during
pre-monsoon months (March–May). In other years, pre-monsoon months were termed
neutral years.

The analysis employed anomaly calculations for lightning, rainfall, and thermody-
namic indices. The use of anomaly calculations brings out minute changes in reference to
different experiments/situations over a particular region for a dataset [43]. The anomalies
were calculated by differencing the El-Niño and La-Niña years with the whole data period,
i.e., 1998–2014.

3. Results and Discussion
3.1. Lightning Activity Difference in El-Niño and La-Niña

We analyse the variations in the flash rate density (FRD, flashes) and rainfall for
the El-Niño episodes of 1998, 2006, and 2010 and for the La-Niña episodes of 1999, 2000,
2008, 2009, 2011, and 2012 during the pre-monsoon months. The FRD variations during
the El-Niño periods are shown in Figure 2a, the La-Niña periods in Figure 2b and the
total FRD in Figure 2c. The FRD analysis (Figure 2c) shows that the study regions have
high flash rates over a few areas: southern and northern Odisha, central Jharkhand, and
northern parts of West Bengal. The FRD was more prominent during the El-Niño period
(Figure 2a). The highest FRD was observed over the north, central, and west regions of
West Bengal, whereas for Odisha, high values were recorded over the southern, central,
and northern regions. The observed high FRD regions of central Jharkhand during the total
period (Figure 2c) shifted to the southern and north-eastern parts of Jharkhand during the
El-Niño period. Although the higher FRD regions were active even during the La-Niña
years, the intensity decreased over all the significant areas, except the central parts of
Jharkhand (Figure 2b), where the FRD was highest (>180). The anomaly plots of FRD (from
El-Niño, La-Niña, and average plots) supported the observation of high/less FRD during
El-Niño/La-Niña years (Figure 3a,b).
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3.2. Precipitation Variations during El-Niño and La-Niña Episodes and Their Anomaly

The accumulated precipitation variations during El-Niño (Figure 2d), La-Niña
(Figure 2e), and total El-Niño/La-Niña years (Figure 2f) per season during pre-monsoon
months are shown in Figure 2. The overall rainfall patterns were similar for both El-Niño
and La-Niña periods, where the highest intensity was over the northern (Darjeeling, Jalpaig-
uri, Cooch Behar) West Bengal region, with higher precipitation over northern (Mayurbhanj,
Kendujhar, Balasore) Odisha and some parts of western (West Medinipur, Bankura) and
north (Darjeeling, Jalpaiguri, Cooch Behar) West Bengal regions. The seasonal precipitation
anomaly for El-Niño (Figure 3c) and La-Niña (Figure 3d) for the study period during pre-
monsoon months was plotted. For the El-Niño years (Figure 3c), except for a few regions
of western Odisha (Nuapada, Balangir, Kalahandi), all other regions showed negative
anomalies. In Jharkhand, except for the north-eastern, southern, and south-eastern parts,
the other regions showed a positive anomaly. However, for West Bengal, all the regions
showed a negative precipitation anomaly. The highest negative anomaly was observed
over the northern Odisha (Mayurbhanj, Balasore, and Kendujhar districts) and western
(Bankura, Purulia, West Medinipur, Jhargram) and northern parts (Darjeeling, Jalpaiguri,
Cooch Behar, Alipurduar) of West Bengal. In the case of La-Niña, a similar precipitation
pattern was visible with a higher magnitude. The anomaly plots show considerable precipi-
tation (Figure 3d) in some parts of eastern Indian states. Though the precipitation difference
in both El-Niño and La-Niña periods was not noteworthy, the region experienced higher
precipitation during La-Niña.

