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Abstract

The epididymis is necessary for post-testicular sperm maturation as it provides the milieu required for spermatozoa to gain the ability 

for progressive movement and fertilization. In the epididymis the sperm protein, lipid and small RNA content are heavily modified 

due to interaction with luminal proteins secreted by the epididymal epithelium and extracellular vesicles, epididymosomes. This 

review focuses on epididymal proteins demonstrated to have an effect on sperm functions, such as motility, capacitation, acrosome 

reaction, sperm-zona pellucida binding and sperm-egg binding, as well as on embryonic development.
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Introduction

After the immature spermatozoa leave testis they 
acquire the ability to move progressively forward and 
fertilize the oocyte while being transported through the 
epididymis. During epididymal sperm maturation, the 
sperm membrane is under constant remodeling, with 
attachment and shedding of molecules in a sequential 
manner. Many of the proteins affecting sperm maturation 
are secreted into the epididymal lumen where they 
come into contact with sperm. Another means to 
deliver proteins as well as other cargo to sperm is the 
use of extracellular vesicles called epididymosomes. 
Epididymosomes contain proteins (Nixon et  al. 2019), 
small non-coding RNAs (Reilly et  al. 2016, Sharma 
et  al. 2016) and lipids (Girouard et  al. 2011) that are 
delivered to maturing sperm. The exact mechanism 
by which the epididymosomes deliver their cargo to 
sperm is still unclear, but it has been suggested that 
after GPI-anchor-mediated docking, the membranes of 
epididymosomes and sperm fuse. The other putative, 
and potentially bi-directional, mechanism of delivering 
cargo is a formation of transient fusion pores between 
epididymosomes and sperm (reviewed by Sullivan 
2015, Zhou et al. 2018). As a consequence, the sperm 
proteome (Belleannee et al. 2011, Ijiri et al. 2011), lipid 
composition (Gervasi & Visconti 2017) and small RNAs 
(Hutcheon et  al. 2017) change during the transit from 
the proximal initial segment (IS) to the distal cauda.

The elegant work by Bedford and Orgebin-Crist 
demonstrated the importance of epididymal transit 
for acquisition of sperm progressive motility and 
fertilizing capacity already in the 1960’s (Bedford 1963,  

Orgebin-Crist 1967). The significance of epididymal 
transit was further confirmed by using genetically 
modified (GM) mouse models. Knockout (KO) models 
of Ros1 (also known as c-ros, (Sonnenberg-Riethmacher 
et  al. 1996, Yeung et  al. 1999), leucine-rich repeat-
containing G protein-coupled receptor 4 (LGR4, 
Hoshii et  al. 2007) and Pten (Xu et  al. 2014) as well 
as the transgenic GPX5-Tag2 mice (Sipilä et  al. 2002) 
demonstrated that a lack or dysfunction of the proximal 
epididymal epithelium leads to male infertility. Many 
of the above mentioned models exhibited a hairpin 
bend of the sperm tail caused by a failure of the sperm 
to regulate the intracellular osmotic pressure. Another 
frequently seen defect in these models is a change in 
sperm motility.

GM models in which the gene regulatory programs 
are disturbed have demonstrated several regulatory 
pathways necessary for proper epididymal functions and 
subsequent male fertility. The importance of androgens 
for epididymal gene expression have been long known, 
however, as those early experiments involved removal 
of testes as a source of androgens, the importance of 
androgen regulation of the given genes for male fertility 
could not be proven. GM models with conditional 
androgen receptor (AR) deletion either in developmental 
precursors of the epididymis, Wolffian duct or IS or 
caput epididymidis resulted in dedifferentiation of the 
epithelium, obstruction of the duct and male infertility 
(Krutskikh et al. 2011, Murashima et al. 2011, O’Hara 
et al. 2011). AR mutations affecting its functions further 
confirmed the necessity of AR to epididymal sperm 
maturation as both, Specificity-affecting AR knockin 
(SPARKI, Schauwaers et al. 2007, Kerkhofs et al. 2012) 
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and SUMOylation-deficient AR (ArKI, Zhang et  al. 
2019) mice, were present with subfertility or infertility, 
respectively. Although there were only subtle changes 
in the epididymal epithelium, both models displayed 
similar defects in sperm motility. Despite phenotypic 
similarities, the underlying molecular mechanisms for 
these defects appear to be different in these mouse 
models, as the mutations resulted in distinct changes 
in the gene expression in the epididymides with only 
a handful of genes changed in both models (Sahu et al. 
2014, Zhang et al. 2019).

The miRNA pathway is a well-known post-
transcriptional regulator of protein levels. Conditional 
deletion of Dicer1, a necessary RNAseIII enzyme in 
miRNA processing, from the proximal epididymis 
resulted in dedifferentiation of the epididymal epithelium 
demonstrating the importance of miRNA-mediated 
regulation for epididymal maintenance (Björkgren 
et  al. 2012). Interestingly, lack of Dicer1 also caused 
problems in lipid synthesis in the epididymal epithelium 
and a consequent imbalance of cholesterol and long 
chain polyunsaturated fatty acids (PUFAs) in the sperm 
membrane, detachment of the sperm head from the 
tail and breakage of the acrosome region (Björkgren 
et  al. 2015). Whereas individual epididymal miRNAs 
have not been linked to sperm dysfunctions, a recent 
paper described a correlation between unexplained 
asthenoszoopermia (UA) and dysregulation of five 
members of the X-linked primate-specific epididymal 
miRNA cluster. miRNA analysis of semen showed that 
13% of UA patients had lower levels of the miRNAs in 
question compared to normospermic controls and further, 
the levels of miRNAs correlated with sperm progressive 
motility (Qing et  al. 2017). Intriguingly, epididymally 
produced small RNAs, such as tRNA fragments and 
miRNAs are trafficked from the epididymal epithelium 
to maturing sperm. They have been shown to transfer 
epigenetic information to offspring and are essential for 
normal embryonal development in mice (Sharma et al. 
2016, 2018, Conine et al. 2018).

