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Abstract: Cardiovascular diseases constitute the most important public health problem in the world.
They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity
is recognized as one of the best ways to prevent these diseases, and it has already been applied
in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to
the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among
others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox
equilibrium in the human organism in the course of cardiovascular diseases to systemize updated
knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also
an important issue since antioxidant supplements still have great potential regarding their use as
drugs in these diseases.

Keywords: redox balance; cardiovascular diseases; physical activity; cardiovascular risk factors;
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1. Introduction

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels.
They include coronary heart disease (CHD), cerebrovascular disease, peripheral arterial
disease (PAD), rheumatic heart disease (RHD), congenital heart defects (CHDs), deep vein
thrombosis (DVT) and pulmonary embolism (PE). Although CVDs are well recognized
and, for this reason, effectively treated, they cause the highest number of deaths annually.
According to the World Health Organization (WHO), 32% of all global deaths in 2019
were caused by CVDs, mainly heart attack and stroke. Most CVDs can be prevented by
addressing behavioral risk factors such as tobacco use, unhealthy diet, physical inactivity
and harmful use of alcohol [1]. Physical inactivity, which is a sedentary lifestyle, is a
particularly important health problem of modern civilization, as it is the main cause of
excess weight and obesity, which are major contributors of morbidity and mortality [2].

One of the most crucial pathogenic factors in the case of CVDs is oxidative stress,
which is the disturbed oxidant–antioxidant balance towards an excess of oxidants—reactive
oxygen species (ROS) and reactive nitrogen species (RNS). Crucial here are primary en-
dogenous ROS and RNS, superoxide anion radical (•O2

−) and nitric oxide (•NO) since they
are the source of subsequent ROS and RNS. The first one is the product of the reduction
of the oxygen molecule by one electron (instead of four) in the mitochondrial transport
chain and upregulated activities of oxidoreductases (xanthine oxidoreductase, XOR and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NOX). The second one,
in turn, is most often produced by endothelial nitric oxide synthase (eNOS). Oxidative
stress causes damage (oxidative modification, nitration) to proteins, amino acids, lipids
and nucleic acids, which may contribute to inflammation [3] (Figure 1).
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thase (eNOS). Oxidative stress causes damage (oxidative modification, nitration) to pro-
teins, amino acids, lipids and nucleic acids, which may contribute to inflammation [3] 
(Figure 1). 

 
Figure 1. The sources and effects of oxidative stress that promote cardiovascular diseases. 
•NO—nitric oxide; •OH—hydroxyl radical; •O2–—superoxide anion radical; 
ONOO–—peroxynitrite; H2O2—hydrogen peroxide; HOCl—hypochlorous acid; SO2—sulfur diox-
ide; CO—carbon monoxide; O3—ozone; NO2/3—nitrogen di/trioxide; 3-NT—3-nitrotyrosine; 
8-oxodG—8-oxo-7,8-dihydro-2′-deoxyguanosine; AOPP—advanced oxidation protein products; 
MDA—malondialdehyde; 8-iso-PGF2α—8-iso-prostaglandin F2α; HNE—4-hydroxy-2-nonenal. 

A great tool for the prevention and treatment of CVDs may be physical activity (PA) 
on account of the fact that it improves the antioxidant response against ROS and RNS. 
Leaving aside many aspects of exercise-induced impacts on the organism, the impact of 
PA on redox balance seems especially important in the context of CVDs [4]. During 
physical exercise, oxygen uptake may be even 20 times greater versus the uptake at rest, 
whereas the oxygen consumption in muscles may increase even 200 times. Thus, the 
production of ROS increases significantly (the abovementioned incomplete reduction of 
O2 in mitochondria). This is also strictly associated with the intensified generation of RNS 
and is strongly and positively correlated with exercise intensity [5]. The postexercise 
oxidative stress may induce radical-mediated microinjuries of muscle fibers and connec-
tive tissues, which results in muscle pain, the prolongation of recovery and, conse-
quently, a decrease in sports performance. Thus, it seems reasonable to reduce the exer-
cise-induced ROS and RNS formation in order to improve performance, for example, via 
antioxidant supplementation [6]. However, there are also reports that indicate a com-
pletely opposite effect of such a procedure since it is the fact that reactive oxygen and 
nitrogen species are necessary for proper muscle contraction both at rest and during PA. 

Figure 1. The sources and effects of oxidative stress that promote cardiovascular diseases. •NO—nitric ox-
ide; •OH—hydroxyl radical; •O2

−—superoxide anion radical; ONOO−—peroxynitrite; H2O2—hydrogen
peroxide; HOCl—hypochlorous acid; SO2—sulfur dioxide; CO—carbon monoxide; O3—ozone;
NO2/3—nitrogen di/trioxide; 3-NT—3-nitrotyrosine; 8-oxodG—8-oxo-7,8-dihydro-2′-deoxyguanosine;
AOPP—advanced oxidation protein products; MDA—malondialdehyde; 8-iso-PGF2α—8-iso-
prostaglandin F2α; HNE—4-hydroxy-2-nonenal.

