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Abstract 

Evidence of how human evolution shaped the polygenicity of human traits and diseases has 

been extensively studied in populations of European descent. However, limited information is 

currently available about its impact on other ancestry groups. Here, we investigated how 

different evolutionary processes affected the common variant heritability of traits and 

diseases in East Asians. Leveraging genome-wide association statistics from the Biobank 

Japan (up to 158,284 participants), we assessed natural selection (negative and positive), 

archaic introgression from Neanderthal and Denisova, and several genomic functional 

categories with respect to the heritability of physiological and pathological conditions. 

Similar to reports in European descent populations, the heritability estimates for East Asian 

traits were ubiquitously enriched for negative selection annotations (false discovery rate, 

FDR q<0.05). Enrichment of Denisovan introgression was identified in coronary artery 

disease (1.69-fold enrichment, p=0.003). We followed up these enrichments by conducting a 

phenome-wide association study (PheWAS) of Denisovan and Neanderthal alleles in 

participants of six ancestral backgrounds from the UK Biobank. In East Asians, Denisovan-

inherited alleles were associated with 22 phenotypes, including metabolic, immunological, 

cardiovascular, endocrine, and dermatological traits. The strongest association was observed 

for the Denisovan-inherited locus rs59185462 with rheumatoid arthritis (beta=0.82, 

p=1.91×10
-105

). In summary, our study provides the first evidence regarding the impact of 

evolutionary processes on the genetics of complex traits in worldwide populations, 

highlighting the specific contribution of Denisovan introgression in East Asian populations.  

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456138


3 

 

Introduction 

Genetic variation across worldwide populations reflects the widespread impact of human 

evolutionary history, including processes related to natural selection and demographic history 
1
. Large-scale genome-wide association studies (GWAS) are disentangling the complex 

genetic architecture of human traits and diseases, providing insights into the molecular and 

cellular mechanisms at the basis of physiological and pathological conditions 
2–5

. Leveraging 

genome-wide data from these studies, it is possible to investigate whether the SNP-based 

heritability (SNP-h
2
, i.e., the proportion of phenotypic variance explained by additive effects 

of common genetic variation) of human phenotypes is enriched for specific genomic features 
6
. Genomic features related to natural selection are enriched for loci associated with complex 

traits 
1,7–9

. In particular, background selection (i.e., the selective removal of deleterious alleles 

across the genome) appears to play a primary role in shaping the highly polygenic 

architecture of human traits and diseases 
1,7–9

. On the other hand, genic and loss-of-function 

intolerant (LOF) regions are signatures of negative selection 
10

, and regions with high CpG 

content are positively correlated with genic content 
11

. Selection usually occurs in the form of 

negative selection, however, positive selection, a measure for adaptive evolution was also 

detected in complex traits previously 
12–14

. Genomic signatures of positive selection include 

soft selective sweep and hard sweep 
15

. In particular, genomic regions including enhancers 

present an accelerated evolutionary rate, a signature of positive selection 
13

 alike abnormally 

long haplotypes 
16

 and extended haplotype homozygosity 
17

. 

 

Introgression from Neanderthals and Denisovans, the only archaic humans sequenced to date, 

also contributes to the genetic pool of modern populations 
18,19

 and consequently to the 

human phenotypic spectrum 
20,21

. Signatures of introgression in several traits, (e.g., hair and 

skin traits and immunity 
21–25

, neoplasms and metabolic traits 
25–27

, and male sterility 
23,28

) 

were identified from Neanderthals and Denisovans. The genomic segments of anatomically 

modern humans inherited from the admixture events with extinct human species are 

hypothesized to have contributed to the adaptation processes of worldwide populations that 

occurred during the colonization of landmasses 
23–25,28,29

. In populations of European descent 

(EUR), a phenome-wide association study of Neanderthal-introgressed alleles showed a wide 

range of associations with physiological conditions related to the immune system, skin 

pigmentation, and metabolic pathways, and with pathological outcomes such as depression, 

actinic keratosis, hypercoagulation, and tobacco use 
20

. Due to the well-known disparities of 

ancestry representation in biomedical research, the information currently available regarding 

the role of human evolutionary history in shaping the genetic architecture of traits and 

diseases is mostly for EUR individuals. A few studies were performed in Pacific 
30

, East 

Asian 
31

, Tibetan 
32

 and Island South East 
33

 populations, however, none of these studies 

considered genome-wide and locus-level evidence. Yet, gaps in knowledge exist on the role 

of certain evolutionary processes that did not occur in EUR populations. This major gap has 

important implications for the characterization of the history of human populations and its 

phenotypic consequences on individuals of diverse ancestral backgrounds. 
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The present study aimed to investigate how genomic elements explain part of the polygenic 

inheritance of human diseases and traits across different ancestry groups. In addition to 

baseline genomic features, we focused on understanding the impact of evolutionary 

processes. Leveraging data generated from large-scale GWAS conducted in the Biobank 

Japan (BBJ) 
34,35

, we analyzed the genetic background of individuals of East Asian descent 

(EAS). Populations in East Asia present an evolutionary history that is only partially shared 

with EUR populations. For instance, earlier studies found that on average, an EAS individual 

carries a higher percentage of Neanderthal genome DNA than an EUR individual (1.4% and 

1.1%, respectively) 
23

. However, recent studies report that this could be due to the 

underestimation of archaic sequence in EUR as a result of migration back to Africa 
36

 and due 

to the early gene flow from modern humans to Neanderthals 
37

. EAS populations also show 

evidence of introgression from Denisovans 
25,28

, which is almost null in EUR populations 
18

. 

Accordingly, we explored how functional elements and evolutionary processes (e.g., natural 

selection and archaic introgression) contributed to the genetics of complex traits in EAS 

populations compared to EUR populations. We also conducted a phenome-wide association 

study (PheWAS) of Neanderthal- and Denisovan-introgressed alleles to characterize their 

contribution in EAS individuals and other ancestry groups available from the UK Biobank 

(UKB) 
38

. Our findings expand the understanding of how human evolutionary history 

influenced the genetic liability to complex traits, also providing evidence of the contribution 

of Denisovan introgression to physiological and pathological conditions in EAS populations. 