In all the above mentioned models, the epididymal 
environment changes so drastically that problems in 
several signaling pathways are likely to contribute 
to the loss of fertility and thus it is impossible to 
pinpoint any individual molecule behind defects in 
sperm function. In this review, we focus on individual 
epididymal proteins that, although not all epididymis 
specific, have been shown to affect sperm functional 
parameters, such as motility and capacitation, and 
subsequently male fertility (Fig. 1). In addition to the 
proteins mentioned in this review, there is a large 
group of proteins that are known to be expressed both 
in the testis and in the epididymis which are required 
for sperm function. However, as it is not clear how 
the epididymal expression of those proteins per se 
contribute to sperm function, those genes were not 
included in this review.

Epididymal proteins affecting sperm 
calcium signaling

The activation of sperm cells in the female reproductive 
tract mainly relies on an increased influx of calcium 
ions. The signaling pathway elicited by Ca2+ uptake leads 
to capacitation of sperm cells with marked increase in 
protein phosphorylation and the ability of sperm to display 
hyperactive motility (Yanagimachi 1994, Kirichok et al. 
2006). Hyperactivation is characterized as an increase 
in flagellar bend amplitude and asymmetry which gives 
the sperm the powerful tail strokes required to reach 
the egg. In close proximity to the egg, the increased 
calcium signaling causes the sperm to go through the 
acrosome reaction (Yanagimachi 1994). The release of 
the acrosome content reveals egg-binding proteins on 
the inner acrosome membrane and allows the gametes 
to fuse. As Ca2+ signaling drives sperm motility and 
fertility in the female reproductive tract, ion influx and 
efflux is highly regulated during sperm maturation. 
For example, increased levels of the epididymal  
Ca2+-ATPase isoform 4 (PMCA4a) was detected in bull 
caudal sperm where it contributes to maintaining the 
low intracellular Ca2+ levels needed for proper sperm 
activation (Brandenburger et  al. 2011). Furthermore, 
several proteins secreted by the epididymal epithelium 
bind to sperm and regulate Ca2+ channels in the sperm 
membrane. This chapter will describe the proteins/protein 
families whose main function is to regulate Ca2+ channels 
in more detail.

CRISP1 and CRISP4

Members of the CRISP protein family are known to 
function as ion channel blockers in snake venom and 
are thought to serve a similar function when expressed 

Figure 1 Epididymal proteins affecting different sperm functions during 
fertilization. I. Epididymal proteins affecting sperm calcium signaling, 
II. Epididymal proteins modifying sperm proteins, III. Epididymal 
proteins affecting sperm membrane lipid composition, IV. Epididymal 
proteins involved in cell–cell interactions.
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in the male reproductive tract of mammals (Yamazaki 
& Morita 2004). In support of this, the incubation of 
sperm cells with CRISP1 resulted in reduced activation 
of the calcium ion cannel CATSPER1 (Ernesto et  al. 
2015) while CRISP4 was shown to inhibit the transient 
receptor potential M8 (TRPM8) ion channel in mouse 
sperm (Gibbs et al. 2011). CRISP1 was first identified 
in the principal cells and lumen of rat cauda (Cameo & 
Blaquier 1976). Here it binds to sperm in two isoforms; 
D, which is only transiently bound to sperm and released 
during capacitation, and the smaller isoform E, which 
is more tightly bound to sperm (Roberts et al. 2008). 
CRISP1 D is considered to be a decapacitating factor 
as incubation of rat sperm with exogenous CRISP1 led 
to reduced protein phosphorylation and inhibition of 
the acrosome reaction (Roberts et al. 2003). However, 
this effect seems to be species specific as sperm 
of Crisp1-knockout mice displayed lower levels of 
protein tyrosine phosphorylation, although the sperm 
were able to acrosome react and the mice were 
fully fertile in normal breeding (Da Ros et al. 2008). 
Interestingly, the genetic background of the animals 
also play a role in the severity of the phenotype. While 
mice of a mixed (129/SvEv and C57Bl/6) background 
showed reduced levels of tyrosine phosphorylation, 
a pure C57Bl/6 background led to defects in both 
motility and in the induction of the acrosome reaction, 
although the levels of phosphorylated proteins in 
capacitated sperm were similar to those of WT mice 
(Weigel Muñoz et al. 2018).

The phenotype of Crisp1-knockout sperm can 
partially be compensated for by the presence of CRISP4, 
which is bound to rodent sperm during transit through 
the proximal epididymis. Deletion of Crisp4 in mouse 
led to a reduced induction of the acrosome reaction 
(Gibbs et al. 2011, Turunen et al. 2012, Hu et al. 2018). 
The altered acrosome reaction was also thought to 
affect the interaction of sperm with ZP, as one study 
showed reduced ZP binding and fertility of knockout 
sperm (Turunen et al. 2012). In addition, a study by Hu 
et al. (2018) indicated a role for CRISP4 in capacitation 
and sperm motility (Hu et al. 2018). The discrepancy 
between the Crisp4 KO phenotype in the different 
studies could, like CRISP1, be due to different genetic 
background of the mice (Weigel Muñoz et al. 2018). 
This has also been observed in Crisp1/Crisp4-double 
mutants which show a more prominent, but variable 
decrease in sperm fertility parameters compared to the 
single knockout animals. The double KO generated by 
Carvajal et al. (2018) led to a subset of mice displaying 
an inflammation phenotype of the epididymal 
epithelium which caused decreased viability of sperm. 
Even without signs of epididymo-orchitis, there was a 
significantly increased pH of the epididymal lumen, 
which could give rise to a multitude of defects during 
sperm maturation (Carvajal et al. 2018). On the other 
hand, the double KO generated by Hu et al. only showed 

