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ABSTRACT: Rawinsonde observations have long been used to estimate the atmospheric boundary layer depth

(BLD), which is an important parameter for monitoring air quality, dispersion studies, weather forecast models, and

inversion systems for estimating regional surface–atmosphere fluxes of tracers. Although many approaches exist for

deriving the BLDs from rawinsonde observations, the bulk Richardson approach has been found to be most appro-

priate. However, the impact of errors in the measured thermodynamic and kinematic fields on the estimated BLDs

remains unexplored. We argue that quantifying BLD error (dBLD) estimates is equally as important as the BLDs

themselves. Here we quantified dBLD by applying the bulk Richardson method to 35 years of rawinsonde data ob-

tained from three stations in the United States: Sterling, Virginia; Amarillo, Texas; and Salt Lake City, Utah. Results

revealed similar features in terms of their respective errors. A228C bias in temperature yielded a mean dBLD ranging

from 215 to 200 m. A 128C bias in temperature yielded a mean dBLD ranging from 2214 to 118 m. For a 25%

relative humidity bias, the mean dBLD ranged from2302 to17 m. For a15% relative humidity bias, the mean dBLD

ranged from12 to1249 m. Differences of62 m s21 in the winds yielded BLD errors of;6300 m. The dBLD increased

as a function of BLD when introducing errors to the thermodynamic fields and decreased as a function of BLD when

introducing errors to the kinematic fields. These findings expand upon previous work evaluating rawinsonde-derived

dBLD by quantifying dBLD arising from rawinsonde-derived thermodynamic and kinematic measurements.

Knowledge of dBLD is critical in, for example, intercomparison studies where rawinsonde-derived BLDs are used

as references.
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1. Introduction

The depth of Earth’s atmospheric boundary layer (ABL) is

a critical component for many applications including, e.g.,

weather and climate models, air quality and dispersion

studies, and inversion systems used to estimate regional

surface–atmosphere fluxes of tracers. Because the ABL

depth (henceforth the BLD) governs the vertical mixing of

passive tracers and aerosols, the afternoon BLD is an im-

portant variable for many applications. The afternoon BLD

represents the maximum height to which surface-based

pollutants disperse and thus is essential for studies of, e.g.,

dispersion of trace gases (e.g., Lee et al. 2018).

Many different platforms are used to determine ABL

heights including masts (e.g., San José and Casanova 1988),

sodars (e.g., Piringer 1988; Beyrich 1997), atmospheric emitted

radiance interferometers (AERIs; e.g., Feltz et al. 1998),

ground-based lidars (e.g., Menut et al. 1999; Hennemuth and

Lammert 2006), airborne lidars (e.g., Nyeki et al. 2000),

satellite-borne lidars (e.g., Winker et al. 2007), and more [see,

e.g., Seibert et al. (2000) for a review].

For decades, rawinsonde profiles have been used for obtain-

ing BLDs on a routine basis. Rawinsondes are advantageous in

this regard because they are distributed globally. There are

currently ;1300 upper-air stations, including 92 National

Weather Service upper-air stations in the United States.

Because of their global coverage, rawinsonde observations

have been used to construct regional- to global-scale BLD

climatologies (e.g., Holzworth 1964; Liu and Liang 2010;Wang

and Wang 2014) and to develop climatologies of the quasi-

stationary afternoon BLD over different continents (e.g.,

Wang and Wang 2014; Lee and Pal 2017). Nonetheless, there

remains a significant need for additional BLD observa-

tions (e.g., Dabberdt et al. 2005; Hardesty and Hoff 2012;

Everett 2018).

Rawinsonde-based approaches for determining BLDs are

largely based on the thermodynamic characteristics of the ra-

winsonde profile, that is, the parcel method (e.g., Holzworth

1964, 1967), the depth of the elevated temperature inversion

(e.g., Holzworth 1964), etc.; or using gradients in potential

temperature (e.g., Stull 1988; Seidel et al. 2010; Pal 2019), hu-

midity (e.g., von Engeln and Teixeira 2013), or refractivity

(e.g., Sokolovskiy et al. 2006) [see, e.g., Seidel et al. (2010) for

more details]. Of the techniques that can be used to determine

the BLD from rawinsondes, the bulk Richardson (Rib) ap-

proach (Vogelezang and Holtslag 1996), which identifies the

BLDas the first height at which a critical value, Ric, is exceeded,

has been cited as the preferred approach to determine the BLD
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(e.g., Seibert et al. 2000; Seidel et al. 2012). Furthermore, the