Results 

Partitioned Heritability Analysis 

For the partitioned heritability analysis based on baseline and evolutionary annotations of the 

human genome, we identified a total of 37 and 39 traits with adequate SNP-h
2
 estimates (z-

score ≥ 7) among those available in the BBJ (EAS participants) and the ones matched from 

the UKB (EUR participants), respectively. As expected, we observed a strong correlation 

between effective sample size and heritability z-score in both EAS and EUR (ρ = 0.75, p = 

1.86 × 10
-13

 and ρ = 0.82, p = 2.20 × 10
-16

, respectively) (Supplemental Table 3). We 

identified several differences between EAS and EUR enrichments of genome structure and 

function annotations (Supplemental Table 4). The enrichment of three traits (i.e., blood sugar, 

mean corpuscular volume, non-albumin protein) was different for H3k27 active enhancer 

acetylation (H3K27ac) in EAS and EUR (most significant difference: non-albumin protein 

was more enriched for this functional annotation in EAS compared to EUR (EAS: 2.88-fold 

enrichment, p = 1.22 × 10
-18

, EUR: 1.11-fold enrichment, p = 0.080, EAS-EUR difference: p 

= 2.96 × 10
-12

)). Moreover, albumin/globulin ratio was depleted for H3K27ac flanking region 

in EAS (-6.14-fold depletion, p = 0.001), but it was significantly enriched in EUR (2.21-fold 

enrichment, p = 2.26 × 10
-10

; EAS-EUR difference: p = 2.72 × 10
-4

). The super-enhancer 

annotation was enriched in EAS (4.46-fold enrichment, p = 3.01 × 10
-17

), but not in EUR 

(1.14-fold enrichment, p = 0.105) with respect to non-albumin protein (EAS-EUR difference: 

p = 3.43 × 10
-12

). Background selection was more significantly enriched in lymphocyte count 

in EUR compared to EAS (EUR: 1.82-fold enrichment, p = 1.12 × 10
-18

; EAS: 1.30-fold 

enrichment, p = 2.18 × 10
-4

; EAS-EUR difference: p = 4.59 × 10
-4

). The enrichment of three 
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traits (i.e., lymphocyte count, neutrophil count, non-albumin protein) was different for CpG 

content between EAS and EUR. The most significant difference was for non-albumin protein, 

which was more enriched for this functional annotation in EAS compared to EUR (EAS: 

1.51-fold enrichment, p = 1.37 × 10
-11

, EUR: 1.09-fold enrichment, p = 2.36 × 10
-6

, EAS-

EUR difference: 2.89 × 10
-6

). 

 

We also observed several enrichments for evolutionary features in the SNP-h
2
 of traits and 

diseases assessed in EAS and EUR individuals (Table 1, Supplemental Table 5). In line with 

previous studies 
12,39

, the strongest enrichments in both ancestry groups were observed for 

annotations related to genic and LOF regions. In EAS, 89% and 68% of the traits analyzed in 

EAS had significant SNP-h
2
 enrichments for genic and LOF regions (Table 1, FDR q<0.05). 

Platelet count was the most significantly enriched trait in both genic and LOF regions (1.33-

fold enrichment, p = 7.64 × 10
-12

 and 2-fold enrichment, p = 1.98 × 10
-8

, respectively). Due to 

the much larger sample size available, 100% of the traits analyzed showed significant SNP-h
2
 

enrichments for these functional annotations in EUR
10

. Accordingly, we identified several 

significant enrichments related to B-statistic values in EUR (i.e., reduction in allelic diversity 

due to purifying selection) 
1
. Due to the much larger sample GWAS size, all phenotypes in 

EUR showed FDR significant enrichment in at least one of the B-statistic value thresholds.  

Similar to other studies conducted in EUR 
17,40

, we did not identify SNP-h2 enrichment for 

positive selection signatures in our EAS and EUR analyses (Supplemental Table 5). With 

respect to archaic introgression, we identified one FDR-significant SNP-h2 enrichment: 

Denisovan-introgressed loci for coronary artery disease in EAS (1.7-fold enrichment, p = 

0.003). 

 

Phenome-wide association study of Archaic introgressed loci 

Although we observed only one SNP-h2 enrichment for archaic introgression (i.e., 

Denisovan-introgressed loci for coronary artery disease in EAS), single loci inherited from 

Neanderthals and Denisovans can still contribute to the phenotypic variation of human 

populations 
20

. Therefore, we performed a PheWAS of archaic introgressed loci across 

multiple ancestry groups. 

 

In EAS, we identified 45 LD-independent Denisovan-introgressed variants associated with 22 

phenotypes (FDR q<0.05; Figure 1, Supplemental Table 6). These were related to 12 

categories. The four most abundant categories were immunological phenotypes (eight LD-

independent associations; most significant association for rheumatoid arthritis: rs59185462, 

beta = 0.822, p = 1.91 × 10
-105

 and chronic hepatitis B: rs115888238, beta = -0.618, p = 2.87 

× 10
-18

), metabolic phenotypes (eight LD-independent associations; most significant 

association for type 2 diabetes: rs79748283, beta = -0.139, 5.07 × 10
-24

), cardiovascular 

phenotypes (seven LD-independent associations; most significant association for coronary 

artery disease: rs3784317, beta = -0.073, p = 5.97 × 10
-13

 and arrhythmia: rs4788667, beta = 

0.094, p = 8.28 × 10
-12

), and endocrine phenotypes (three LD-independent associations; most 

significant association for Graves’ disease: rs79517313, beta = -0.477, 3.90 x 10
-18

). With 

respect to Neanderthal introgression, we did not observe any FDR significant association in 

EAS (Figure 1, Supplemental Table 7). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456138


6 

 

 

Because some of the Denisovan-introgressed variants also matched to the Neanderthal 

genome, we identified 347 LD-independent Denisovan-introgressed variants associated with 

139 phenotypes in EUR (FDR q<0.05; Figure 2, Supplemental Table 8). These were related 

to all 20 phenotype categories, but the most abundant were hematological phenotypes (82 

LD-independent associations, most significant association for mean corpuscular hemoglobin: 

rs17251430, beta = 0.158, p = 9.97 × 10
-304

) and metabolic traits (39 LD-independent 

association; most significant association for Insulin-like growth factor 1: rs17171240, beta = 

0.211, p = 6.01 × 10
-85

 (Figure 2). In EUR, we identified 132 LD-independent Neanderthal-

introgressed variants associated with 37 phenotypes (FDR q<0.05). These were related to 13 

categories and the most abundant were metabolic phenotypes (82 LD-independent 

association, most significant association for alkaline phosphatase: rs11244089, beta = 0.096, 

p = 3.69 × 10
-116

) and musculoskeletal phenotypes (18 LD-independent association, most 

significant association for contracture of palmar fascia: rs117361340, beta = 0.678, p = 2.58 

× 10
-46

) (Figure 2, Supplemental Table 9).  