signs of epididymal inflammation in older animals,  
with younger males displaying similar litter sizes 
as WT mice (Hu et al. 2018). It is interesting to note 
the significant effect of genetic predisposition to 
inflammation when considering how the human 
epididymis only expresses CRISP1, the functional 
ortholog of both rodent CRISP1 and CRISP4 (Jalkanen 
et al. 2005, Nolan et al. 2006). Studies of the genetic 
differences that give rise to the non-infectious 
epididymitis could therefore also give us new 
information on human disease and fertility problems.

Beta-defensins

Similar to the CRISP protein family, DEFB family 
members are also thought to regulate ion channel 
activity. Beta-defensins belong to a large family  
of antimicrobial peptides predominantly expressed  
in the male reproductive tract, and more precisely, in 
the epididymis (reviewed in Dorin & Barratt 2014). In 
addition to host-defense function, several beta-defensins 
have been shown to have a role in sperm maturation. 
SPAG11E (also known as Bin1b) and DEFB15 bind to 
the sperm head during epididymal transit and induce 
sperm progressive motility in vitro in rat (Zhou et  al. 
2004, Zhao et  al. 2011). Deletion of mouse Defb41 
did not affect male fertility in vivo, but advanced in 
vitro imaging and analyzing techniques revealed an 
altered flagellar beat pattern of capacitated Defb41-
knockout sperm and consequently altered sperm 
velocity and a reduction in oocyte binding (Björkgren 
et al. 2016). The mild phenotypic changes in the mouse 
and rat models introduced above might be due to 
compensatory functions of other beta-defensins present 
in the epididymal fluid. Indeed, a series of knockouts 
of rat beta-defensins, namely Defb23, Defb26 and 
Defb42, demonstrated that as single gene knockouts, 
they did not cause any change in sperm motility or male 
fertility, whereas animals carrying double, Defb23/26, 
or triple, Defb23/26/42, gene deletions were subfertile 
and demonstrated decreased sperm motility, precocious 
capacitation and increased spontaneous acrosome 
reaction (Zhang et  al. 2018). Similarly, a concurrent 
deletion of nine mouse beta-defensins, Defb1, Defb50, 
Defb2, Defb10, Defb9, Defb11, Defb15, Defb35 
and Defb13 from the beta-defensin gene cluster on 
chromosome 8, caused reduced sperm motility and 
increased fragility with disintegration of the microtubule 
structure of DefbΔ9 sperm. Furthermore, DefbΔ9 
sperm displayed precocious capacitation, increased 
spontaneous acrosome reactions and reduced ability 
to bind to oocytes (Zhou et  al. 2013). Moreover, in 
contrast to Defb1-knockout mice which do not have 
a reproductive phenotype (Morrison et  al. 2002), 
significantly reduced levels of human DEFB1 were 
found in sperm of infertile men with low sperm motility 
(Diao et al. 2014). This suggests that the larger rodent 

Downloaded from Bioscientifica.com at 08/28/2022 02:58:35AM
via free access

https://rep.bioscientifica.com


I Björkgren and P SipiläR158

Reproduction (2019) 158 R155–R167 https://rep.bioscientifica.com

beta-defensin family have more overlapping functions 
compared to their human homologs.

The antimicrobial properties of beta-defensins are due 
to the ability of these cationic molecules to bore holes 
into phospholipid membranes (Hall et  al. 2007). This 
mechanism has also been shown to activate L-type Ca2+ 
channels (Bateman et al. 1996). Studies with SPAG11E 
indicate that it is activating sperm Ca2+ channels, leading 
to Ca2+ influx into sperm (Zhou et al. 2004). In addition, 
DEFB1 was shown to interact with chemokine receptor 
type 6 (CCR6) and thereby triggering a rise in intracellular 
Ca2+ (Diao et al. 2014). In contrast, both animal models 
with several beta-defensins deleted, showed increased 
intracellular Ca2+ content of the sperm, which was 
suggested to lead to premature hyperactivation and 
spontaneous acrosome reaction of the knockout sperm 
(Zhou et al. 2013, Zhang et al. 2018). Thus, the role of 
DEFBs in controlling the function of Ca2+ channels is 
still unclear. It is however possible that different DEFBs 
regulate different Ca2+ channels with varying outcomes. 
Moreover, the molecular mechanism of sperm Ca2+ 
channel regulation is unsolved and whether the hole-
boring ability of beta-defensins has a role here remains 
to be studied.