Rib approach has been shown to work well in identifying BLDs

from large datasets, for example, those from rawinsondes or

from model reanalysis (e.g., Seidel et al. 2012) and for daytime

convective boundary layers (Seibert et al. 2000), which are the

focus of this study. Another advantage of the Rib approach is

that the approach calculates the BLD not only as a function of

the ABL thermodynamics but also as a function of the ABL

kinematics (e.g., Lee and DeWekker 2016), the latter of which

is important for highly sheared ABLs (e.g., Conzemius and

Fedorovich 2006; Fedorovich and Conzemius 2008; Liu et al.

2018). Additionally, large errors in the measured thermody-

namic variables oftentimes coincide with drastic changes in the

ABL environment. These changes occur in the surface layer or

atop theABL, especially in the entrainment zone in the presence

of shear (Connell and Miller 1995; Fedorovich and Conzemius

2008). Since the surface layer and entrainment zone mainly de-

marcate the ABL, large errors in thermodynamic variables in

these regions can induce significant errors in the estimated BLD.

Regardless of how rawinsonde-based BLDs are determined,

BLDs are subject to errors caused by instrument errors. Since

the BLD represents the height in the atmosphere to which

turbulent mixing processes occur, errors in BLD estimates can

have significant impacts for, e.g., air quality and dispersion

models, numerical weather prediction (NWP) models, and

inversion models in which the BLD is used as a scaling factor

within the context of similarity theory (e.g., Stull 1988). Errors

in rawinsonde-derived thermodynamic parameters arise for

many reasons. For example, temperature and relative humidity

(RH) errors occur due to solar radiation heating the sensor and

causing a dry RH bias (e.g., Dupont et al. 2020), contamination

by surface heating prior to launch, and erroneous temperature

and pressure initialization (Connell andMiller 1995). Errors in

the RH arise due to, e.g., the time response of RH sensor of the

sondes, the sensor’s dependence on temperature gradients, and

its time lag for low temperatures (e.g., Dupont et al. 2020).

Errors in rawinsonde-derived wind speed may arise due to the

pendulum-type motion of the rawinsonde while the rawinsonde

is in theABL or entrainment zone (e.g.,MacCready 1965;Wang

et al. 2009). Other BLD errors arise by the technique used to

compute the BLD itself. For example, Seidel et al. (2012) found

BLD errors on the order of a few hundred meters when exam-

ining the sensitivity of Ric value used, the interpolation of the

Rib profile to Ric, and the sounding vertical resolution.

Despite the aforementioned studies on BLD errors, to the

best of the authors’ knowledge, no known studies have sys-

tematically examined the sensitivity of the calculated BLDs to

errors in temperature, relative humidity, and horizontal wind

measurements made by rawinsondes or have addressed the

impact of errors in those variables on BLDs computed using

the Rib approach. Knowledge of potential errors that may arise

is critical for better using BLDs in atmospheric process studies,

intercomparisons of BLDs obtained from different platforms,

and for other applications including, e.g., air quality and NWP

models. For example, Kretschmer et al. (2012) and Pino et al.

(2013) reported that the influence of errors in BLD simulations

drives large uncertainties in the inverse modeling of regional-

scale greenhouse gas fluxes. Tangborn et al. (2020) recently

illustrated that BLD assimilation helps improve forecasts of

ABL thermodynamic fields.

For most commercially available rawinsondes, the manufacturer-

reported uncertainties are quite low and are summarized in

Table 1. For example, the Vaisala radiosonde RS41-SG has a

manufacturer-reported temperature uncertainty of 0.38C for

observations below 16km. The uncertainty in the sounding

for measured RH from the RS41-SG is 4% and is 0.15m s21 for

wind speed. Similar levels of uncertainty are reported for other

commercially available radiosondes. Additionally, according to

the World Meteorological Organization’s (WMO) Observation

Systems Capability Analysis and Review Tool (OSCAR), which

is a critical component of the WMO Integrated Global

Observing System (WIGOS), three different requirement

levels have been outlined for using observations in numerical

simulations. For instance, the threshold level (i.e., the mini-

mum requirement for the usefulness of observations) re-

quirement for temperature, RH, and wind uncertainties for use

in high-resolution NWPs is 38C, 10%, and 5m s21, respectively.