3.3. Thermodynamic Indices Variations during El-Niño and La-Niña Episodes and
Their Anomalies

The spatial variation of thermodynamic indices is useful in understanding the vari-
ability of thermodynamic indices over the region, especially with respect to convective
events [44,45]. To analyse the CAPE, CIN, and SWEAT variability, we made three groups:
El-Niño years, La-Niña years, and neutral years for El-Niño/La-Niña period shown in
Figure 4. During all three periods, coastal districts have higher CAPE values, exceeding
>3500 J/Kg in some coastal Odisha and West Bengal districts. The CAPE values decrease
from coast to inland areas, indicating the role of the Bay of Bengal in providing moisture
supply and creating a conducive environment over the coastal region. To visibly under-
stand the spatial variations during El-Niño/La-Niña periods, we analysed the anomalies
of different thermodynamic indices during El-Niño and La-Niña periods. In Figure 4d,e,
the CIN values were shown to increase i.e., >600 J/Kg in the coastal parts of Odisha, West
Bengal, and some of the parts of Jharkhand region during the El-Niño phase, but the
magnitude of CIN was less than the La-Niña and neutral years. Similarly, as shown in
Figure 4g–i, the SWEAT values increased, i.e., >180 in most of the period, but the values
were somewhat higher for La-Niña than El-Niño.

Figure 5 shows the anomalies of CAPE, CIN, and SWEAT during the El-Niño and
La-Niña period from 1998 to 2014. During El-Niño, except for the Nuapada and Balangir
districts of Odisha, all other parts showed a negative anomaly of CAPE (Figure 5a). Except
for northern West Bengal districts (Darjeeling, Kalimpong, and parts of Jalpaiguri), all
other regions showed a negative anomaly of CAPE. In Jharkhand, except for parts of north-
eastern and south-eastern Jharkhand districts, other regions showed a positive anomaly
during the El-Niño phase. The negative anomaly values, indicating reduced CAPE values
over the Odisha, West Bengal, and north-eastern and south-eastern parts of Jharkhand
during El-Niño, persisted even during the La-Niña period. However, most of the eastern
India region showed a negative anomaly, except some parts of the western West Bengal
district and parts of north-eastern Jharkhand, which showed a slight positive anomaly value
during La-Niña (Figure 5b). The spatial variability shows that CAPE values were lower
over Odisha and West Bengal during the El-Niño and La-Niña years, with comparatively
higher values over Jharkhand.
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The CIN values were higher during the La-Niña period. Odisha and West Bengal
showed higher CIN values in the La-Niña years, with the highest values observed in the
coastal areas of Odisha (~500–650 J/Kg), West Bengal (~550–650 J/Kg), and northern parts
of Odisha. Over Jharkhand, the CIN values were higher during La-Niña (~350–500 J/Kg),
but the magnitude of the CIN values was smaller than Odisha and West Bengal. The CIN
anomalies during the El-Niño (Figure 5c) and La-Niña (Figure 5d) periods from 1998 to
2014 were also able to bring out the differences in spatial variations.