A great tool for the prevention and treatment of CVDs may be physical activity (PA)
on account of the fact that it improves the antioxidant response against ROS and RNS.
Leaving aside many aspects of exercise-induced impacts on the organism, the impact
of PA on redox balance seems especially important in the context of CVDs [4]. During
physical exercise, oxygen uptake may be even 20 times greater versus the uptake at rest,
whereas the oxygen consumption in muscles may increase even 200 times. Thus, the
production of ROS increases significantly (the abovementioned incomplete reduction of
O2 in mitochondria). This is also strictly associated with the intensified generation of
RNS and is strongly and positively correlated with exercise intensity [5]. The postexercise
oxidative stress may induce radical-mediated microinjuries of muscle fibers and connective
tissues, which results in muscle pain, the prolongation of recovery and, consequently, a
decrease in sports performance. Thus, it seems reasonable to reduce the exercise-induced
ROS and RNS formation in order to improve performance, for example, via antioxidant
supplementation [6]. However, there are also reports that indicate a completely opposite
effect of such a procedure since it is the fact that reactive oxygen and nitrogen species
are necessary for proper muscle contraction both at rest and during PA. Therefore, the
literature recommends an appropriate supply of antioxidants in the form of a balanced
diet as the best method of maintaining the oxidant–antioxidant equilibrium in exercising
people [7]. Besides, a key issue is the adaptation for the increased concentration of reactive
oxygen and nitrogen species after exercise because the organism can adapt to them by
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enhancing its antioxidant response and thus can adapt to exercise-induced disorders.
In professional sportsmen, increased activities of antioxidant enzymes are commonly
observed [5]. Similarly, in diseases of the cardiovascular system, oxidative stress is a key
issue, and antioxidant supplementation has found no clear benefit in the prevention and
treatment of CVDs [8,9]. Therefore, the current, popular direction for scientific research
is searching for non-pharmacological agents. This primarily applies to physical training,
which is included in the WHO recommendations regarding the prevention of CVDs, and
positive impacts, which may result primarily from the adaptation of the organism to
increased concentrations of reactive oxygen and nitrogen species [10].

The present paper provides an overview of the role of radical-mediated stress in CVDs,
the role of PA in their prevention and treatment and, finally, it discusses the effectiveness of
antioxidant supplementation in this context.

2. The Oxidant–Antioxidant Balance in Human Organisms

In the course of numerous disease entities, ROS and RNS are an etiological factor, and
the generation of these molecules increases as a result of homeostasis disorders [11,12].
Disease states are not the only source of ROS and RNS. The aerobic metabolic processes
necessary for the proper functioning of tissues pose a great challenge to the mechanisms
responsible for maintaining redox homeostasis [13,14]. Reactive oxygen and nitrogen
species constitute a highly reactive group of radicals and non-radical chemical compounds
which contain oxygen or nitrogen in their structure [15]. These molecules are characterized
by a short lifetime due to interactions with other biomolecules present in the cell [16]. •O2

−,
hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) are ROS generated by endogenous
metabolic processes involving NOX, myeloperoxidase (MPO) and lipoxygenase (LOX) [17].
The main endogenous source of RNS is the metabolism of L-arginine with the participation
of selected isoforms of nitric oxide synthase (NOS)—eNOS, inducible NOS (iNOS) and
neuronal NOS (nNOS). Reactions catalyzed by these enzymes produce •NO [18]. External
environmental factors are also sources of reactive oxygen and nitrogen species. Air pollution
related to industrial human activity leads to an increase in the level of sulfur dioxide (SO2),
carbon monoxide (CO), ozone (O3) and nitrogen dioxide (NO2) [19]. Additionally, exposure
to ionizing radiation, smoking and chronic inflammation lead to a significant increase in
ROS generation [20] (Figure 1).

Both ROS and RNS fulfill important biological functions and are essential for the
maintenance of homeostasis. ROS are involved in the redox communication between
cells [21]. This phenomenon enables the control of cell proliferation and apoptosis [22].
The immune system uses ROS to neutralize pathogens in a process called the respiratory
burst [23]. •NO is essential for the proper functioning of the cardiovascular system. This
RNS maintains adequate blood flow by regulating the resistance of blood vessels and also
inhibits the aggregation of platelets and leukocytes [24].

Reactive oxygen and nitrogen species generated in excessive amounts lead to unfavor-
able phenomena. Antioxidants are molecules that reduce the negative impact of ROS and
RNS on tissues [25]. One of the lines of antioxidant defense are endogenous biomolecules.
Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPx) have a crucial role in this system [26]. Endogenous antioxidants with
a low molecular mass are equally important. This group includes glutathione, uric acid,
lipoic acid, bilirubin and melatonin [27]. Compounds with antioxidant potential may be
supplied with food. Exogenous antioxidants such as vitamins A, C, E and polyphenols are
especially important when endogenous systems cease to function effectively [28].

The condition where the generation of ROS and RNS is particularly intense and the
antioxidant mechanisms are insufficient is called oxidative stress. Free radicals are reactive
with proteins, lipids and the genetic material of the cell [29]. Oxidative modifications of
short peptides and large proteins lead to the impairment of the functions of individual
biomolecules, affecting the conformation of the protein and the activity of enzymes [30].
After the interaction with ROS, lipids building cell membranes undergo peroxidation and
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no longer constitute an effective barrier protecting the internal elements of the cell [31].
Mutations and, consequently, carcinogenesis are the result of the influence of ROS on
DNA [32]. Considering the negative influence of oxidative stress on biomolecules and, at the
same time, the significant role of ROS and RNS, it is necessary to maintain a redox balance.