The breakthrough level (i.e., at which there is a significant

improvement of an application and that is optimum from a

cost-benefit point of view) requirement for temperature, RH,

and wind uncertainties for high-resolution NWPs is 18C, 5%,

and 2m s21, respectively. However, it is unclear how these

errors impact the errors in the BLD estimation.

The aim of this work is to better understand how uncer-

tainties in the thermodynamic and kinematic fields obtained

from rawinsondes, coupled with the errors induced by other

factors described previously (e.g., radiative effects, the rawin-

sonde’s pendulum-type motion, etc.), affect the calculated

BLD. To this end, we examine the sensitivity of BLDs to errors

in the temperature, moisture, and wind fields over three sites

in the continental United States spanning 35 years.

2. Data and methods

We used rawinsonde observations from the Integrated

Global RadiosondeArchive (IGRA; e.g., Durre and Yin 2008)

TABLE 1. Manufacturer-stated accuracy from commonly used rawinsondes for sampling BLDs.

Instrument Temperature accuracy Relative humidity accuracy Wind speed accuracy

Vaisala radiosonde RS41-SG 0.38C (,16 km); 0.48C (.16 km) 4% 0.15m s21

Graw DFM-09 radiosonde 0.28C 4% —

Windsonde 0.38C 2.0% —

iMet-4 radiosonde 0.58C (.100 hPa); 1.08C (,100 hPa) 5% 0.5m s21

iMet-1-ABxn radiosonde 0.28C 5% —
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for the period from 1 January 1981 through 31 December 2015

at three sites in the contiguous United States: Sterling, Virginia;

Amarillo, Texas; and Salt Lake City, Utah (Table 2). The use of

35 years of rawinsonde-derived BLDs at sites in three different

geographic and climatic regimes (i.e., humid subtropical, tropi-

cal and subtropical steppe climate, and warm summer conti-

nental at Sterling, Amarillo, and Salt Lake City, respectively,

based on the Köppen climate classification; Lee and Pal 2017)

allowed for a robust investigation of the biases caused by errors

in the rawinsonde-derived thermodynamic and kinematic fields.

The IGRA datasets at each site are mostly complete but

there are days with missing data. Because of the missing data,

BLDs are able to be computed on 81%, 76%, and 74% of the

days at Sterling, Amarillo, and Salt Lake City, respectively.

We calculated the BLD by first computing Rib, whereby bulk

gradients are used to approximate local gradients present in

the computation of the gradient Richardson number (Ri):
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In Eq. (1), g, uy, z, u and y represent the gravitational accel-

eration, virtual potential temperature, sampling height, zonal

wind component, and meridional wind component, respec-

tively.When calculating the bulk gradients, we used the surface

as the lower bound. Because surface wind speeds are not

routinely available in sounding databases like IGRA, following

Seidel et al. (2012), we used 0m s21 for the surface wind speeds.

We then followed the approach developed by Lee and De

Wekker (2016) to estimate the afternoonBLD. Their approach

removes near-surface stable layers, i.e., where Duy . 0, from

the 0000 UTC IGRA rawinsonde observations to determine

the depth of the afternoon boundary layer. We defined the

depth of the afternoon boundary layer as the first height at

which Rib exceeded the critical Richardson number Ric.

Previous studies have used 0.25 for Ric (e.g., Vogelezang and

Holtslag 1996; Seidel et al. 2012), and sensitivity studies to the

choice of Ric are reported in, for example, Seidel et al. (2012).

Additionally, we defined the BLD as the height of the ABL

relative to ground level to remove the effect of terrain eleva-

tion on the ABL.