A distinctive mode of action has been described for 
DEFB126 (mouse and rat homolog DEFB22). DEFB126 
is produced in the corpus epididymidis, from where it 
is secreted, binds to the sperm surface and forms an 
integral part of the sperm glycocalyx (Tollner et al. 2012). 
It has a highly glycosylated C-terminal tail that provides 
a negatively charged coating for sperm, necessary for 
spermatozoa to swim efficiently in the cervical mucus in 
macaques (Tollner et al. 2008a). When sperm reaches the 
oviduct, DEFB126 is critical for attachment of the sperm 
to the oviductal epithelium. The removal of DEFB126 
from the sperm membrane was shown to be necessary 
for sperm release from the oviductal reservoir at the time 
of ovulation, and conditions simulating periovulatory 
oviductal fluid quickly induced both shedding of 
DEFB126 from the sperm membrane and capacitation 
(Tollner et  al. 2008b). In addition, experimental data 
suggest that the sialylated oligosaccharides of DEFB126 
on the sperm glycocalyx effectively mask other protein 
components on the sperm surface, protecting sperm 
from immune surveillance in the female reproductive 
tract (Tollner et  al. 2012). Interestingly, two human 
frame-shift mutations of DEFB126 have been shown to 
affect male fertility. Mutation rs11468374 described by 
Tollner et al. affected the ability of sperm to penetrate 
the cervical mucus, whereas other sperm parameters, 
including motility were unchanged. Men homozygous 
for this frame-shift mutation were found to have a 
reduced chance of successful conception (Tollner 
et  al. 2011). In addition, another described DEFB126 
mutation, rs11467497, has significant association 
with male infertility, without affecting sperm motility  
(Duan et al. 2015).

LCN6

The epididymis of rodents and humans express several 
lipocalins (LCNs) belonging to a highly conserved gene 
cluster (Suzuki et al. 2004). Lipocalins are extracellular 
proteins that are able to transport small hydrophobic 
molecules such as steroids and lipids (Flower 1996). 
Although LCN proteins are hypothesized to be important 
for sperm maturation, so far only LCN6 is known to 
play a role in sperm function. Expression of Lcn6 in the 
proximal epididymis leads to binding of the protein to 
the postacrosomal region in human and mouse sperm 
cells (Hamil et al. 2003, Yin et al. 2018). Studies of an 
Lcn6-knockout mouse model showed an important 
function in regulating Ca2+ influx of sperm cells. 
Although Lcn6 ablation led to Ca2+ overload of sperm 
cells and, consequently, an increased spontaneous 
acrosome reaction, the knockout males were fertile and 
the sperm were motile and able to capacitate in a similar 
manner to WT sperm (Yin et al. 2018). An explanation 
for this could be that a majority of sperm cells were still 
acrosome intact after in vitro capacitation which would 
indicate either a minor role for LCN6 or a functional 
substitution of the protein with other lipocalins still 
present in the epididymis. Thus, further studies are 
needed to show how different lipocalins interact during 
sperm maturation and what the mechanism of LCN6 
regulation of ion channel(s) entails.

Epididymal proteins modifying sperm proteins

Several posttranslational modifications (PTMs), such 
as phosphorylation, glycosylation (Baker 2016) and 
O-GlcNAcylation (Tourzani et  al. 2018) of sperm 
proteins occur during epididymal sperm maturation. The 
importance of the PTMs is still unclear, but as sperm are 
transcriptionally silent cells, PTMs provide a means of 
controlling the protein activity in sperm. As an example 
of changes in protein phosphorylation status during 
epididymal transit, the cytoplasmic domain of IZUMO1, 
a protein necessary for sperm–egg fusion, becomes 
heavily phosphorylated in the epididymis. It has been 
postulated that in the case of IZUMO1, phosphorylation 
would play a role in re-location of the protein in the sperm 
membrane or during sperm–oocyte fusion (Baker et  al. 
2012). Another example of a protein modified during 
epididymal transit is ADAM3 (also known as cyritestin), 
which is required for gamete interaction (Shamsadin 
et  al. 1999, Inoue et  al. 2005). A lack of epididymal 
cleavage of sperm surface ADAMs (ADAM3, -2, and -6) 
does not only reduce the activity of the enzymes but 
also the attachment of the protein complex to the sperm 
surface (Nishimura et al. 2007, Han et al. 2009, Krutskikh 
et  al. 2012). In the following chapter we will describe 
proteins known to affect sperm function via PTMs during 
epididymal maturation, for more information about the 
PTMs the reader is directed to the following excellent 
reviews (Baker 2016, Brohi & Huo 2017).
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RNase10

The cleavage of ADAMs in the epididymis is segment 
specific, as seen in the case of RNase10, an enzyme 
expressed in the most proximal region of the mouse and 
boar epididymides (Penttinen et al. 2003, Castella et al. 
2004). Although RNase10 lacks ribonuclease activity, 
it was shown to cleave the immature form of ADAM6 
and thereby retain the protein in complex with ADAM3 
(Krutskikh et al. 2012). In RNase10-knockout mice, the 
consequent loss of ADAM3 from spermatozoa led to a 
significantly reduced fertility although the sperm cells 
displayed normal motility, capacitation and acrosome 
reaction. However, they were not able to fully adhere 
to ZP although they showed increased ability to fuse 
with and fertilize eggs in vitro. The study by Krutskikh 
et al. (2012) also propose that the IS-specific expression 
and secretion of the enzyme could lead to cleavage of 
additional sperm proteins (Krutskikh et al. 2012).

INPP5b

Another protein important for sperm maturation 
and ADAM cleavage is the inositol polyphosphate 
5-phosphatase INPP5b. Instead of a direct proteolytic 
activity on sperm cells, INPP5b was hypothesized to 
regulate the availability of proteases for ADAM2 and 
ADAM3 cleavage in the epididymis (Hellsten et  al. 
2001). Although the phosphatase is expressed in the 
testis as well as the epididymis, a spermatid-specific 
knockout of Inpp5b did not cause similar defects as 
those observed in the full knockout animals where 
spermatozoa displayed both reduced motility and an 
inability to bind to ZP and fuse with the egg (Hellsten 
et  al. 2001). The phenotype was linked to a defect in 
ADAM2 cleavage during transit of sperm from caput 
to cauda. However, mouse of different background 
display phenotypes of varied severity and a later 
study by Marcello and Evans (Marcello & Evans 2010) 
showed little correlation between ADAM2 and ADAM3 
processing and the fertility phenotype, indicating that 
INPP5b is able to regulate the cleavage of additional 
proteins during sperm maturation. In addition, since 
neither the Inpp5b nor the RNase10-knockout mice 
showed complete inhibition of ADAM cleavage, other, 
still unknown, proteins are probably also utilized for 
this process.