3. Oxidative Stress in Cardiovascular Diseases

Oxidative damage to the cardiovascular system concerns first of all the lipid mem-
branes of the cardiac and vascular myocytes [33] and generates numerous peroxide
and aldehyde compounds such as lipid hydroperoxides, malondialdehyde (MDA), F2-
isoprostanes and 4-hydroxy-2-nonenal (HNE) [34–40]. All these compounds are known as
the classical biomarkers of oxidative stress (Figure 1).

Since 1968, the level of MDA in biological samples has been measured by means
of the spectrophotometric method with thiobarbituric acid (TBA) [41]. Unfortunately,
under conditions of this commonly used assay, non-lipid compounds, e.g., derivatives of
glucose, sucrose, 2-deoxyribose and sialic acid, abundantly contained in biological material,
may form MDA in the TBA reaction mixtures. Hence, its specificity has been strongly
questioned for over 30 years [42–45]. Nevertheless, more sophisticated high-performance
liquid chromatographic (HPLC) methods have been developed for the separation of the
MDA-TBA adduct from other possible TBA reactants using spectrofluorimetric detection.
Consequently, researchers showed that increased serum MDA levels predicted adverse
health outcomes in 634 patients with stable coronary artery disease (CAD) [46] and in
774 patients suffering from chronic heart failure (CHF) [47].

F2-isoprostanes belong to stable prostaglandin-like compounds with distinct side-
chain structures compared to cyclooxygenase-derived prostaglandins. They are generated
in vivo as products of the free radical-induced peroxidation of arachidonic acid [34,35].
Among the group of sixty-four F2-isoprostanes, 8-iso-prostaglandin F2α (8-iso-PGF2α, also
known as 8-epi prostaglandin F2α, 8-epi PGF2α) was selected as a quantitative biomarker
of oxidative stress [48]. For the first time, the association of oxidative stress with a pro-
gression of heart failure in humans (ischemic heart disease (IHD) and/or valvular heart
disease) was demonstrated in 1998 by Mallat et al. The scale of the oxidative damage
in the heart, expressed by the levels of 8-iso-PGF2α measured in pericardial fluid, was
significantly correlated with ventricular dilatation, which was assessed by, among others,
the measurement of left ventricular end-diastolic (r = 0.5, p = 0.008) as well as end-systolic
(r = 0.46, p = 0.026) diameters [39]. Moreover, during 17 years of the follow-up study, it
was observed that the risk of developing fatal CHD (n = 141) and stroke (n = 109) was
80% higher among postmenopausal women with a urinary concentration of 8-iso-PGF2α
included in the highest quartile (the odds ratio was 1.8, and a 95% confidence interval (CI)
amounted to 1.1–3.1, p = 0.02) [49]. Another case-control study showed that patients with
CHD (n = 93) also significantly differed from healthy controls (n = 93) in terms of urinary
8-iso-PGF2α levels (120–193 pmol/mmol creatinine vs. 77–139 pmol/mmol creatinine,
respectively, p < 0.001). A multivariate analysis indicated that among the five risk factors of
CHD (body mass index (BMI), C-reactive protein, high-density lipoprotein (HDL) choles-
terol, systolic blood pressure and 8-iso-PGF2α) only C-reactive protein (>3 mg/L, p < 0.01)
and 8-iso-PGF2α (≥131 pmol/mmol creatinine, p < 0.001) had a predictive value of CHD
occurrence [33].

In a clinical study, the expression of HNE-modified proteins was measured immuno-
histochemically in endomyocardial biopsy samples derived from 23 patients with dilated
cardiomyopathy. A 5.3-fold greater HNE-positive heart area was demonstrated in these
samples compared to those collected from control subjects (n = 13, p < 0.0001), which was
indicative of the oxidative stress in the myocardium of patients with heart failure [40].

Moreover, other biomarkers of oxidative stress were also found in the course of CVDs,
e.g., the products of a nitrosative stress (excessive RNS concentration). They are represented,
among others, by 3-nitrotyrosine (3-NT), the nitration product of tyrosine residues in the
proteins present in the vessel wall or in the myocardium [3,50,51]. However, the literature
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provides incoherent data on the prognostic value of 3-NT in the context of CVDs. Using
an accurate HPLC with the tandem mass spectrometry method, Shishehbor et al. found
significantly higher levels of 3-NT (p < 0.001) in the serum proteins of CAD patients
(9.1 µmol/mol tyrosine as the median) compared to the group of healthy individuals
(5.2 µmol/mol tyrosine) [52]. On the other hand, the ELISA-based measurements indicated
a lack of an association between the levels of 3-NT and mortality rates among CAD patients
(a follow-up time of 4 years) [53] (Figure 1).

An oxidatively damaged DNA is also observed in people suffering from CVDs.
8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) was widely assessed as a cellular [54]
and urinary [55] marker of DNA oxidative damage. A meta-analytic study performed by
Di Minno et al. revealed that 810 patients with CVDs such as CAD, carotid atherosclerosis,
PAD and stroke showed markedly higher 8-oxodG levels, both in leukocyte DNA and urine,
as compared to 1106 control individuals (standard mean difference (SMD) equal to 1.04,
95% CI: 0.61–1.47, p < 0.00001) [56]. A similar meta-analytic review yielded the conclusion
that 446 patients with heart failure showed significantly elevated 8-oxodG levels compared
to 140 healthy controls (SMD = 0.89, 95% CI = 0.68–1.10, p < 0.00001) [57] (Figure 1).