 

Due to the limited sample size available, we did not find any FDR significant association for 

Denisovan or Neanderthal introgressed variants in CSA, AFR, MID, and AMR samples 

(Supplemental Tables 10-17). 

 

Over-representation test 
Comparing the distribution of phenotypic classes associated with Denisovan-introgressed loci 

with the 7,221 phenotypes tested, we observed an over-representation for association with traits 

in the hematological category in EUR (2.99-fold enrichment, p = 5.89 × 10-9). Regarding 

phenotype classes associated with Neanderthal-introgressed loci, Metabolic category was 

overrepresented in EUR (1.70-fold enrichment, p = 1.70 × 10-4). No category was found to be 

overrepresented in the EAS analysis, which is likely due to the lower number of associations 

compared to EUR. 

 

Enrichment for biological processes, cellular components, and molecular functions 

Considering the loci identified in our PheWAS, we tested the enrichment for biological 

processes, cellular components, and molecular functions. With respect to the Denisovan-or-

Neanderthal introgressed loci identified in the EUR PheWAS, we identified 28 gene 

ontologies (FDR < 0.05) mostly related to cellular differentiation and epithelium 

development (Supplemental Table 18). Considering the Neanderthal loci identified in the 

PheWAS, we identified 30 gene-set enrichments (FDR < 5%) related to genomic regulation 

(Supplemental Table 19). Among them, we observed genes targeted by several microRNAs 

(miRNA, e.g. Hsa-miR-374b, FDR q = 9.27 × 10-5) and by different transcription factors 

(e.g., WT1 in human podocyte, FDR q = 9.27 × 10
-9

). Due to the limited number of loci 

identified in EAS PheWAS, no enrichment survived multiple testing correction in this 

ancestry group. 
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Discussion 

Modern populations present signatures of introgression from two archaic human species in 

their genomes 
28

. Our understanding of the phenotypic consequences of the alleles inherited 

from the admixture of anatomically modern humans with Denisovan and Neanderthal is still 

very limited. Previous studies showed that Neanderthal-introgressed loci are associated with 

immunological, neurological, psychiatric, metabolic, cardiovascular, and dermatological 

outcomes in EUR populations 
12,20,21,23

. In our study, we expanded this previous knowledge 

by testing for enrichment and depletion of SNP-h
2
 for loci related to Denisovan- and 

Neanderthal-introgression and several other evolutionary features across multiple traits in 

EAS and EUR populations. Additionally, we provide the first evidence of the consequences 

of Denisovan introgression across the human phenotypic spectrum in EAS and EUR. Among 

the results obtained from the present study, our findings highlight the specific contribution of 

Neanderthal and Denisovan introgression in the genetic liability to physiological and 

pathological conditions of EAS populations. 

 

We found several associations for Denisovan-introgressed loci in EAS and EUR and 

Neanderthal-introgressed loci in EUR. Modern-day EUR populations do not carry or carry a 

low amount of Denisovan DNA 
36,37

, so we attribute the associations we found between EUR 

phenotypes and Denisovan-introgressed variants to the variants that match both Denisovan 

and Neanderthal genomes as they shared a common ancestor 600,000 years ago 
41

.  

In our evolution-focused SNP-h
2
 enrichment analysis, we detected an overabundance of genic 

and LoF intolerant loci in both EAS and EUR, suggesting that functionally important regions 

of the genome contribute to SNP-h
2
 to a different extent compared to the other annotations 

tested 
12,39,4243

. Most of the traits tested were also enriched in CpG content, which is known to 

be positively correlated with genic content 
11

. Genic and LoF regions are strongly under 

negative selection 
10

. While most EUR phenotypes (76%) were highly enriched in B-statistic 

values, we only found one FDR-significant association in EAS (serum creatinine). A similar 

disparity between EUR and EAS findings was also present for the B-statistic continuous 

annotation. This is likely due to the much larger sample size available in EUR and may not 

reflect a general lack of evidence for background selection in EAS populations (Supplemental 

Table 3). We also observed that some functional enrichments were significantly more 

enriched in EAS than in EUR. For example, the super-enhancer annotation was enriched in 

EAS, but not in EUR. Genomic regions including enhancers have been shown to present an 

accelerated evolutionary rate, which is a signature of positive selection 
13

. However, similar 

to previous studies 
17,40

, none of the positive-selection annotations tested was significant in 

the two populations tested.  

 

Leveraging genome-wide information in EAS, we observed that Denisovan-introgressed loci 

are more associated with the variation of a cardiovascular trait (coronary artery disease) than 

expected by chance. Two related cardiovascular phenotypes, myocardial infarction, and 

coronary atherosclerosis were previously associated with Neanderthal-introgressed loci in 

EUR 
20

. In our study, we have genome-wide and locus-level evidence that Denisovan 

introgression is linked to coronary artery disease: Denisovan-inherited variants explained a 
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significantly higher proportion of coronary artery disease SNP-h
2
 and ADAMTS7 rs3784317 

and CDKN2B-AS1 rs77953206 showed phenome-wide significant association with this trait. 

Furthermore, ZFHX3 rs4788667 and rs78673846 showed phenome-wide significant 

association with arrhythmia. ZFHX3 was identified in a previous atrial fibrillation GWAS 
44

. 

Our findings highlight that some of the pathogenic mechanisms involved in heart diseases in 

Denisovans could be shared with EAS populations. These EAS findings appear to be ancestry 

specific, because none of these associations were identified in the much larger EUR sample. 

 

In our study, we found locus level evidence that Denisovan introgression is linked to type 2 

diabetes in EAS: KCNQ1 rs79748283, AC104063.1 rs117233795, LINC01153 rs11199817, 

GLP1R rs2268636, C10orf67 rs79365475, and PPIEL rs61779359 showed phenome-wide 

significance with this trait. Among the loci identified in our PheWAS, prior research supports 

their association with type 2 diabetes, including a previous multi-ancestry association 

between T2D and KCNQ1 
45,46

, a genome-wide significant association between T2D and 

LINC01153 
47

, and the use of glucagon receptor agonists to treat certain types of T2D 
48,49

. 