Wnt signaling

An elegant example of how modification of sperm proteins 
during epididymal transit affect sperm motility came 
from studies by Koch and colleagues who demonstrated 
that epididymal Wnt is an important regulator of sperm 
motility through inhibition of glycogen synthase kinase-3 
(GSK3) (Koch et al. 2015). It has been known for over 
20 years that inhibition of Ser/Thr-protein phosphatase 
I catalytic subunit gamma 2, PPP1CC2 (previously 

known as PP1γ2), activity in caput sperm induces 
motility (Vijayaraghavan et al. 1996). The early studies 
with bovine sperm suggested that in caput sperm, a high 
activity of GSK3 inhibits the activity of the PPP1CC2 
inhibitor, protein phosphatase 1, regulatory inhibitor 
subunit 2, PPP1R2 (previously known as I2). In cauda 
sperm, the reduced activity of GSK3 results in activation 
of PPP1R2, subsequent inactivation of PPP1CC2 and 
induction of sperm motility (Vijayaraghavan et al. 1996). 
A more recent study in mouse further demonstrated 
that three PPP1CC2 inhibitors, PPP1R2, -R7 and -R11, 
are present in mouse sperm where they co-localize 
with PPP1CC2 in the head and the principal piece. In 
immotile caput sperm, PPP1R2 and PPP1R7 are not 
bound to PPP1CC2, whereas in motile caudal sperm, 
all three inhibitors are bound as heterodimers or 
heterotrimers. The binding of the inhibitors to PPP1CC2 
is affected by their phosphorylation, and it is known that 
GSK3 is the protein kinase phosphorylating PPP1R2. 
Moreover, in infertile GSK3-knockout mice, PPP1CC2 is 
not associated with the inhibitors (Goswami et al. 2019).

How does the epididymis regulate this sperm intrinsic 
signaling pathway? Here the epididymal Wnt signaling 
steps in. Multiple Wnt ligands are expressed in the 
epididymis and Wnt2b was also found in epididymosomes 
(Koch et al. 2015). Wnts signal through two co-receptors, 
Frizzled (FZD) and low-density lipoprotein receptor-
related 6 (LRP6), and epididymosomes were found to 
activate LRP6 at the sperm membrane ex vivo. The Wnt 
regulator cyclin Y-like 1 (Ccnyl1) is highly expressed 
in germ cells, and Ccnyl1-knockout male mice are 
infertile due to immotile and malformed spermatozoa. 
Ccny-dependent Wnt signaling is known to regulate 
GSK3 activity. The phosphorylation of inhibitor PPP1R2 
was shown to be greatly increased in Ccnyl-knockout 
sperm, likely leading to higher PPP1CC2 activity and 
hence reduced protein phosphorylation. Indeed, it was 
shown that total phospho-serine was markedly reduced 
in Ccnyl1-knockout sperm (Koch et al. 2015). A recent 
study, where Wntless, a membrane protein required for 
all WNT protein secretion, was conditionally deleted 
from mouse caput epididymidis failed to demonstrate 
any effects on sperm motility and male fertility 
even though WNT10A and WNT2b proteins were 
significantly reduced in the epididymal luminal fluid 
(Cheng et al. 2018). This difference might have multiple 
explanations; incomplete recombination by the Cre-
recombinase used, expression of WNTs and WNTLESS 
in other epididymal segments and most of all, presence 
of WNTs in the epididymosomes that deliver their cargo 
directly to sperm thus bypassing the need of secretion 
of WNTs to the epididymal fluid of caput. Altogether 
these findings suggest the following mechanism 
controlling epididymal sperm motility: epididymal Wnts 
in epididymosomes regulate sperm GSK3 activity via 
LPR6 and Ccnyl1. In the presence of inactive GSK3, the 
PPP1CC2 inhibitors, PPP1R2 and -R7, bind to PPP1CC2 
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rendering it inactive, hence leading to increases in total 
phospho-serine in sperm and increased motility (Fig. 2).

SPINK13

The epididymis-specific SPINK13 (serine peptidase 
inhibitor, Kazal type 13) is a protease inhibitor needed 
for proper sperm maturation. Several members of 
the SPINK protein family are highly expressed in the 
epididymis (Jalkanen et  al. 2006) and in rats Spink13 
is mainly found in the IS and with lower levels in 
more distal segments (Ma et al. 2013). The protein was 
secreted into the epididymal lumen where it localized 
to the acrosome of maturating sperm cells. Analyses 
of sperm after RNAi knockdown of Spink13 showed 
increased spontaneous acrosome reaction, although no 
difference in capacitation was detected (Ma et al. 2013). 
Interestingly, comparison between SPINK13 and LCN6 
models revealed that Lcn6-knockout sperm displayed 
much higher levels of spontaneous acrosome reaction 
compared to sperm lacking SPINK13. However, Spink13 
downregulation gave rise to a significant reduction in 
male fertility both in vitro and in vivo, while the Lcn6 
KO did not show any fertility phenotype (Ma et al. 2013,  

Yin et  al. 2018). This could of course be due to the 
different rodent species used for the studies, but could 
also indicate an additional function for SPINK13 in 
sperm-egg interaction. A number of serine proteases 
have been identified on sperm acrosome, however, 
in vivo target proteases of SPINK13 have not yet 
been identified.

