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The impact of genotype calling 
errors on family-based studies
Qi Yan1, Rui Chen2, James S. Sutcliffe3, Edwin H. Cook4, Daniel E. Weeks5, Bingshan Li2 & 

Wei Chen1,5

Family-based sequencing studies have unique advantages in enriching rare variants, controlling 

population stratification, and improving genotype calling. Standard genotype calling algorithms 
are less likely to call rare variants correctly, often mistakenly calling heterozygotes as reference 

homozygotes. The consequences of such non-random errors on association tests for rare variants 

are unclear, particularly in transmission-based tests. In this study, we investigated the impact of 

genotyping errors on rare variant association tests of family-based sequence data. We performed a 

comprehensive analysis to study how genotype calling errors affect type I error and statistical power of 
transmission-based association tests using a variety of realistic parameters in family-based sequencing 

studies. In simulation studies, we found that biased genotype calling errors yielded not only an inflation 
of type I error but also a power loss of association tests. We further confirmed our observation using 
exome sequence data from an autism project. We concluded that non-symmetric genotype calling 

errors need careful consideration in the analysis of family-based sequence data and we provided 

practical guidance on ameliorating the test bias.

Next-generation sequencing is a powerful tool to dissect the genetic basis of complex diseases. Family-based 
sequencing studies have been conducted for various disorders such as autism1 and congenital heart disease2. 
Although methods for improving the accuracy of genotype calling continue to evolve, genotype calling errors, 
particularly at sites of low minor allele frequency, are inevitable due to imperfect sequencing technologies and 
limitations of current genotype calling algorithms3,4. Widely used pipelines for genotype calling o�en disagree 
and thus have low concordance rates5. It is well known that genotyping errors have considerable impact on type 
I error and power in association analysis6,7. Methods development for rare variant association tests has been an 
active research area in the past few years8–11, and several methods for family-based rare variant tests were recently 
proposed12–14. Systematic genotype-calling errors at rare variant sites can have adverse consequences on rare 
variant association tests, including both type I and II errors, because genotype calling methods are more likely 
to introduce non-random errors: calling heterozygotes as reference homozygotes rather than calling reference 
homozygotes as heterozygotes15,16. Without controlling for type I error, any discussion of power is meaningless. 
Standard approaches will su�er a great loss of power in association studies due to ine�cient handling of such 
sequence data. Although recent e�orts have been made to alleviate the problem in studies of unrelated individu-
als17, little is known for family-based sequencing studies, where the problem can be more severe because the gen-
otypes of related people are jointly modeled in association methods. In this study we performed a comprehensive 
analysis to investigate the impact of genotype calling errors on family-based studies with various parameters. In 
addition, we analyzed real data from an autism spectrum disorder project. We showed that the bias is critical in 
association analyses and it not only in�ates type I error but also reduces power of family-based association tests. 
We provided approaches and suggestions for how to reduce bias and false positive signals.
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Results
We investigated the impact of genotype calling errors on transmission-based tests as a function of several param-
eters: sequence coverage, gene length, calling algorithms, and di�erent models of transmission-based tests18.

Simulation study. We considered four scenarios described in Methods. �e single marker based results 
(Table 1) show that the association tests could be largely in�uenced with the scenarios 2 (r2 =  0; r1 =  1%, 5% or 
10% in o�spring) and 3 (r1 =  0; r2 =  0.1%, 0.5% or 1% in parents), where r1 is the error rate of mistakenly calling 
heterozygote 0/1 as homozygote 0/0 and r2 is the error rate of calling homozygote 0/0 as heterozygote 0/1. For 
gene-level analysis, Fig. 1 shows a similar pattern with type I error rate being in�ated for scenarios 2 and 3. �e 
original transmission disequilibrium test (TDT)19 statistic is de�ned as: TDT =  (p − q)2/(p + q), where p and q 
are the counts of transmitted and non-transmitted alleles from heterozygous parents. In scenario 2 (Table 1), 
p decreases, q increases and p + q remains similar, resulting in the in�ation of the TDT statistic. In scenarios 3 
(Table 1), p remains the same and q increases, also resulting in in�ation of the TDT statistic.