Moreover, several missense mutations in its receptor were associated with insulin secretion 

and sensitivity impairment in Japanese patients 
50

. Our results suggest that both Denisovan 

and Neanderthal introgression may play a role in the development of type 2 diabetes in 

modern human populations. Most notably, we observed several other associations with 

Denisovan and Neanderthal alleles to support this notion. For instance, our association with 

insulin-like growth factor-1 (IGF-1) reinforces its utility as a biomarker for metabolic 

syndrome and T2D.
51

. Thus, this further supports our hypothesis that Denisovan and 

Neanderthal introgression may play a role in type 2 diabetes of modern populations. We also 

found several lipid-related metabolic factors associated with Denisovan- and Neanderthal-

introgressed variants in both EUR and EAS. A previous study showed that variants shared 

between Neanderthals and modern humans are enriched in genes involved in lipid 

metabolism in EUR populations
52

. Our study expands this to EAS individuals. Among the 

Denisovan-introgressed loci identified, previous research supports the association of PPIEL 

with HDL cholesterol 
53

, and ZPR1 with increased serum triglycerides and dyslipidemia 
54,55

. 

 

Several of these metabolic phenotypes were also found to be associated with Neanderthal-

introgressed variants (alkaline phosphatase: SURF6 rs11244089, apolipoprotein A: 

ALDH1A2 rs12900622, creatinine: SLC7A9 rs57910615, UBE2H rs79808490, TFDP2 

rs73233892, cystatin C: GRB10 rs73118816, glucose: NOSTRIN rs2433680, gamma 

glutamyltransferase: SIGLEC1 rs12624921). Among them, ALDH1A1 regulates adipogenesis, 

and can suppress ALDH1A2 
56

. GRB10 expression was elevated in kidneys of diabetic mice 
57

, and SLC7A9 was associated with chronic kidney disease 
58

. The convergent associations of 

Neanderthal and Denisovan-introgressed variants suggest that part of the genetic regulation 

of glucose and lipid metabolism and kidney function is inherited from archaic humans.  

 

Actinic keratosis – a pre-cancerous skin condition – was previously associated with 

Neanderthal introgressed loci in EUR populations 
20

. Although actinic keratosis can be often 

observed in patients with atopic dermatitis, patients with atopic dermatitis do not appear to be 

at greater risk for developing the disease 
59

. Therefore, the locus-level evidence we found of 
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GLB1 rs76257456 associated with atopic dermatitis in our PheWAS can be considered an 

independent association. The association of this gene with atopic dermatitis was previously 

identified also in an independent Japanese cohort 
60

. While actinic keratosis is a 

dermatological condition caused by sun exposure, atopic dermatitis can be improved with sun 

exposure 
61

. Neanderthal introgression has been previously hypothesized to have a role in 

skin pigmentation and adaptation to ultraviolet radiation levels outside the African continent 
23,24

. Our findings highlight that Denisovan introgression may have played a similar role in 

EAS populations. Regarding Neanderthal-introgressed variants in EUR, red hair color and 

balding pattern were significantly associated with several variants (red hair color: ANKRD11 

rs60733936, FANCA rs11646374, SLC24A4 rs77004437, GALNS rs75987792, TPCN2 

rs75840048, hair balding pattern: LINC02210-CRHR1 rs62057113). Some of the variants 

were previously associated with hair color 
62–64

. A previous study concluded that Neanderthal 

variants contribute to light and dark tones of hair color, implying that Neanderthals were also 

variable in these traits 
21

. Although this previous investigation concluded that red hair is a 

uniquely human feature 
21

, we found that variants inherited from Neanderthals could also be 

associated with red hair. Therefore, more studies are needed to understand this possible 

association.  

 

Neanderthal and Denisovan admixture have been previously associated with the diversity of 

innate immunity genes in modern humans 
20,65,66

. Neanderthal introgression was previously 

linked to immunological phenotypes, rheumatoid arthritis 
27

 and chronic hepatitis B 
67

, and 

Graves’ disease 
27

 in EUR and EAS. Denisovan introgression was linked to several immune 

processes, e.g., antiviral immune response, HIV-1 DNA integration, and cytokine signaling 
66

.  In our study, we identified multiple Denisovan-introgressed loci associated with 

autoimmune disorders (rheumatoid arthritis and Graves’ disease) and viral diseases (chronic 

hepatitis B) in EAS. One of the loci identified (i.e., HLA-B) was identified as a specific risk 

factor for Graves’ disease in Asian populations 
68

. Our novel findings expand further our 

understanding of how human evolutionary history shaped the genetic regulation of immune 

function in worldwide populations. 

 

In our study, chronic obstructive pulmonary disease (COPD) was associated with the HYKK 

rs79093205 Denisovan-introgressed variant in EAS. This phenotype has not been linked to 

Neanderthal introgression in EUR. However, it was found that a haplotype region on 

chromosome 3 inherited from Neanderthals was is a risk locus for respiratory failure upon 

COVID-19 infection 
69

. Several HYKK variants were previously associated with COPD in a 

GWAS in EUR and AFR 
70

. In the Denisovan PheWAS in EUR, we found that the MEGF6 

rs2096100 variant was related to another respiratory trait, the FEV1/FVC ratio. Because 

HYKK and MEGF6 primary function is related to tissue development 
71,72

, we hypothesize 

that archaic-introgressed loci may contribute to pulmonary function independently from 

immune-related pathways. 

 

Among novel phenotypes related to introgressed variants, pancreatic, and breast cancers were 

associated with two Denisovan-introgressed variants (rs12615584 and rs12143332, 

respectively). Previously, Neanderthal introgressed haplotypes were associated with prostate 
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cancer 
27

.  These convergent findings support that some molecular mechanisms linked to 

cancer susceptibility are shared between archaic humans and modern populations. 