ERp29

The sperm endoplasmic reticulum protein 29 (ERp29) 
in rodents is hypothesized to serve a role in gamete 
interaction. ERp29 belongs to the protein disulfide 
isomerase (PDI) family which causes a conformational 
change in proteins and thereby promotes cell–cell 
interaction. Among others, ERp29 can facilitate 
polyomavirus infection by changing the viral protein 
structure and stimulate penetration of the virus into 
the host cells endoplasmic reticulum (Magnuson et al. 
2005). In both mice and rats, ERp29 is detected in the 
epididymal epithelium with increased expression from 
caput to cauda and a subsequent increase in protein 
levels of caudal sperm (Guo et al. 2007, Ying et al. 2010). 
The motility and acrosome reaction of mouse sperm cells 
were not affected by incubation with an antibody against 
ERp29. However, the fertilization capacity of sperm was 
significantly reduced with increased concentration of 
the antibody (Ying et  al. 2010). To further support the 
role of ERp29 in sperm–egg interaction the protein was 
relocated to the equatorial segment, the initial site of 
gamete fusion, after the acrosome reaction. Thus, similar 
to its role in viral infections, ERp29 was hypothesized to 
cause thiol-disulfide exchange in proteins on the sperm 
surface and thereby trigger binding to receptors on the 
egg (Ying et al. 2010).

Epididymal proteins affecting sperm membrane 
lipid composition

When spermatozoa enter the female reproductive tract, 
an efflux of cholesterol from the sperm membrane 
precedes the influx of Ca2+ required for capacitation. 
The change gives rise to an increased fluidity of the 
sperm membrane which is needed to prepare the cells 
for fertilization of the egg (Travis & Kopf 2002). However, 
already during maturation in the epididymis the sperm 
membrane is modified by incorporation of unsaturated 
lipids and a gradual removal of cholesterol. Sperm from 
most mammalian species experience an approximate 
50% reduction in cholesterol levels when moving from 
the proximal epididymal segments to cauda (Parks & 
Hammerstedt 1985, Hall et al. 1991, Awano et al. 1993, 
Rejraji et al. 2006). Although this results in a more fluid 
membrane, the epididymal environment keeps the 
sperm in a quiescent state throughout transit and storage. 
This is achieved, in part, by the acidic pH of the luminal 
fluid but also by binding of so called decapacitation 

Figure 2 Schematic of epididymal Wnt-mediated regulation of 
sperm motility. Epididymal epithelial cells secrete epididymosomes 
that contain WNT proteins. In the absence of Wnt signaling, sperm 
glycogen synthase kinase-3 (GSK3) is active and phosphorylates 
the PPP1CC2 inhibitors PPP1R2, -R7 and -R11 and thus PPP1CC2 
remains active. When epididymal WNTs activate the receptors 
Frizzled (FZD) and low-density lipoprotein receptor-related 6 
(LRP6) primed by cyclin Y-like 1 (CCNYL1), GSK3 is inactivated 
allowing PPP1R2 and -R7 binding to PPP1CC2 and thus rendering 
the PPP1CC2 inactive. When PPP1CC2 is inactivated, total 
phospho-serine levels increase and the spermatozoon becomes 
fully motile.
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factors to the sperm surface (Nixon et al. 2006, Shum 
et al. 2011). When in transit to the fallopian tube, the 
inhibiting factors are released and the sperm is able to 
achieve capacitation.

Binder of SPerm protein homolog 1

A protein that influences the lipid content of the 
sperm membrane and in turn capacitation is Binder 
of SPerm protein homolog 1 (BSPH1). The protein was 
first discovered in the seminal plasma of bulls (Esch 
et al. 1983, Manjunath 1984) and, later, homologous 
genes were found to be expressed in the bovine 
(BSPH1, Han et al. 2009), mouse (Bsph1) and human 
(BSPH1) epididymis (Fan et  al. 2006, Lefebvre et  al. 
2007). During epididymal transit and while still 
bound to sperm, BSPH1 is said to prevent movement 
of lipids in the sperm membrane and thereby protect 
the sperm from premature capacitation. When the 
sperm cell reaches the oviduct it comes in contact 
with high-density lipoproteins (HDLs) which interact 
with BSPH1 and can cause release of phospholipids 
and cholesterol from the sperm membrane (Plante & 
Manjunath 2015). This was shown for both mouse 
and human sperm, which displayed increased protein 
tyrosine phosphorylation after incubation with 
recombinant BSPH1. However, no change in sperm 
acrosome reaction or motility was detected (Plante 
et al. 2012, 2014).

CES5A

One factor that is hypothesized to play a role in 
maturation of the sperm lipid membrane is the 
carboxylesterase CES5A, previously known as CES7. 
The protein was first detected in rat epididymis where it 
is secreted into the lumen of corpus and cauda (Zhang 
et  al. 2009). Knockdown of Ces5a by RNAi injection 
into rat cauda, caused reduced levels of protein 
tyrosine phosphorylation during capacitation and 
a reduced fertility both in vitro and in vivo (Ru et  al. 
2015). The function of CES5A in sperm capacitation 
is not fully understood as it does not seem to have a 
direct interaction with spermatozoa in the epididymal 
lumen but is instead thought to alter the lipid content 
of the luminal fluid and then indirectly that of the 
sperm membrane (Zhang et al. 2009, Ru et al. 2015). 
Expression of CES5A is tightly regulated by the 
epididymis specific miRNA-like small RNA HongrES2 
(mil-HongrES2, Ni et al. 2011). Considering this study 
and how the ablation of miRNA processing in the 
proximal segment of the mouse epididymis caused a 
significant change in epididymal lipid production and 
animal fertility (Björkgren et  al. 2015), it would be 
interesting to see if miRNAs of the distal epididymis 
have a similar effect on the lipid content of the  
sperm membrane.