4. Exercise Impacts on Redox State

Physical exercise is one of the physiological factors which, through the enhanced
generation of ROS and RNS, impacts oxidant–antioxidant balance. The generation of these
active derivatives of oxygen and nitrogen is indispensable for the appropriate course of
adaptive processes for exercise [58]. However, when ROS are generated in excess, they may
lead to the damage of cell components [59–61], including lipids, proteins and DNA [62].

The main source of ROS during exercise has not been ultimately defined so far, which
results, among others, from the fact that oxidative stress caused by PA may be evoked not
only in skeletal muscle but also in other tissues [63]. Initially, what was considered the
main source of ROS during exercise was the mitochondrial respiratory chain; however,
more recent research demonstrated that skeletal muscle mitochondria produce more •O2

−

in the basal condition than during exercise [64,65]. Under the conditions of PA, what
also decreases is the generation of H2O2 by mitochondria [66]. What is considered as
a significant source of ROS during exercise is xanthine oxidase (XO) and NOX. XO is
generated under conditions of ischemia from xanthine dehydrogenase. Such a state may be
a result of exhaustive physical exercises when blood flow is shunted from many organs
and tissues and is redirected to the working muscles. After concluding exercise under the
conditions of reperfusion, XO generates •O2

− and H2O2 as by-products of xanthine and
hypoxanthine oxidation to uric acid [67]. The activation of endothelial XO was proved,
for instance, 24 h after a single anaerobic exercise in men and women [68]. A significant
source of ROS in skeletal muscles after exercise apart from mitochondria and XO is also
NOX. The basic function of this family of enzymes is ROS generation. NOX occurs not
only in phagocytic cells but also in other types of cells; among others, in endothelial cells,
cardiomyocytes and skeletal muscle [69]. It was demonstrated, among others, that high-
intensity interval training in mice is associated with an increase in NOX2 activity in skeletal
muscles [70].

PA is also accompanied by an enhanced generation of •NO [71]. The •NO generated
in low concentrations in various types of cells has the function of cellular or intracellular
signaling molecules engaged, among others, in the regulation of vascular wall tension.
Generated in excess, they may indicate destructive properties [72]. Activation was proved
of both the iNOS and the eNOS after exhaustive exercise [73]. The source of •NO is also
erythrocytes. It is assumed that this is a source of •NO that may play a role in the regulation
of local blood flow dynamics during PA [74]. On the other hand, however, the reaction of
•NO with •O2

− leads to the formation of a strong RNS—peroxynitrite (ONOO−) [75].
Various types of PA probably elicit different pathways of free radical production [67,76].

The connection between exercise and oxidative stress is extremely complex, depend-
ing on the mode, intensity and duration of exercise [77] and the training status of the
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individual [78]. PA can be differentiated into aerobic and anaerobic (depending on the
intensity), acute and chronic (in relation to the frequency) and concentric, eccentric and
isometric (in relation to muscle contractions) [67]. It was proved that oxidative stress
accompanies both aerobic exercise, especially an intense one [79,80], and anaerobic [80,81].
Aerobic exercise as early as at its beginning leads to the enhanced generation of ROS,
whereas anaerobic exercise may induce prolonged ROS generation [82].

Single bouts of exercise lead to oxidative stress [83,84]. As a result of physical training,
which is accompanied by repetitive exposure to the enhanced generation of reactive oxygen
and nitrogen species, adaptation changes occur, which may protect against oxidative stress.
This fact remains in accordance with the so called hormesis theory, according to which low-
level exposure to ROS elicits beneficial stress adaptation, whereas too high of a generation
of ROS leads to oxidative stress [85]. Tolerance increase to exercise-induced oxidative stress
was demonstrated, among others, after aerobic training in overweight/obese adolescent
girls [86]. An adaptive increase in antioxidant enzyme activity after training was indicated
after 3 months of karate training in elite athletes [87] and in the erythrocytes of handball
athletes during 6 months of monitoring [88]. Some of the research also proves that a
single bout of exercise confers increased resistance to a subsequent non-exercise oxidative
challenge, but only in young people [89].

It was demonstrated that exercise also impacts the existing balance between ROS and
RNS in the vascular system. Regular PA improves vascular function, which in part derives
from a reduction in cellular ROS and a restoration of •NO bioavailability (a change in the
ROS/NO balance to favor •NO) [90].

5. Effects of Physical Exercise on Redox Equilibrium in Cardiovascular Diseases

CVDs constitute disorders manifested by a chronic inflammatory state and alter-
ations of the oxidant–antioxidant balance of the oxidative stress character [91,92]. It is
common knowledge, however, that muscle activity during physical exercise leads to a
significant increase in ROS concentration and improves the antioxidant defense system in
the organism [93,94].