In addition to type I error rate, we studied the impact of genotype calling errors on power. Similar to that of 
the type I error simulation, results (Table 2) show that power of the association tests was greatly a�ected for sce-
narios 2 (r2 =  0; r1 =  1%, 5% or 10% in o�spring) and 3 (r1 =  0; r2 =  0.1%, 0.5% or 1% in parents) in terms of the 
change of the ratio between transmitted and non-transmitted alleles. Although it is not meaningful to interpret 
power when type I error rate is in�ated, we still show the gene-based power results (Supplementary Fig. S1) of 
scenario 1 that has the desired type I error rate and of scenario 2 that has in�ated type I error rate. In scenario 2, 
as the genotyping error rate increases, the type I error rate increases and power decreases. When the genotyping 
error rate is greater than 5%, the type I error rate is even greater than power, which indicates that the real e�ect is 
completely canceled out by genotyping errors. We did not show the power results of scenarios 3 and 4 since the 
scenario of calling homozygotes as reference heterozygotes is rare in real studies and we are more interested in the 
scenario of calling heterozygotes as reference homozygotes. In Table 2, in scenario 2, p decreases, q increases and 
p + q remains similar, resulting in the decrease of the TDT statistic.

Real-world study. Results indicate that low read-depth leads to a greater reduction in the proportion of 
transmitted alleles (Table 3), and thus a more in�ated type I error rate at the gene level (Fig. 2A). Figure 2B indi-
cates that the Beagle420 and Polymutt21 re-called genotypes result in reduced in�ation in terms of type I error 
rate, but the false positive e�ect is still considerable. Furthermore, larger genes are more likely to be a�ected by 
genotype-calling errors compared to smaller genes, due to an accumulation of these errors (Fig. 3).

Discussion
Genotyping error has been recognized as one of major in�uences on genetics association studies and investigated 
in various situations. �is study can be viewed as a continuation of the work of Mitchell et al.22 in the context of 
next-generation sequencing. Mitchell et al. investigated the impact of genotyping errors from arrays in relatively 
common variants (e.g. MAF ≥  0.01) on TDT statistics. For sequencing studies, the vast majority of variants are 
rare, and genotype calling is particularly challenging for rare variants. In addition, the standard analysis for rare 
variants is gene- or group-based strategies, which further complicates the transmission bias given potentially 
di�erential error patterns across variants in a gene or a group.

Based on both simulated and real data sets, we have assembled a comprehensive picture of how genotype 
calling errors impact family-based sequencing studies. Heterozygote to reference homozygote errors is by far the 
most common error type in rare variant calls in sequencing studies, and such errors in o�spring in practice could 
both in�ate the type I error and reduce power for transmission-based association tests. �e transmission bias 
will be more severe for regions of low to modest coverage (30X or lower) and will be accumulated when variants 
are collapsed in longer genes or pathways. Standard genotype calling pipelines (e.g., GATK) do not take familial 
structure into account, and further re�nement can be accomplished by using algorithms that do consider familial 
structure (e.g., Beagle4, Polymutt, or Polymutt2) to alleviate the bias.

Null r2 = 0; r1 = 1% Parents r2 = 0; r1 = 5% Parents r2 = 0; r1 = 10% Parents

Transmitted 374,502 (47%) 370,753 (47%) 355,759 (47%) 337,142 (47%)

Non-transmitted 427,972 (53%) 423,684 (53%) 406,135 (53%) 384,324 (53%)

r2 =  0; r1 =  1% O�spring r2 =  0; r1 =  5% O�spring r2 =  0; r1 =  10% O�spring

Transmitted 370,880 (46%) 356,113 (44%) 338,061 (42%)

Non-transmitted 431,594 (54%) 446,354 (56%) 464,397 (58%)

r1 =  0; r2 =  0.1% Parents r1 =  0; r2 =  0.5% Parents r1 =  0; r2 =  1% Parents

Transmitted 374,502 (45%) 374,502 (38%) 374,502 (32%)

Non-transmitted 463,784 (55%) 607,270 (62%) 785,472 (68%)

r1 =  0; r2 =  0.1% O�spring r1 =  0; r2 =  0.5% O�spring r1 =  0; r2 =  1% O�spring

Transmitted 374,912 (47%) 376,561 (47%) 378,642 (47%)

Non-transmitted 427,562 (53%) 425,913 (53%) 423,832 (53%)