 

Considering the introgressed loci identified in our PheWAS analyses, we identified an 

overrepresentation of certain molecular mechanisms. These included processes related to 

cellular differentiation and development. In particular, many of them were related to kidney 

function. Dietary changes contributed to the human evolution of kidney 
73

. Since archaic 

introgression contributed to the adaptation of modern humans to different environments 
74

, 

we hypothesize that some of the adaptation to dietary changes may be due to introgressed loci 

regulating kidney function. We also observed that several Neanderthal-introgressed loci 

identified were related to transcriptomic regulation via transcription factors (i.e., proteins that 

control transcription from DNA to mRNA) and miRNA (i.e., non-coding RNA responsible 

for RNA silencing and post-transcriptional gene expression regulation). Previous studies 

showed that miRNA seed regions are under significant background selection 
75

 and that 

miRNA seed region can be affected by variants introgressed from Neanderthals 
76

. Moreover, 

Neanderthal-introgressed sequences in modern humans have a measurable impact on gene 

expression variation 
77

, and Neanderthals differed from humans rather in their regulatory 

sequences instead of protein-coding sequences 
78

. 

 

In conclusion, our study expands the understanding of how evolutionary pressures shaped the 

genetic architecture of human traits and diseases across worldwide populations. The present 

findings highlight how certain evolutionary processes are shared among human groups while 

others may have had a specific contribution to certain populations. In particular, we present 

evidence that Neanderthal and Denisovan introgression contributed specifically to shape the 

genetics of complex traits in East Asia. This strongly supports the need to expand the 

representation of human diversity in genetic research to ensure a comprehensive 

understanding of the complex dynamics by which the variation in the human genome is 

linked to the variation in the human phenome. 

Methods 

Datasets 

GWAS statistics were accessed from BBJ 
34,35

 and the UKB 
79

. BBJ is a registry of over 

200,000 Japanese patients including information about 47 diseases and 59 quantitative traits 

(Supplemental Table 1) 
34,35

. The UKB dataset provides information regarding more than 

7,000 phenotypes assessed in up to 500,000 participants from six ancestry groups 
38

. We 

obtained genome-wide association statistics from a pan-ancestry genetic analysis of the UKB 

(Pan-UKB). A detailed description of this analysis is available at 

https://pan.ukbb.broadinstitute.org. Briefly, multi-ancestry genome-wide association analyses 

of 7,221 phenotypes were performed using a generalized mixed model association testing 

framework. Ancestry-specific GWAS statistics are available for six genetically-determined 

ancestry groups: European (N = 420,531), Central/South Asian (CSA, N = 8,876), African 

(AFR, N= 6,636), East Asian (N = 2,709), Middle Eastern (MID, N = 1,599), Admixed 

American (AMR, N = 980). 
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Linkage Disequilibrium Score Regression 

The Linkage Disequilibrium Score Regression method (LDSC) was used to quantify the 

enrichment of evolutionary annotations in the SNP-h
2
 of each trait 

5
. For each binary trait, the 

effective sample size was calculated as recommended previously 
80

. The major 

histocompatibility complex region was excluded from the analysis due to its complex LD 

structure. SNP-h
2 

was calculated for each BBJ phenotype and, as recommended 
81

,  those 

with an estimated SNP-h
2
 z score ≥ 7 were selected for the partitioned SNP-h

2
 analysis. To 

compare BBJ EAS participants with other ancestry groups, we selected 79 UKB traits that 

were assessed similarly to those available in BBJ. Due to the limited sample size in UKB for 

other ancestry groups, we limited our partitioned SNP-h
2
 analysis to the data derived from 

UKB EUR participants. Accordingly, we used LD scores generated from the 1000 Genome 

Project Phase 3 EAS and EUR reference panels to analyzes GWAS data generated from BBJ 

and UKB, respectively 
82

. 

 

SNP-h
2
 partitioning

81
 was performed considering 95 baseline genomic annotations 

characterizing important molecular properties such as allele frequency distributions, 

conserved regions of the genome, and regulatory elements 
9
, 11 annotations (five binary 

annotations and corresponding flanking annotations and one continuous count annotation) 
83

, 

four human promoter annotations (promoter, promoter from the Exome Aggregation 

Consortium 
84

, genes, and two corresponding flanking annotations) 
85

, three human enhancer 

annotations (enhancer and corresponding flanking annotation + enhancer-enhancer 

conservation count) 
85

, two human promoter sequence age annotations (including one 

flanking annotation) 
86

, and two human enhancer sequence age annotation (including one 

flanking annotation) 
86

. We created additional genome-wide annotations for Denisovan 
87,88

 

and Neanderthal 
28,87–89

-introgressed, positively selected 
14,17,90

, negatively selected 
1,91

, genic 

and LoF intolerant 
39

 positions using the publicly available datasets from the original 

publications. Denisovan or Neanderthal (hereinafter “Denisovan”) (N = 29,195) and 

Neanderthal-introgressed (N = 49,793) positions were derived from the Sprime dataset 
88

, 

which identified these archaic-introgressed positions from the 1000 Genome Project with 

respect to the Japanese population sample (i.e., Japanese in Tokyo, Japan). We selected this 

population to match the genetic diversity of the BBJ participants. We defined Denisovan 

SNPs as those matching the Denisovan genome (in some cases they also matched the 

Neanderthal genome, as approximately 20% of the Neanderthal-introgressed variants are also 

carried by Denisovans 
87

). We used this approach due to the low number of Denisovan-only 

variants in the Japanese population 
87

. Neanderthal SNPs we selected were matched to the 

Neanderthal genome. The contribution of Neanderthal ancestry was also assessed by another 

method that compares human (we used data specific for the Japanese population) and 

Neanderthal genomes, inferring the probability of admixture with Neanderthals for each 

human haplotype (Neanderthal local ancestry) 
28,89

. Positive selection was tested based on 

integrated haplotype score (iHS) for Asian populations, which reports detection of positive 

selection during the last ~30,000 years based on the detection of abnormally long haplotypes 
16

. Cross-population extended haplotype homozygosity (XP-EHH) comparing East Asian and 

European ancestries based on 1000 Genomes was also used to detect differential selective 
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pressure since the two populations diverged 
17

. The B-statistic for East Asians was used to 

assess background selection. B measures phylogenetic information from other primates to 

determine the reduction in allelic diversity in humans due to purifying selection 
1
. The ExAC 

database was used to annotate genic and LoF-intolerant regions of the genome. Each gene 

was assigned a probability of LoF intolerance (pLI) score 
39

. Continuous evolutionary 

measurements were analyzed as top 2%, top 1%, and top 0.5% of scores genome-wide as 

binary annotations as recommended before due to the difficulty of setting specific thresholds 

to define regions under negative- and positive selection 
12,42,91

. The evolutionary annotations 

used in EUR are reported in Wendt et al 
12

. Apart from those reported in this study, we 

created additional annotations for Denisovan- and Neanderthal-introgressed positions as 

explained before. We applied False Discovery Rate (FDR) multiple-testing correction (q ≤ 

0.05) 
92

 accounting for the number of phenotypes tested. Partitioned SNP-h
2
 in LDSC 

analyzes a large linear model including all annotations simultaneously such that enrichment 

values for a single annotation reflect independence from all other annotations in the model. 