Linke et al. examined 23 patients with CHF, aged 56 ± 4, and 12 controls (healthy
subjects at an approximate age to the patients). The patients were randomly divided into
two groups—the group of people exercising every day for 6 months and the group not
exercising during this period of time (sedentary lifestyle). The PA of the patients was
diversified; however, it was mainly effort on the cycloergometer for 20 min daily with a
heart rate corresponding to 70% of the maximal oxygen uptake. What constituted the test
material were the bioptates of the skeletal muscle. SOD, CAT and GPx activity were deter-
mined in homogenized muscle samples as well as with nitrotyrosine concentrations. What
was observed in patients without division into groups was a significantly lower activity
of enzymes and higher concentrations of nitrotyrosine than in the controls with regard
to baseline levels. The training, however, caused a significant increase in CAT and GPx
activity in the patients, and these values were higher than in the non-exercising subjects, as
well as a decrease in the concentration of nitrotyrosine (p < 0.05). Thus, it was not proved
that PA altered SOD activity in the skeletal muscles of subjects with CHF [95] (Table 1). A
lack of an impact of aerobic exercise on SOD was also proved by Fenty-Stewart et al. in the
plasma of venous blood in 100 hypertensive patients (50–75 years). However, they observed
a positive correlation between SOD activity and 8-iso-PGF2α concentration in urine [96],
whereas, Kostić et al. observed a statistically significant decrease in erythrocyte GPx activity
after an acute exercise test on the cycloergometer in peripheral blood in 40 hypertensive
patients (51.19 ± 8.37 years) [97]. Yu et al. examined dependence between the type and
frequency of physical exercise, and redox biomarkers in the plasma of venous blood in per-
sons between 45 and 79 years old with idiopathic arterial hypertension (n = 402), with the
use of a control group (n = 1047). The study considered five types of PA, from low intensity
to high intensity exercises such as walking/dancing, taiji/yoga, running/biking/climbing,
ball sports and gym workouts including swimming. Each type of PA was divided into
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3 degrees of performance frequency. The PA of all subjects was therefore rare (0 times/week),
moderately frequent (1–3 times/week) or frequent (4–7 times/week). The authors noticed
that even the least intensive physical exercise may have had a favorable impact on redox
equilibrium (a decrease in MDA and HNE concentration, an increase in SOD activity)
in the hypertensive patients, which is also accompanied by improvement with regard to
clinical parameters (arterial blood pressure, BMI, glycosylated hemoglobin, triglycerides) if
exercises are performed adequately frequently and regularly [98]. On the other hand, in
the study on the oxidant–antioxidant balance in peripheral blood in 43 participants with
arterial hypertension, aged 60–80, the impact of regular walking performed in a continuous
manner (30 min walking at the pace of one step per second, three times a week) and at
intervals (3 × 10 min march at the pace of one step per second + 1 min break after each
repetition, three times a week) was determined. The group walking in a continuous manner
was constituted by 8 males and 14 females, whereas the interval group consisted of 2 males
and 19 females. After 12 weeks, the concentration of reduced glutathione (GSH) in both
groups was increased, and the concentration of oxidized glutathione (GSSG) was decreased
(p < 0.05) (both parameters were examined in the whole blood). Additionally, MDA con-
centrations in plasma in both groups were subject to a statistically significant decrease. The
differences between the groups, however, were statistically insignificant with the exception
of some clinical parameters (the triglycerides concentration, the ratio of the total cholesterol
to HDL and the atherosclerogenic index were lower in the group walking continuously;
p < 0.05). Thus, the study confirmed the advantageous influence of long-term and regular
aerobic exercise of a low intensity on redox equilibrium in the venous blood of hypertensive
subjects [99]. Tsarouhas et al., however, determined the total antioxidant capacity (TAC)
in the serum of 20 males and 7 females (66.8 ± 13.1 years) with CHF subjected to effort,
and 9 males and 3 females (67.0 ± 5.6 years) with the same disease without introducing a
training program. All the ill persons were treated with statins, and apart from the TAC,
the lipid and glycemic profiles and the TNF-α concentrations in the serum were examined
in these patients. The control group constituted 12 healthy males and 5 healthy females
(65.7 ± 9.4 years). After 12 weeks of training, an increase in the TAC was observed in the
training group in relation to the non-training one. Additionally, the TAC was higher in
both groups of persons with cardiac failure in comparison with the control group. The
researchers stated that in patients with CHF, daily, moderate, unsupervised physical activity
such as walking was able to improve their lipid and glycemic profile with the simultaneous
alleviation of the inflammatory state and oxidative stress [100]. In 18 patients with cardiac
failure (13 males and 5 females), aged 28–59, venous blood tests were performed after the
application of a 30 min and a 45 min effort of low intensity and a 30 min effort of moderate
intensity. The MDA concentration in the plasma was determined as well as CAT and SOD
activity in the erythrocytes. Moderate physical effort caused the most significant changes;
among others, a significant increase in the MDA concentration and CAT activity. Thus, the
intensity of the exercises was in this case a more significant factor with respect to evoking
physiological effects than the duration of the effort [101]. A long-term and extremely
complex study was performed by Raberin et al., who examined the relation between PA
and sex, as well as cardiovascular risk factors and redox parameters in peripheral blood in
the elderly. Altogether, 1011 healthy subjects were qualified for the study, who were at least
65 years old on recruitment day. The study lasted 10 years in total. During that time, the
persons recruited were observed and tested clinically with respect to cardiovascular and
cerebrovascular events. In the final year, among 545 persons (318 females aged 75.8 ± 1.2
and 227 males aged 75.8 ± 1.1), redox parameters in the plasma were determined and
they were the following: uric acid (UA), •NO (as the sum of nitrite and nitrate (NOx)
concentrations), ferric-reducing antioxidant power (FRAP), advanced oxidation protein
products (AOPP), MDA, GPx and SOD. The authors concluded in general that biochemical
cardiovascular risk factors, including redox parameters, occur in females at a lower level
than in males, which may explain the lower percentage of CVDs in older women. It was
not observed, however, that PA correlated negatively with the level of cardiovascular risk
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factors tested both in females and in males [102]. There also exists a study in which redox
parameters were determined in saliva. The study encompassed two groups of patients after
myocardial infarction, i.e., 21 patients aged 42–71 (67% males, group I) and 21 patients aged
47–79 (81% males, group II). Group I was subjected to physical effort on a cycloergometer,
and group II performed breathing and balance exercises. The MDA and TAC concentrations
were measured, which were expressed in the form of the 2.2-diphenyl-1-picryl-hydrazyl
(DPPH) concentration. The MDA concentration was decreased and the TAC increased
in group II (p < 0.05). In group I, no statistically significant differences were observed.
Thus, it was demonstrated that the form of PA may have a different impact on antioxidant
capabilities or on ROS concentration in saliva in patients after myocardial infarction [103].
Lately, comprehensive data on redox balance in individuals with CVDs were provided by
Tofas et al., who studied patients suffering from CAD. The patients were submitted to an
8-month training with division into three groups depending on exercise type, i.e., aerobic
(n = 15, 61 ± 7 years), anaerobic (weight) (n = 11, 62 ± 8 years) and mixed (aerobic and
weight exercises) (n = 15, 64 ± 6 years). The fourth group of patients was the control, not
exercising group (n = 15, 64 ± 8 years). The authors revealed that all types of training
in CAD patients induced positive changes in the redox equilibrium in their peripheral
blood; however, the most remarkable and pronounced alterations were found after aerobic
training (compared to pre-training, baseline values). The authors determined the concen-
trations of thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PCs) in
plasma, GSH and GSSG in erythrocytes, as well as the TAC in serum and the CAT activity
in erythrocytes. In all patients (all training groups), a statistically significant decrease in the
systolic blood pressure was also observed, whereas the diastolic blood pressure decreased
in the aerobic and anaerobic groups compared to the control individuals (health and an-
thropometric measures similar to the non-training patients in the study period; n = 15,
64 ± 8 years). Interestingly, most of the redox status parameters restored in all the CAD
subjects close to the pre-exercise values at the end of the 3-month detraining period that was
followed immediately by an 8-month training session [104]. The examination of 94 patients
(60 males and 34 females, 68.0 ± 14.5 years) hospitalized due to acute heart failure and
subjected to an exercise test proved, however, that ROS generation in response to physical
effort increases the number of cardiac events. The authors concluded that if antioxidant
capacity increases as a result of PA, then we can expect beneficial effects for cardiac failure
patients; however, if it does not happen and the ROS concentration significantly increases,
the effects are negative [105] (Table 1).