Table 1.  �e total transmitted and non-transmitted alleles over all 182,799 SNPs for single SNP TDT 
test in type I error rate simulation studies (each SNP could have none or multiple transmitted and non-
transmitted alleles).
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Figure 1. QQ plots for type I error rate simulation studies (gTDT results) with di�erent scenarios of error 
patterns. We considered four scenarios to mimic this error pattern: 1. r2 (the error rate of calling homozygote 
0/0 as heterozygote 0/1) =  0; r1 (the error rate of calling heterozygote 0/1 as homozygote 0/0) =  1%, 5% or 
10% in parents; 2. r2 =  0; r1 =  1%, 5% or 10% in o�spring; 3. r1 =  0; r2 =  0.1%, 0.5% or 1% in parents; 4. r1 =  0; 
r2 =  0.1%, 0.5% or 1% in o�spring. �e 95% point-wise con�dence band (gray area) is computed under the 
assumption of the p-values being drawn independently from a uniform [0, 1] distribution.

Original r2 = 0; r1 = 1% Parents r2 = 0; r1 = 5% Parents r2 = 0; r1 = 10% Parents

Transmitted 17,225 (61%) 17,050 (61%) 16,361 (61%) 15,463 (61%)

Non-transmitted 11,112 (39%) 11,000 (39%) 10,518 (39%) 9,981 (39%)

r2 =  0; r1 =  1% O�spring r2 =  0; r1 =  5% O�spring r2 =  0; r1 =  10% O�spring

Transmitted 17,032 (60%) 16,349 (58%) 15,559 (55%)

Non-transmitted 11,305 (40%) 11,988 (42%) 12,778 (45%)

r1 =  0; r2 =  0.1% Parents r1 =  0; r2 =  0.5% Parents r1 =  0; r2 =  1% Parents

Transmitted 17,225 (54%) 17,225 (36%) 17,224 (26%)

Non-transmitted 14,938 (46%) 30,096 (64%) 48,833 (74%)

r1 =  0; r2 =  0.1% O�spring r1 =  0; r2 =  0.5% O�spring r1 =  0; r2 =  1% O�spring

Transmitted 17,236 (61%) 17,817 (63%) 17,349 (61%)

Non-transmitted 11,101 (39%) 10,520 (37%) 10,988 (39%)

Table 2.  �e total transmitted and non-transmitted alleles over all 19,103 SNPs for single SNP TDT test in 
power simulation studies (each SNP could have none or multiple transmitted and non-transmitted alleles).
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Genotype-calling bias will not only in�ate type I error but also reduce the power of subsequent association 
tests. Reducing power may have more detrimental e�ects given the inherent low power of identifying associ-
ated rare variants for complex diseases; such bias makes the rare variant association studies even more challeng-
ing. We have tried to use di�erent methods to correct such bias, and results show that the bias can be reduced 
but not completely eliminated. We illustrate our �ndings in the design of parent-o�spring trio, which is the 

60x 12x 6x

Transmitted 108,467 (47%) 48,769 (40%) 19,454 (32%)

Non-transmitted 124,184 (53%) 72,287 (60%) 41,744 (68%)

Table 3.  �e total transmitted and non-transmitted alleles for single SNP TDT test in chromosome 1 from 
116 parent-o�spring trios from the autism study.

Figure 2. QQ plots for genes (gTDT results) in chromosome 1 from 116 parent-o�spring trios from the 
autism study and only genotypes with GQ > 5 are used. �e 95% point-wise con�dence band (gray area) is 
computed under the assumption of the p-values being drawn independently from a uniform [0, 1] distribution. 
(A) Variant calling was carried out by GATK best-practice pipeline with di�erent depths; (B) Variant calling was 
carried out by GATK best-practice pipeline, Beagle4 and Polymutt with the same depth of 6x.

Figure 3. �e impact of genotyping bias on di�erent lengths of genes (gTDT results). (A) QQ plots for genes 
including more than 100 variants with di�erent depths; (B) QQ plots for genes including less than 50 variants 
with di�erent depths.
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simplest form of family structure. It will be interesting to explore this direction in future when the so�ware for 
family-based rare variant association tests becomes more available. Since general pedigrees can be analyzed by 
treating sub-pedigrees as trios, the bias in trios can be cumulated in general pedigrees, making it a more severe 
problem. Although we cannot di�erentiate de novo mutation with base errors, de novo mutation is assumed to be 
extremely rare in the context of complex diseases and should not a�ect our conclusion. In analysis of real data, 
we recommend checking the direction of transmission in the top (i.e., most signi�cant) genes to ensure that they 
are consistent with theoretical expectation, i.e. the fraction of genes with over-transmission are expected to be 
approximately 0.5 when no genes are associated with the diseases or > 0.5 when genes harbor risk alleles. In sit-
uations where top ranked genes show an overall pattern of under-transmission, it may be a warning of genotype 
calling bias. Based on our study, and given limited resources, it may be desirable to sequence o�spring at a higher 
coverage than parents in the up-front design of sequencing studies to mitigate such transmission bias.