SERPINA16

A decapacitating factor expressed by the principal 
cells of mouse, rat and guinea pig cauda is Serpina16, 
also known as HongrES1 in rat and mHong1 in mouse  
(Hu et al. 2002, 2012, Ni et al. 2009). It is secreted into 
the epididymal lumen and bound to sperm, where the 
protein is hypothesized to inhibit the action of cholesterol 
acceptors. Incubation of HongrES1-knockdown sperm 
with bovine serum albumin (BSA) caused an increased 
membrane fluidity and premature protein tyrosine 
phosphorylation (Zhou et  al. 2008). In addition, the 
RNAi knockdown of HongrES1 led to a reduced number 
of progeny and, interestingly, an increased number  
of fetuses that displayed developmental defects  
(Zhou et  al. 2008). Serpina16 belongs to the Serpin 
family of protease inhibitors. However, its amino acid 
sequence differs from that of traditional inhibitory 
serpins and the protein function and its role in sperm 
capacitation remains unknown (Hu et al. 2002).

CLPSL2

Colipase-like 2 (Clpsl2) is specifically expressed in 
human (Li et al. 2008) and mouse (Oh et al. 2006) caput 
epithelium from where it is secreted and binds to sperm 
cells (Lu et al. 2018). Localization of the protein to the 
acrosome region and principal piece of mouse sperm is 
important for the integrity of the acrosome region and 
the progressive motility of spermatozoa (Lu et al. 2018). 
In addition, the injection of shRNA lentivirus particles 
against Clpsl2 caused a significant decrease in sperm 
number as well as reduced fertility of male mice, both in 
vitro and in normal breeding (Lu et al. 2018), which was 
mainly accredited to the reduced integrity of the sperm 
membrane. Unlike its relative, the pancreatic colipase, 
CLPSL2 is not thought to function in lipid hydrolysis 
but instead in remodeling of the sperm membrane lipid 
profile (Lu et al. 2018). This could also affect additional 
sperm functions, for example capacitation, which also 
requires changes in the lipid content of the membrane.

GPX5

The glutathione peroxidase GPX5 is highly expressed 
in the epididymis of mammals, where it is secreted 
into the lumen and able to protect sperm from lipid 
peroxidation. When Gpx5 was ablated from the mouse 
epididymis, it did not lead to any fertility phenotype 
at younger age, but breeding of 1-year-old males and 
older resulted in more miscarriages and developmental 
defects than for WT males (Chabory et al. 2009). This 
was hypothesized to be the result of increased DNA 
fragmentation in Gpx5 KO sperm. As a result of Gpx5 
ablation, the mice displayed increased expression of 
other glutathione peroxidases and catalase in cauda, 
which could partially compensate for the observed 
phenotype (Chabory et  al. 2009). Interestingly,  
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in studies of a double knockout for Gpx5 and the sperm 
nuclear Gpx4, the male mice showed a much higher 
compensatory expression of ROS scavengers, which 
allowed them to sire the same number of pups as wild 
type mice, regardless of age (Noblanc et  al. 2012). 
Similar to mice, boars with lower levels of GPX5 in 
their seminal plasma showed reduced farrowing rates 
due to increased oxidative stress (Barranco et al. 2016). 
However, unlike mice, Gpx5 is expressed throughout 
the genital tract of boars and is also required for proper 
motility of sperm cells, which could further influence 
the observed difference in breeding (Barranco et  al. 
2016). Overall, larger mammals display an expression 
pattern of Gpx5 that differs from that of rodents 
(Grignard et al. 2005), with humans having much lower 
expression levels than other species (Hall et al. 1998). 
Further studies are thus needed to clarify if and how the 
antioxidant affect the fertility of these males.

Epididymal proteins involved in  
cell–cell interactions

The epididymis secretes several proteins involved in 
cell–cell interaction that, after binding to spermatozoa, 
allow the sperm to recognize and fertilize the egg. The 
process of sperm–egg fusion share common features 
with that of fusion between a virus and its host cell, 
where an initial binding of viral proteins with receptors 
on the cell surface is required before the two membranes 
can merge (Stein et  al. 2004). Similarly to viral 
infections, sperm cells are known to utilize a number 
of proteins to facilitate the recognition and binding of 
gametes. Although blocking their function does not 
prevent fertilization completely, these proteins work 
synergistically to promote sperm–egg membrane fusion.