 

Phenome-wide association study 

To increase the resolution of our investigation (from heritability enrichment to single-variant 

contribution), we conducted a PheWAS of Denisovan- and Neanderthal introgressed loci in 

EAS, EUR, and other ancestry groups available in the UKB (Admixed American, AMR; 

African, AFR; Middle Eastern, MID; Central-South Asian, CSA). PheWAS tests for 

association between a single variant and many phenotypes. To characterize further the 

contribution of SNPs with evidence of Denisovan and/or Neanderthal introgression, we 

investigated their association with >7,000 phenotypes in UKB and BBJ. The same Denisovan 

and Neanderthal-introgressed variants were used in the PheWAS than in the LDSC analysis 

(N = 29,295 and N = 49,793, respectively).  

 

Our phenome-wide analysis included traits related to body structures, cardiovascular, 

cognitive, dermatological, ear-nose-throat, endocrine, environmental, gastrointestinal, 

hematological, immunological, medication, metabolic, musculoskeletal, neoplasms, 

neurological, nutritional, ophthalmological, psychiatric, respiratory, and urogenital domains 

(Supplemental Table 2) 
93

. We applied False Discovery Rate (FDR; q < 0.05) 
92

 accounting 

for the number of phenotypes,  variants, and ancestries tested to identify associations 

surviving multiple testing correction. Variants with minor allele frequency (MAF) ≤ 0.05 and 

the variants with the “low-confidence” flag (i.e., variants with alternate allele count in cases ≤ 

3, alternate allele count in controls ≤ 3, or minor allele count (cases and controls combined) ≤ 

20) in the Pan UKB analysis were excluded from the analysis. We performed LD clumping 

using PLINK 1.9 
94

 with a r
2
=0.1 within 500 kb windows. The significant variants were 

annotated to genes using the SNP Nexus variant annotation tool 
95

.  

 

Gene Ontology Enrichment 

The significant genes identified in each PheWAS were analyzed for gene ontology 

enrichment using the ShinyGO tool set 
96

 and functional and molecular annotations (e.g., 

molecular pathways and gene ontology) from Ensembl 
97

. We considered FDR q < 0.05 to 

identify enrichments surviving multiple testing correction. 
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Over-representation test 

To test for over-representation of certain phenotypic classes among the associations observed 

in the PheWAS, we calculated the significance of the phenotypic enrichment by a 

hypergeometric distribution test (https://systems.crump.ucla.edu/hypergeometric/) where k is 

the number of phenotypes with at least one LD-independent association within the phenotype 

category of interest, s is the number of phenotypes with at least one LD-independent 

association, M is the number of phenotypes within the phenotype category of interest, and N 

is the number of phenotypes tested. 
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Figure Legends 

 

Figure 1. PheWAS Miami plot comparing Denisovan and Neanderthal introgressed variant 

associations with phenotypes in EAS. The -log10(p-values) for the Denisovan PheWAS are 

above the phenotype descriptions and those for the Neanderthal GWAS are below. The 

dashed line shows FDR-significant threshold (q < 0.05).  

 

Figure 2. PheWAS Miami plot comparing Denisovan-and Neanderthal introgressed variant 

associations with phenotypes in EUR. The -log10(p-values) for the Denisovan PheWAS are 
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above the phenotype descriptions and those for the Neanderthal GWAS are below. The 

dashed line shows FDR-significant threshold (q < 0.05).  
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Table 1. Enrichment of natural selection and functional annotation measures. P values of 

significant enrichments of genic, loss-of-function (LoF) intolerant and Denisovan-introgressed 

loci, and three genomic annotations of background selection. 

 