Methods
Type I error simulation study. We simulated a set of sequence data and only retained rare variants (de�ned 
here as MAF  <  0.05) by using chromosome 22 from the 1000 Genomes Project data (see supplementary material 
for details). Each individual includes 182,799 SNPs across 541 genes. In each sequence data set, we simulated 100 
trios with o�spring as disease cases. Furthermore, we assigned errors to the sequence data set. Since the biased 
error rate of mistakenly calling heterozygote 0/1 as homozygote 0/0 (this error rate is denoted as r1) is much 
larger than the error rate of calling homozygote 0/0 as heterozygote 0/1 (this error rate is denoted as r2) for rare 
variants, we considered four scenarios to mimic this error pattern: 1. r2 =  0; r1 =  1%, 5% or 10% in parents; 2. 
r2 =  0; r1 =  1%, 5% or 10% in o�spring; 3. r1 =  0; r2 =  0.1%, 0.5% or 1% in parents; 4. r1 =  0; r2 =  0.1%, 0.5% or 1% 
in o�spring. Although we assumed the error rate of 0.1%, 0.5% and 1% for the scenarios 3 and 4 in the simula-
tions, the occurrence of these two types of error is extremely low in reality due to the nature of genotype calling 
strategy23. �e scenarios 1 and 2 represent the majority of errors in real studies. �e allele frequency distribution 
of simulated genotype data sets for this type I error rate study is shown in Supplementary Fig. S2. To study the 
impact of these di�erent scenarios on the transmission-based association methods, we �rst applied the widely 
used transmission disequilibrium test (TDT)19 implemented in PLINK24 on each of the SNPs to calculate the total 
number of alleles that are transmitted or not transmitted from parents to o�spring. Because single marker tests 
are known to be less powerful to detect rare variant associations, rare variants are usually grouped into genes and 
tested at the gene level25–28. We used the gTDT (http://genome.sph.umich.edu/wiki/GTDT) that can be viewed 
as an extension of TDT for a gene-based analysis18. �e genotyping errors can introduce inconsistencies (i.e., 
Mendelian errors) in the trios and these inconsistent trios are excluded in TDT and gTDT.

Power simulation study. We simulated a set of sequence data of 100 trios and 1,000 genes that contain 
19,103 rare variants (MAF <  0.01). We randomly assigned the e�ect size β  =  log(4) to 30% of the variants. �e 
power simulation details are described elsewhere18. Brie�y, we generated genotypes of parents based on allele 
frequencies and randomly transmitted one haplotype from each of the parents to their o�spring to simulate a 
parent-o�ce trio. �e o�spring was designated as a�ected according to the probability of being diseased based 
on the e�ect sizes of the casual variants. �e allele frequency distribution of simulated genotype data sets for this 
power study is shown in Supplementary Fig. S3.

Real-world study. We obtained exome sequence data from a trio study of autism spectrum disorder 
(ASD). Details of the data are described previously18,29. �e high coverage of the data (~60X) allows us to inves-
tigate impact of sequencing coverage using downsampling. We used chromosome 1 sequence data from 116 
parent-o�spring trios for this investigation. A subset of the reads was extracted to construct a set of data with 
depth of 6X and 12X for comparison purposes. Variant calling was carried out using the GATK 3.3.0 best-practice 
pipeline. Each individual includes 74,652 overlapped rare SNPs (MAF <  0.05) in both data sets, which can be 
mapped to 2,283 genes. Similar to the above simulations, we used the TDT test to calculate transmitted and 
non-transmitted alleles for single SNPs and the gTDT in gene-based tests to investigate in�ation caused by gen-
otype calling errors. Because GATK does not take familial correlations into account, it leads to lower accuracy 
of calls, especially for low depth sites (e.g. 6X). �erefore, we applied two existing family-based genotype-calling 
methods, Beagle420 and Polymutt21, to re-call the genotypes at sites with depth of 6X.
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