Table 1. Exercise impacts on redox balance in cardiovascular diseases.

Cardiovascular
Disorder Study Group Exercise Material Outcome Ref.

Chronic heart
failure

Patients exercising
and not exercising

(n = 23)
Controls (n = 12)

aerobic (bpm of 70% VO2max),
20 min/day, 6 months Skeletal muscle ↑CAT ↑GPx ↓NT [95]

Patients exercising
(n = 27)

Patients not
exercising (n = 12)
Controls (n = 17)

aerobic (moderate), every day,
12 weeks Peripheral blood ↑serum TAC [100]

Patients (n = 18)

a single 30 min bout and
45 min bouts of low intensity,
and a single 30 min bout of

moderate intensity

Peripheral blood

↑plasma MDA
↑erythrocytic CAT

(moderate
exercise)

[101]

Acute heart failure Patients (n = 94)

aerobic and anaerobic,
30 min/day (cardiac

rehabilitation), 5 days/week
during hospitalization

Peripheral blood

↑serum dROM =
↑no. of cardiac
events (poor
prognosis)

[105]
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Table 1. Cont.

Cardiovascular
Disorder Study Group Exercise Material Outcome Ref.

Hypertension

Patients (n = 100)
aerobic (50→70% VO2max),

20→40 min/day,
3 days/week, 6 months

Peripheral blood,
urine

plasma SOD =
urine 8-iso-PGF2α

(positive
correlation)

[96]

Patients (n = 40)
Controls (n = 20) maximal (a single acute bout) Peripheral blood ↓erythrocytic GPx [97]

Patients (n = 402)
Controls (n = 1047)

aerobic (low–high intensity
and frequency)

Plasma of
peripheral blood

↓MDA ↓HNE
↑SOD [98]

Patients (n = 43)

aerobic (low intensity,
continuous and intermittent),

30 min/day, 3 days/week,
12 months

Peripheral blood whole blood ↑GSH
↓GSSG ↓MDA [99]

Cardiovascular
and

cerebrovascular
events

Patients (n = 545)
Approx. 5 h/day of

low-intensity physical activity
(<3 METs)

Plasma of
peripheral blood

↓redox parameters
in females vs.

males
[102]

Myocardial
infarction Patients (n = 42)

single aerobic, 30 min (low
intensity) (cardiac
rehabilitation)—

cycloergometer or breathing
and balance

Saliva
↓MDA ↑TAC after

breathing and
balance exercises

[103]

Coronary artery
disease Patients (n = 56)

aerobic, anaerobic or mixed,
50–60 min/day, 3 days/week,

8 months
Peripheral blood

↑GSH ↓GSSG
↓TBARS (aerobic
exercises)↓PCs
↑TAC ↑CAT (all

types of exercises)

[104]

Abbreviations and symbols: bpm—beats per minute (heart rate); VO2max—maximal oxygen uptake; ↑—increased
level; ↓—decreased level; CAT—catalase; GPx—glutathione peroxidase; NT—nitrotyrosine; TAC—total antioxi-
dant capacity; MDA—malondialdehyde; d-ROM—diacron reactive oxygen metabolites (mainly hydroperoxides);
SOD—superoxide dismutase; iso-PGF2α—8-iso-prostaglandin F2α; METs—metabolic equivalents; HNE—4-
hydroxy-2-nonenal; GSH—reduced glutathione; GSSG—oxidized glutathione; TBARS—thiobarbituric acid reac-
tive substances; PCs—protein carbonyls.