Trait Annotation 
East Asian European EAS-EUR Difference 

Fold-

enrichment SE P-value 

Fold-

enrichment SE P-value Z score P-value 

Alanine 

aminotransferase 

B top1 0.855 0.349 0.983 2.728 0.614 0.005 -2.652 0.008 

B top2 -13.622 9.421 0.958 2.159 0.366 0.001 -1.674 0.094 

Genic 1.237 0.081 0.002 1.315 0.034 2.48E-18 -0.885 0.376 

LoF intolerant 1.272 0.232 0.227 1.615 0.121 2.18E-07 -1.311 0.190 

Albumin 

B top05 -1.971 2.266 0.718 3.950 1.484 0.049 -2.186 0.029 

B top1 1.135 0.675 0.983 3.158 0.947 0.024 -1.740 0.082 

B top2 8.223 7.181 0.958 3.734 0.670 6.11E-05 0.622 0.534 

Genic 1.380 0.092 1.82E-05 1.297 0.027 2.97E-19 0.866 0.386 

LoF intolerant 1.532 0.284 0.053 1.648 0.110 1.59E-09 -0.381 0.704 

Albumin/globulin 

ratio 

B top05 2.151 2.822 0.718 4.159 1.164 0.006 -0.658 0.511 

B top1 1.597 0.453 0.849 2.719 0.597 0.004 -1.498 0.134 

B top2 1.794 1.880 0.953 2.943 0.632 0.002 -0.579 0.563 

Genic 1.437 0.079 1.35E-09 1.310 0.030 2.07E-16 1.502 0.133 

LoF intolerant 2.056 0.283 5.44E-05 1.661 0.117 3.37E-09 1.294 0.196 

Aspartate 

aminotransferase 

B top05 -1.507 1.256 0.718 3.323 1.120 0.033 -2.870 0.004 

B top1 2.930 2.220 0.983 2.985 0.647 0.002 -0.024 0.981 

B top2 -12.232 6.942 0.958 2.742 0.496 0.000285 -2.152 0.031 

Genic 1.287 0.067 2.26E-06 1.314 0.030 2.39E-22 -0.371 0.711 

LoF intolerant 1.503 0.213 0.010 1.596 0.120 7.26E-08 -0.381 0.703 

Asthma 

B top05 -2.439 3.102 0.950 2.329 0.629 0.034 -1.506 0.132 

B top1 3.842 2.358 0.983 2.486 0.524 0.004 0.561 0.575 

B top2 -8.241 1.204 0.961 2.096 0.459 0.016 -8.020 1.06E-15 

Genic 1.008 0.085 0.928 1.123 0.040 0.001 -1.235 0.217 

LoF intolerant 0.869 0.236 0.575 1.223 0.095 0.016 -1.394 0.163 

Blood sugar 

B top2 -1.152 1.446 0.953 2.446 0.533 0.003 -2.334 0.020 

Genic 1.368 0.089 2.51E-05 1.293 0.065 2.09E-09 0.682 0.495 

LoF intolerant 1.324 0.274 0.217 1.635 0.192 2.06E-04 -0.930 0.352 

Blood urea nitrogen 
Genic 1.237 0.073 3.28E-04 NA NA NA NA NA 

LoF intolerant 1.471 0.238 0.043 NA NA NA NA NA 

Body mass index 
Genic 1.167 0.065 0.007 1.125 0.017 7.18E-12 0.628 0.530 

LoF intolerant 2.086 0.236 2.05E-07 1.682 0.069 1.46E-20 1.643 0.100 

Chloride 
Genic 1.361 0.105 3.80E-05 NA NA NA NA NA 

LoF intolerant 1.722 0.338 0.019 NA NA NA NA NA 

Coronary artery 

disease 

B top05 1.338 1.226 0.718 3.230 0.968 0.020 -1.211 0.226 

B top2 1.051 1.058 0.953 2.400 0.473 0.002 -1.164 0.244 

Denisovan 1.691 0.877 0.003 2.149 1.522 0.449 -0.261 0.794 
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Genic 1.232 0.047 5.47E-08 1.250 0.040 1.48E-09 -0.282 0.778 

LoF intolerant 1.575 0.181 3.36E-04 1.681 0.141 3.07E-07 -0.460 0.645 

Diastolic blood 

pressure 

B top05 2.871 2.759 0.718 2.907 0.913 0.039 -0.012 0.990 

B top1 1.124 0.341 0.983 2.532 0.479 0.001 -2.394 0.017 

B top2 3.116 1.191 0.958 2.323 0.298 9.33E-06 0.646 0.519 

Genic 1.271 0.084 3.07E-04 1.230 0.024 5.69E-18 0.472 0.637 

LoF intolerant 2.050 0.288 5E-05 1.751 0.093 4.46E-15 0.988 0.323 

Estimated 

glomerular filtration 

rate 

B top05 1.234 1.484 0.718 4.724 1.209 0.002 -1.823 0.068 

B top1 2.184 0.471 0.983 3.960 0.848 4.97E-04 -1.830 0.067 

B top2 9.394 6.212 0.006 2.955 0.444 8.23E-06 1.034 0.301 

Genic 1.277 0.050 1.33E-08 1.306 0.031 2.23E-21 -0.483 0.629 

LoF intolerant 1.931 0.203 3.96E-07 1.853 0.135 3.09E-09 0.320 0.749 

Hematocrit 
Genic 1.342 0.072 1.45E-07 NA NA NA NA NA 

LoF intolerant 2.193 0.280 1.99E-06 NA NA NA NA NA 

Hemoglobin 
Genic 1.397 0.092 2.85E-07 NA NA NA NA NA 

LoF intolerant 2.336 0.342 4.79E-06 NA NA NA NA NA 

Lymphocyte count 

B top1 1.392 0.437 0.960 3.024 0.742 0.006 -1.896 0.058 

B top2 2.193 1.216 0.293 2.722 0.484 3.32E-04 -0.404 0.686 

Genic 1.178 0.079 0.015 1.316 0.028 2.70E-20 -1.636 0.102 

LoF intolerant 1.523 0.246 0.024 1.671 0.110 5.54E-09 -0.549 0.583 

Mean arterial 

pressure 

B top05 1.536 2.312 0.950 2.550 0.766 0.045 -0.416 0.677 

B top1 1.085 0.372 0.983 2.220 0.436 0.005 -1.980 0.048 

B top2 1.833 1.321 0.958 2.083 0.280 7.84E-05 -0.185 0.853 

Genic 1.314 0.076 6.07E-06 1.219 0.024 2.03E-16 1.189 0.234 

LoF intolerant 2.092 0.260 2.57E-06 1.784 0.096 7.51E-16 1.112 0.266 

Mean corpuscular 

hemoglobin 

B top05 3.948 6.980 0.718 4.182 1.496 0.030 -0.033 0.974 

B top1 2.015 0.836 0.849 3.802 1.055 0.007 -1.327 0.184 

B top2 2.520 2.993 0.953 4.056 0.734 1.64E-05 -0.498 0.618 

Genic 1.303 0.075 8.83E-06 1.348 0.046 1.19E-12 -0.515 0.607 

LoF intolerant 1.723 0.278 0.006 1.705 0.167 6.71E-06 0.056 0.955 

Mean corpuscular 

volume 

B top1 1.893 0.630 0.849 3.790 1.064 0.009 -1.534 0.125 

B top2 3.423 3.146 0.953 3.715 0.666 4.42E-05 -0.091 0.928 

Genic 1.311 0.061 2.22E-07 3.715 0.666 4.42E-05 -3.591 3.29E-04 

LoF intolerant 1.657 0.243 0.006 1.699 0.154 4.14E-06 -0.143 0.886 

Monocyte count 

B top05 1.967 2.920 0.718 5.248 2.118 0.045 -0.910 0.363 

B top1 2.456 1.347 0.849 3.793 1.004 0.005 -0.796 0.426 

B top2 1.348 0.975 0.013 2.773 0.628 0.005 -1.228 0.219 

Genic 1.255 0.086 0.002 1.318 0.040 7.53E-13 -0.660 0.509 

LoF intolerant 1.548 0.240 0.018 1.557 0.150 8.76E-05 -0.030 0.976 

Neutrophil count 

B top05 1.800 1.885 0.950 4.148 1.106 0.004 -1.074 0.283 

B top1 1.096 0.381 0.983 3.184 0.750 0.003 -2.483 0.013 

B top2 4.964 0.986 0.958 2.751 0.518 0.001 1.985 0.047 
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Genic 1.235 0.080 0.002 1.256 0.025 3.62E-21 -0.248 0.804 