The spatial variability of CIN differed not only over coastal areas, but also in the inland
districts of Odisha, sharing a border with other states (mainly western and northern regions)
and over northwest Bengal during El-Niño and La-Niña. However, the magnitudes were
slightly higher during the La-Niña period. During the El-Niño period (Figure 5c), most
of the parts of Odisha, along with West Bengal, showed negative CIN anomalies except
for the western districts (Nabarangpur, Nuapada, Kalahandi) of Odisha and northern
and western districts (Bankura; Malda; Darjeeling; Kalimpong, and parts of Jalpaiguri,
Uttar, and Dakshin Dinajpur) of West Bengal. A slightly positive anomaly was observed
over the Godda district of Jharkhand. During the La-Niña period, most of the areas of
West Bengal showed positive anomalies. The exceptions were some parts of the western
(Purulia, Bankura, Paschim Bardhaman, Birbhum districts) and northern (Darjeeling, Cooch
Behar, Kalimpong, Jalpaiguri, Alipurduar, Malda Uttar and Dakshin Dinajpur districts)
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regions, which showed negative anomalies (Figure 5d). Except for western (some parts
of Sundergarh, Jharsuguda, Bargarh, Sambalpur, Kalahandi, Nabarangpur, Nuapada and
Balangir), northern (Kendujhar), and parts of southern (Malkangiri, Koraput) Odisha, all
other regions showed positive CIN anomalies during La-Niña. During El-Niño, almost all
the areas of Jharkhand showed negative CIN anomalies, whereas during La- Niña, except
northern (Koderma, Hazaribagh, Chatra districts) and western (Palamu, Garhwa, Latehar
districts) Jharkhand regions, other parts are showed negative CIN anomalies.
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SWEAT values were generally high over the region [35,36]. The spatial variations
of SWEAT during El-Niño, La-Niña, and neutral El-Niño/La-Niña episodes confirmed
this spatial pattern of high values, with lower values in coastal regions and increasing
values inland. However, the values during the El-Niño spells were relatively low over
eastern India, as evident from SWEAT anomalies during El-Niño (Figure 4e) and La-Niña
(Figure 4f). During both the El-Niño and La-Niña periods, almost all the parts showed
a negative SWEAT anomaly. During the El-Niño periods, most of the parts of eastern
India showed a negative SWEAT anomaly, but the magnitude was less over West Bengal
compared to the other two states. During the La-Niña periods, the negative SWEAT
anomalies were less than those of El-Niño over most parts of eastern India.

We also analysed other thermodynamic indices (CTI, TTI, VTI, KI, BI, HI) during
the El-Niño, La-Niña, and neutral El-Niño/La-Niña periods in the pre-monsoon seasons
from 1998 to 2014, as shown in Figures 6–8. The CTI values were higher during the El-
Niño periods. Apart from CTI, all other indices showed higher values during the La-Niña
periods. HI values showed a clear difference between El-Niño and La-Niña and the values
were higher during the La-Niña periods (Figures 6–8). Figure 9 shows the CTI (a), VTI
(b), TTI (c), BI (d), HI (e), and KI (f) anomalies during the El-Niño years, and Figure 10
shows the CTI (a), VTI (b), TTI (c), BI (d), HI (e), and KI (f) anomalies during the La-Niña
years from 1998 to 2014. Except for the HI index, all the other indices showed negative
anomalies during El-Niño. The HI anomaly clearly differentiates the El-Niño and La-Niña
periods over eastern India, with a positive anomaly during the La-Niña for the whole
eastern India region (Figure 10). VTI and BI also showed slightly positive anomalies during
the La-Niña periods, whereas during El-Niño, a negative anomaly was shown for most
of the parts of eastern India. During El-Niño, HI values show negative anomalies, except
for the parts of coastal (Ganjam, Puri, Jagatsinghpur, Kendrapara, Balasore) and southern
(Malkangiri, Koraput) districts of Odisha, as well as coastal (Purba Medinipur, South
24 Parganas, Howrah), eastern (North 24 Parganas, Nadia, Murshidabad, Hooghly, parts
of Purba Bardhaman and Malda), and some parts of northern (Cooch Behar, Alipurduar)
districts of West Bengal, which showed positive anomalies.

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during El-Niño years from 1998 to 
2014. 

 
Figure 7. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during La-Niña years from 1998 to 
2014. 

Figure 6. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during El-Niño years from 1998
to 2014.



Atmosphere 2022, 13, 1261 10 of 14

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during El-Niño years from 1998 to 
2014. 

 
Figure 7. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during La-Niña years from 1998 to 
2014. 
Figure 7. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during La-Niña years from 1998
to 2014.

Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during neutral El-Niño and La-Niña 
years from 1987 to 2019. 

 
Figure 9. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) anomalies during El-Niño years from 1987 to 
2019. 

Figure 8. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during neutral El-Niño and La-Niña
years from 1987 to 2019.



Atmosphere 2022, 13, 1261 11 of 14

Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) variations during neutral El-Niño and La-Niña 
years from 1987 to 2019. 

 
Figure 9. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) anomalies during El-Niño years from 1987 to 
2019. 
Figure 9. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) anomalies during El-Niño years from 1987
to 2019.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 10. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) anomalies during La-Niña years from 1987 
to 2019. 