CRISP1

In addition to its role in calcium signaling, CRISP1 is 
also required for gamete interaction. Incubation with 
recombinant human CRISP1 completely blocked sperm 
binding to zona pellucida (ZP), as the recombinant 
protein was hypothesized to occupy the CRISP1 
epitopes of ZP3 (Maldera et al. 2014). The sperm cells 
were already capacitated and only exposed to the 
protein during the short time of ZP interaction, thus 
excluding any effect the inhibitor could have on the 
role of CRISP1 during sperm capacitation (Da Ros et al. 
2008, Maldera et  al. 2014). After the sperm binds to 
ZP and goes through the acrosome reaction, rat CRISP1 
is relocated from the dorsal part of the acrosome to 
the region destined for gamete fusion, the equatorial 
segment of the sperm cell (Rochwerger & Cuasnicu 
1992). Complementary sites across the murine and 
human egg membrane are able to directly bind CRISP1. 
However, CRISP1 does not affect the initial binding 

of sperm, as incubation of eggs with recombinant 
CRISP1 protein did not lead to a reduced number of 
bound sperm cells but only prevented the penetration 
of the egg by spermatozoa (Cohen et al. 2000, 2001, 
Busso et  al. 2007). Because CRISP1 does not contain 
any hydrophobic domains (Brooks 1987), the protein 
was hypothesized to provide the interaction needed for 
membrane fusion instead of having a direct role in the 
process (Cohen et al. 2000).

DCXR

Dicarbonyl/L-xylulose reductase (DCXR, also known as 
sperm surface protein P34H) is, as the name implies, 
an enzyme able to catalyze the reduction of several 
different aromatic dicarbonyl compounds and sugars 
(Wang & Van Eys 1970, Nakagawa et  al. 2002). 
However, it can also serve in a non-catalytic fashion by 
interacting with proteins such as cadherins and catenins, 
and thereby influence cell–cell adhesion (Cho-Vega 
et al. 2007). In humans, the expression of DCXR in male 
reproductive tissues increases from testis to the distal 
segments of the epididymis, with the highest expression 
observed in corpus epididymis. Similarly, DCXR protein 
levels increase on the acrosome of spermatozoa during 
epididymal transit (Légaré et  al. 1999). Incubation of 
sperm with an antibody against DCXR greatly inhibited 
binding to ZP, although the ability to bind to and fuse 
with ZP-free eggs was not reduced (Boué et al. 1994). 
The molecular mechanism of DCXR during sperm–ZP 
interaction is not known, but as it is bound to the sperm 
surface, it may have a similar function as that observed 
in epithelial cell–cell interaction. Interestingly, sperm 
samples from infertile patients often show lower levels 
of DCXR (Boué & Sullivan 1996, Moskovtsev et al. 2007) 
and a study using DCXR-negative sperm cells in IVF did 
not lead to any fertilized eggs (Sullivan et al. 2006), a 
strong indication of the importance of this protein in 
human reproduction.

The hamster and bovine epididymides express 
another member of the dehydrogenase/reductase 
family, carbonyl reductase 2 (Cbr2), a protein not 
found in primates or humans (Sullivan & Robitaille 
1989, Frenette & Sullivan 2001). Similar to DCXR, 
hamster CBR2 (also known as P26h) and bovine CBR2 
(also known as P25b) are tethered to spermatozoa by 
a GPI-anchor during sperm maturation and are known 
to be involved in sperm-ZP binding (Bérubé & Sullivan 
1994, Légaré et al. 1999, Parent et al. 1999, Frenette & 
Sullivan 2001). Especially, inhibition of the enzymatic 
activity of hamster CBR2 was shown to reduce binding 
capacity of sperm to ZP by almost 50% (Montfort et al. 
2002). However, the enzyme does seem to serve species 
specific functions, as the mouse CBR2 (also known as 
MLCR or AP27) has not yet been shown to participate in 
any fertilization event (Bégin et al. 1995).
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SOB2 and FLB1

In a valiant effort to identify additional proteins involved 
in sperm–oocyte interaction, Boué et  al. incubated 
human sperm with monoclonal antibodies against 
their surface proteins (Boué et  al. 1992). This led to 
the discovery of the so-called sperm–oocyte-binding 
antigen 2 (SOB2) and FLB1, which are specifically 
expressed in caput and corpus of human epididymis, 
with additional expression of FLB1 in the defers (Boué 
et  al. 1995, Lefèvre et  al. 1997). During maturation, 
SOB2 first displays a diffuse localization over the sperm 
head which becomes restricted to the post-acrosomal 
and neck area in corpus (Lefèvre et al. 1997). FLB1, in 
turn, was shown to be secreted by hamster epididymal 
cells in vitro, from where it is thought to be transferred to 
the equatorial region of sperm cells (Boué et al. 1995). 
When incubating spermatozoa with antibodies against 
SOB2 or FLB1, the sperm showed a significantly reduced 
ability to bind to zona-free hamster eggs even though 
sperm motility and acrosome reaction were unaffected 
(Boué et  al. 1995, Lefèvre et  al. 1997). Although the 
SOB2 antibody detected proteins in rat, hamster and 
rabbit sperm (Lefèvre et al. 1997), a similar function to 
that of human SOB2 has not to our knowledge been 
detected in these species.

Conclusions

The essential role of the epididymis in male fertility, 
as the place where sperm obtain their full capacity 
for fertilization, has already been known for a long 
time. However, many of the earlier models used to 
demonstrate this effect were so crude that the function 
of individual molecules in the maturation process 
could not be discerned. During recent years, several 
elegant studies have made more detailed analyses of 
the important role of the epididymis in attaining proper 
sperm function. In this review, we have introduced 
studies of 16 such proteins, protein families and 
signaling pathways to the reader. The CRISPR/Cas9 
gene-editing technology is expected to speed up the 
identification and functional validation of epididymal 
proteins involved in male fertility. Epididymis-specific 
conditional models are further anticipated to reveal 
the importance of numerous genes with expression in 
both the epididymal epithelium and in testicular germ 
cells. These studies will be of utmost importance for 
understanding the molecular basis of sperm fertilizing 
ability, especially in regards to the alarming decline in 
male fertility observed in Western countries.
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