LoF intolerant 1.471 0.210 0.021 1.766 0.107 4.15E-11 -1.255 0.210 

Non-albumin 

protein 

B top05 4.440 5.075 0.718 4.291 1.014 0.001 0.029 0.977 

B top1 1.817 0.620 0.849 2.675 0.549 0.002 -1.036 0.300 

B top2 2.184 2.456 0.953 2.847 0.540 0.001 -0.264 0.792 

Genic 1.468 0.094 2.72E-09 1.315 0.033 6.72E-16 1.532 0.125 

LoF intolerant 2.373 0.301 9.41E-07 1.714 0.114 1.57E-10 2.043 0.041 

Platelet count 

B top1 3.575 0.375 0.983 4.781 1.276 0.004 -0.907 0.364 

B top2 2.644 0.641 0.958 3.744 0.586 6.10E-06 -1.267 0.205 

Genic 1.330 0.044 7.64E-12 1.366 0.026 7.71E-24 -0.710 0.478 

LoF intolerant 1.998 0.166 1.98E-08 1.984 0.142 5.76E-11 0.064 0.949 

Potassium 

B top1 1.112 0.363 0.983 2.387 0.390 3.54E-04 -2.393 0.017 

B top2 2.507 1.948 0.958 2.326 0.292 2.99E-06 0.092 0.927 

Genic 1.306 0.078 1.36E-05 1.103 0.032 0.002 2.425 0.015 

LoF intolerant 1.944 0.284 5.48E-05 1.641 0.115 7.51E-08 0.992 0.321 

Pulse pressure 
Genic 1.393 0.094 3.91E-07 NA NA NA NA NA 

LoF intolerant 2.304 0.306 2.14E-06 NA NA NA NA NA 

Red blood cell count 

B top05 1.639 2.885 0.718 4.790 1.325 0.004 -0.993 0.321 

B top1 2.173 0.691 0.849 3.476 0.724 0.001 -1.303 0.193 

B top2 5.614 1.771 0.958 3.033 0.487 1.83E-05 1.405 0.160 

Genic 1.353 0.066 4.87E-08 1.130 0.025 4.54E-07 3.159 0.002 

LoF intolerant 2.077 0.255 1.00E-05 1.561 0.092 1.19E-09 1.901 0.057 

Serum creatinine 

B top05 8.840 5.950 0.021 4.724 1.209 0.002 0.678 0.498 

B top1 3.121 1.461 0.983 3.960 0.848 4.97E-04 -0.497 0.619 

B top2 1.492 1.396 0.718 2.955 0.444 8.23E-06 -0.998 0.318 

Genic 1.289 0.052 7.98E-09 1.306 0.031 2.23E-21 -0.277 0.782 

LoF intolerant 1.865 0.194 9.85E-07 1.853 0.135 3.09E-09 0.050 0.960 

Smoking behaviors: 

Smoking initiation 

Genic 1.041 0.129 0.754 NA NA NA NA NA 

LoF intolerant 1.379 0.324 0.248 NA NA NA NA NA 

Sodium 

B top05 3.381 4.513 0.718 2.171 0.552 0.036 0.266 0.790 

B top1 1.362 0.715 0.983 1.953 0.329 0.003 -0.750 0.453 

B top2 -1.750 1.570 0.958 1.700 0.209 0.001 -2.178 0.029 

Genic 1.426 0.138 1.07E-04 1.130 0.025 4.54E-07 2.111 0.035 

LoF intolerant 2.193 0.485 0.006 1.561 0.092 1.19E-09 1.283 0.200 

Systolic blood 

pressure 

B top05 1.752 2.069 0.718 2.296 0.515 0.013 -0.255 0.799 

B top1 1.014 0.389 0.985 2.035 0.334 0.002 -1.991 0.047 

B top2 3.253 1.345 0.958 2.055 0.244 9.62E-06 0.876 0.381 

Genic 1.341 0.070 8.58E-08 1.234 0.024 3.92E-18 1.439 0.150 

LoF intolerant 2.143 0.241 8.95E-08 1.795 0.087 3.96E-18 1.356 0.175 

Total cholesterol 

B top1 4.831 2.371 0.983 4.722 1.431 0.008 0.039 0.969 

B top2 -7.322 9.190 0.953 2.873 0.781 0.012 -1.105 0.269 

Genic 1.359 0.086 2.71E-05 1.308 0.034 3.49E-13 0.553 0.580 
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LoF intolerant 1.287 0.303 0.308 1.432 0.174 0.011 -0.414 0.679 

Total protein 

B top05 5.388 5.538 0.718 4.096 0.826 2.83E-04 0.231 0.818 

B top1 1.956 0.514 0.849 2.736 0.520 0.001 -1.066 0.286 

B top2 1.610 1.907 0.953 2.825 0.405 5.76E-06 -0.623 0.533 

Genic 1.395 0.093 2.96E-07 1.310 0.027 5.72E-18 0.874 0.382 

LoF intolerant 2.111 0.278 2.98E-05 1.745 0.129 1.75E-10 1.197 0.231 

Type 2 diabetes 

B top05 2.218 1.431 0.718 2.204 0.501 0.016 0.009 0.993 

B top1 1.085 0.292 0.983 2.109 0.392 0.005 -2.092 0.036 

B top2 5.468 3.974 0.293 2.090 0.254 6.08E-06 0.848 0.396 

Genic 1.171 0.034 8.13E-07 1.147 0.032 8.17E-06 0.523 0.601 

LoF intolerant 1.955 0.179 1.56E-07 1.608 0.123 2.03E-06 1.596 0.110 

White blood cell 

count 

B top05 5.024 3.190 0.718 5.029 1.350 0.003 -0.001 0.999 

B top1 1.200 0.354 0.983 3.307 0.666 0.001 -2.793 0.005 

B top2 -5.583 7.351 0.953 2.757 0.479 2.79E-04 -1.132 0.258 

Genic 1.340 0.073 5.24E-07 1.253 0.023 3.31E-23 1.148 0.251 

LoF intolerant 1.728 0.204 1.59E-04 1.730 0.100 8.96E-12 -0.007 0.995 
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