4. Summary 
The results can be summarized as follows: 

• The lightning FRD was higher during the El-Niño period over most of the study re-
gion. During El-Niño, the FRD anomalies were positive over parts of Odisha (south-
ern, central, and northern), West Bengal (northern, some parts of western and east-
ern), and Jharkhand (central, southern, and some parts of north-eastern and western). 
Other regions of all three states showed negative anomalies during El-Niño. The La-
Niña periods showed less FRD (negative anomalies) than the El-Niño ones. 

• The precipitation changes were not significantly different during El-Niño and La-
Niña periods. However, the magnitudes were slightly higher in the La-Niña periods, 
suggesting a decrease in precipitation and an increase in the lightning flash rate dur-
ing the El-Niño season. In contrast, the FRD decreased, and precipitation increased 
during the La-Niña seasons. 

• During the El-Niño and La-Niña, the thermodynamic indices varied differently. The 
CAPE, CIN, SWEAT, VTI, TTI, BI, HI, and KI values increased, while CTI decreased 
during the La-Niña period. The BI values did not show significant changes, while HI 
values were clearly differentiated during the El-Niño and La-Niña periods. 
The current research aims to assist forecasters in building climatological maps 

throughout multiple Indian states to understand the spatial variation of thermodynamic 
indices and associated lightning and rainfall activities during the El-Niño and La-Niña 
phases. This will aid in spotting convective occurrences and providing an early warning 
to the public and policymakers about the severity of the events during these phases. The 
findings will help researchers to better understand the pre-monsoon convective activities 
and associated rainfall and lightning activities over eastern India. 

Author Contributions: R.K.S.: methodology, writing, software, and visualization; G.C.: methodol-
ogy and software; N.K.V.: methodology and software; S.N.: methodology and writing; B.T.: concep-
tualization, writing, and supervision. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received funding from Science and Engineering Research Board (SERB), De-
partment of Science and Technology, Govt. of India [project-funding code: 
DST/SERB/ECR/2017/001361]. 

Figure 10. CTI (a), VTI (b), TTI (c), BI (d), HI (e), KI (f) anomalies during La-Niña years from 1987
to 2019.

4. Summary

The results can be summarized as follows:

• The lightning FRD was higher during the El-Niño period over most of the study region.
During El-Niño, the FRD anomalies were positive over parts of Odisha (southern,
central, and northern), West Bengal (northern, some parts of western and eastern), and
Jharkhand (central, southern, and some parts of north-eastern and western). Other
regions of all three states showed negative anomalies during El-Niño. The La-Niña
periods showed less FRD (negative anomalies) than the El-Niño ones.

• The precipitation changes were not significantly different during El-Niño and La-
Niña periods. However, the magnitudes were slightly higher in the La-Niña periods,



Atmosphere 2022, 13, 1261 12 of 14

suggesting a decrease in precipitation and an increase in the lightning flash rate during
the El-Niño season. In contrast, the FRD decreased, and precipitation increased during
the La-Niña seasons.

• During the El-Niño and La-Niña, the thermodynamic indices varied differently. The
CAPE, CIN, SWEAT, VTI, TTI, BI, HI, and KI values increased, while CTI decreased
during the La-Niña period. The BI values did not show significant changes, while HI
values were clearly differentiated during the El-Niño and La-Niña periods.

The current research aims to assist forecasters in building climatological maps through-
out multiple Indian states to understand the spatial variation of thermodynamic indices
and associated lightning and rainfall activities during the El-Niño and La-Niña phases. This
will aid in spotting convective occurrences and providing an early warning to the public
and policymakers about the severity of the events during these phases. The findings will
help researchers to better understand the pre-monsoon convective activities and associated
rainfall and lightning activities over eastern India.
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and software; N.K.V.: methodology and software; S.N.: methodology and writing; B.T.: conceptual-
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