6. Pathological Consequences of Oxidative Stress in Cardiovascular System and
Relation to Exercise

As mentioned, CVDs are disorders characterized by oxidative stress and inflammation
in the myocardium and blood vessels [91,92]. Oxidative stress may be both a primary and
a secondary factor of many CVDs [106].

In myocardium, the overproduction of ROS is manifested by the hypertrophy and
fibrosis initiated by angiotensin II. This peptide hormone leads to NOX activation. As a
result, formed •O2

− induces redox signaling pathways, the final effect of which is increased
protein synthesis, including procollagen I and III [107,108]. Heart disorders induced by
oxidative stress may also result from impacts of ROS directly on calcium channels in the
sarcolemma (ryanodine receptors) and sarcoplasmic reticulum [109].

Oxidative stress principally triggers specific arterial dysfunction manifested by arterial
stiffness—atherosclerosis [106]. ROS, RNS and oxidatively injured molecules induce the
expression of inflammatory cytokines and adhesion molecules in endothelial cells and
smooth myocytes, leading to the atherogenic remodeling of the vascular wall. Significantly
higher concentrations of ROS were reported in acute CAD compared to chronic coronary
syndromes (i.e., stable angina pectoris), which also suggests the impact of ROS on atheroma
plaque stability [110]. In this case, it is also caused by NOX, which was proven by several
clinical studies in human subjects [111]. NOX is activated and induces oxidative stress in
the endothelium by angiotensin II-dependent signaling, but also through platelet-derived
growth factor (PDGF) and tumor necrosis factor alpha (TNF-α). Hemodynamic param-
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eters influence the NOX activity, as well. Laminar flow decreases NOX activity while a
turbulent flow favors the enzyme activity; therefore, arterial hypertension itself may induce
atherosclerosis, whereas oxidative stress can be the source of hypertension. •O2

− decreases
•NO concentration to form ONOO−, and together with H2O2 can increase endothelin-1
synthesis and induce endothelial cell apoptosis, leading to vasoconstriction [106]. It was
also reported that ONOO− is a significant factor of pathological mechanisms in brain stroke,
as it leads to the contraction of the smooth myocytes of the cerebral arterioles [112]. More-
over, increased ONOO− concentrations were found in hyperhomocysteinemia, another
important risk factor for endothelial dysfunction, peripheral arterial disease and IHD [113].
Other source of ROS, oxidative stress, inflammation and consequently atherosclerosis may
also be XO and LOX. In addition to •NO, oxidatively injured endothelial cells also release
significantly lower amounts of other vasodilators (prostacyclin, adrenomedullin, hyperpo-
larizing endothelial factor) and become too permeable to the oxidized form of low-density
lipoproteins (ox-LDL). Oxidative stress disrupts vascular wall function as well as directly
acting vascular smooth muscle cells, in which it damages contractile proteins [106].

It should also be mentioned in this section that all the aforementioned molecular
mechanisms that lead to atherosclerosis accompany diabetes [106]. Diabetes mellitus (DM)
is therefore a pathological condition of the organism that particularly predisposes them
to CVDs. Hence, individuals suffering from diabetes are accompanied by hypertension,
dyslipidemia, hyperglycemia and insulin resistance [114]. Hyperglycemia, the primary
symptom of DM, is also combined with ROS production. The autooxidation of glucose and
the non-enzymatic glycation of proteins generates •O2

−. For instance, the glycation may
occur directly between glucose and LDL or apolipoprotein B to form advanced glycation
end products (AGEs), which induce lipid peroxidation. ROS facilitate that process. Thus,
AGEs are pathological changes in the structure of plasma proteins; however, they have
their own specific receptors (receptors of AGE, RAGE). The binding of AGEs to RAGE in
various cell types (i.e., endothelial cells, smooth muscle cells, macrophages, monocytes
and lymphocytes) contributes to ROS production and inflammation dependent on the
activation of NOX and nuclear factor kappa B (NF-kB) [106].

The impact of PA on patients with CVDs seems to be unambiguously positive if
applied at therapeutic doses. This was confirmed by at least several studies. One of them
is the mentioned study of Tsarouhas et al., who reported that in patients with CHF, daily,
moderate and unsupervised physical exercise for 12 weeks, such as walking, improved
their lipid and glycemic profile with a simultaneous alleviation of the inflammatory state
and oxidative stress [100]. In another one, systolic and diastolic blood pressure as well
as flow-mediated vasodilation (endothelial function assessment) meaningfully improved
after 6 weeks of strength training (knee extensor exercise, three times a week) in six mildly
hypertensive men (Stage 1) (71 ± 2 years) [115]. Another study showed that, according to
the authors, physical effort improved systolic blood pressure, pulse pressure, central aortic
systolic blood pressure and central aortic pulse pressure, and it may delay arterial aging in
hypertensive patients (n = 63; age of 40–70 years). The training program included 50 min of
exercise, divided into 30 min aerobic exercises and 20 min resistance exercises per session,
four times a week for 4 months [116].

7. Antioxidant Supplementation—Unconventional Treatment of
Cardiovascular Diseases

The primary care level in cardiovascular disease reduction and treatment should cover
the following drugs: aspirin, beta-blockers, angiotensin-converting enzyme inhibitors and
statins [1]. An especially wide range of action and effectiveness have statins [117]. The
anti-inflammatory response of high-dose statins and their beneficial effects on vascular
functionality were even proven, which were also accompanied by a decrease in ROS
concentration [106]. In this context, antioxidant supplementation also seems to be important
since the cardioprotective effects of dietary antioxidants are well known. Indeed, a diet rich
in fruits and vegetables results in an increase in serum antioxidant capacity and a decrease
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in oxidative stress. In contrast, studies on antioxidant supplementation, even those that
are numerically significant, have revealed no clear benefit in the prevention and therapy
of CVDs. Both short- and long-term clinical trials have failed to consistently support the
cardioprotective effects of supplemental antioxidant intake. For these reasons, and also
to limit the immoderate consumption of antioxidant supplements, both the US Food and
Drug Administration and the European Food Safety Authority have excluded from the
package labels any information that could imply the potential health benefits of products
with antioxidants [9]. For instance, Ardalani et al. demonstrated that the consumption of
Cynara scolymus (artichoke) powder as a rich source of phenolic and antioxidant compounds
could potentially improve BMI and systolic blood pressure in hypertensive patients [118].
In turn, in the mentioned six men with mild hypertension (Stage 1) (71 ± 2 years), the
benefits resulting from exercise (an improved systolic and diastolic blood pressure and flow-
mediated vasodilation after a 6-week knee extensor exercise, 3 times/week) deteriorated
because of antioxidant supplementation (vitamins C and E, and alpha-lipoic acid). The
levels of the parameters returned to the baseline state in the (hypertensive) subjects as
a result of this supplementation. Moreover, a single intake of the supplement in a high
dose (the documented antioxidant effect in the peripheral blood plasma) before starting the
exercise program did not change the levels of the parameters studied [115].

The confusing effects of antioxidant supplementation can be explained in several
ways. First, the term “antioxidant” applies to a very wide variety of chemical entities
that share only the capability of chemical reduction (the donation of electrons). Dietary
antioxidants are substances both with lipophilic and hydrophilic properties; moreover,
the size and complexity of antioxidants vary widely. They can be small and simple
(e.g., salicylates, ascorbic acid) or large and very complex, like polyphenols (e.g., tan-
nic acid). This heavily impacts their bioavailability, which also depends on metabolism and
the distribution of antioxidants in the organism. Bioavailability, which is an active form
of the antioxidant in a target place, is a highly complex issue that depends on resistance
to digestion and metabolic conversion by the gut microbiome, absorption, metabolism
and clearance. Finally, antioxidants are, by definition, rapidly oxidized. Oxidation before
or during ingestion might not only abolish antioxidant properties but could also actively
promote oxidative stress, depending on the nature of the product formed. Hence, the
donation of the electron(s) by the antioxidant is linked to its oxidation, which may lead
to the formation of its reactive entity, including radical ones [8]. Moreover, it should
be remembered that the effects of antioxidants in the healthy organism, in physiological
conditions, may differ compared to pathological conditions, in the course of the disease,
especially those characterized by redox disturbances.

8. Conclusions

It is widely known that PA positively influences quality of life, improving physical
and mental fitness and, consequently, may also reduce the emergence and development of
CVDs [119]. CVDs are commonly characterized by glucose metabolic syndrome, oxidative
stress and inflammation, whilst PA is known to improve redox status, insulin sensitivity
and endothelial function [100]. The effects of PA on oxidant–antioxidant equilibrium can
be ambiguous and depend on the duration and intensity of exercise; however, in general,
they are positive [95–105] (Table 1). Physical exercise of different intensities (usually of
moderate or of low intensity, and long term) is already widely recommended as an aid
in the prevention and treatment of CVDs. Exercise is recommended, for example, in
the prevention of CAD, and as part of the treatment process in myocardial infarction,
coronary bypass graft, heart transplantation and CHDs [93]. With regard to antioxidant
supplementation as a potentially new approach to the treatment, it is not recommended
due to inconsistent data coming from clinical trials. Probably, the best way to keep the
oxidant–antioxidant equilibrium is a supply of antioxidants in a balanced diet, as the
literature recommends in the case of exercising people.



J. Clin. Med. 2022, 11, 4833 12 of 17

Author Contributions: Conceptualization, P.S. and A.W.; funding acquisition, J.N.; writing—original
draft preparation, P.S., J.W., M.W., J.N., M.M. and A.W.; visualization, P.S.; writing—review and
editing, P.S. and A.W.; supervision, A.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CAD
coronary artery disease, also called coronary heart disease (CHD) or ischemic
heart disease (IHD)

CAT catalase
CHDs congenital heart defects
CHF chronic heart failure
CVDs cardiovascular diseases
GPx glutathione peroxidases
HNE 4-hydroxy-2-nonenal
H2O2 hydrogen peroxide
8-iso-PGF2α 8-iso-prostaglandin F2α
LOX lipoxygenase
MDA malondialdehyde
NOX nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
NO nitric oxide
O2

− superoxide anion radical
OH hydroxyl radical
PA physical activity
RNS reactive nitrogen species
ROS reactive oxygen species
SOD superoxide dismutase
XO xanthine oxidase
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