We used the BLDs computed using the above technique to

be the ‘‘true’’ BLDs, which we define here as BLDobs, and then

evaluated the impact of height-independent errors in temper-

ature, RH, and the zonal and meridional wind components on

the BLD. A systematic evaluation of these hypothetical errors

in state variables is important because temperature errors in

rawinsondes occur due to the temperature sensor’s time con-

stant. These effects become most important in the presence of

sharp vertical gradients, such as those occurring atop the ABL

and at the secondary inversions beyond the ABL top. In ad-

dition to applying errors to the temperature fields, we also

applied errors to the rawinsonde-derived RH and wind fields.

In this work, we explore BLD errors occurring due to errors

in not only the thermodynamic fields, but also the kinematic

fields. We introduced these errors by applying a constant bias

to the measured variable at each height in the rawinsonde

profile and then iterated this for each incremental perturbation

in the error range. For example, when we evaluated the impact

that a 238C temperature bias has on the BLD, we subtracted

38C from each temperature measurement at each height in the

rawinsonde profile, but did not modify any other variables. We

then computed the BLDusing themodified profile following the

approach described earlier.

We introduced height-independent errors of temperature,

RH, and horizontal wind (both zonal and meridional compo-

nents) throughout the entire rawinsonde profile. Considering

height-independent errors allows us to examine the impact of

both random errors and instrumental errors that persist

throughout the lower troposphere (i.e., 5–6 km AGL) but may

vary among soundings (WMO 2017, 2018). The introduction of

height-dependent errors would cause additional uncertainty,

for example, in rawinsonde profiles containing multiple ele-

vated inversions. Additionally, height-dependent errors based

on analytical functions can be prone to errors in the surface-

layer temperature structure. Furthermore, the development of

analytical functions for errors in the thermodynamic variables

following the physics of the real ABL is a highly challenging

task. We acknowledge that one of the shortcomings of our

approach is that we cannot examine the impact of vertical

resolutions and smoothing of the thermodynamic and kine-

matic variables, but acknowledge that the investigation of er-

rors in sounding vertical resolution has already been conducted

by Seidel et al. (2012).

For the analyses presented, we introduced the WMO-

specified observation-inclusion thresholds as our error ranges

(cf. section 1), which are 638C, 610%, and 65m s21 for

temperature, RH, and wind speed, respectively. Also, these

levels are the threshold requirements for including observa-

tions in high-resolution NWP as mentioned before. To illus-

trate how we investigated the impact of errors in temperature,

RH, and wind, we used the rawinsonde profile obtained on

11 January 2015 profile at Amarillo. To examine the sensitivity

of computed BLDs to errors in temperature, we performed

sensitivity tests over the range from 238 to 138C at 0.18C in-

crements. When introducing these perturbations to the tem-

perature fields, the humidity and wind fields were not changed.

We then used the perturbed temperatures to compute uy and

calculated the BLD using Eq. (1). Doing so yielded 60 different

Rib profiles, and thus 60 different BLDs, as illustrated in

Figs. 1a and 1b. For instance, the blue region in Fig. 1a rep-

resents errors in temperature profile around the ‘‘true’’ profile;

however, the vertical spread of the red line indicating ABL top

was negligible. Thus, in this instance, modifying the tempera-

ture profile by 638C had a negligible impact on the BLD.

However, it remains unclear how different temperature

TABLE 2. Station name, latitude, longitude, and elevation for the

sites considered in this study.

Station name Lat (8) Lon (8) Elev (m)

Sterling 8.98 277.48 86

Amarillo 35.23 2101.70 1094

Salt Lake City 40.77 2111.97 1288
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profiles with imposed height-dependent errors, different

temperature inversion strengths, entrainment zone structures,

different time scales of sensors, different rawinsonde ascent

rates, and differentABL regimes under variousmeteorological

conditions, etc. impact errors in retrieved BLDs computed

using the Rib approach. Thus, one needs to examine errors for

many profiles, which we do in the next section.

We used the same rawinsonde profile obtained on

11 January 2015 profile atAmarillo and repeated the sensitivity

test for RH, keeping the temperature and wind fields constant,

and performed this test over the range from210% to110% at

0.2% increments. The perturbed values for RH were used to

compute the specific humidity, q, which was then used to cal-

culate uy and to compute the BLD following Eq. (1). The im-

pacts of changing RH are illustrated in Figs. 1c and 1d. As with

temperature, varying RH by610%did not significantly impact

the BLD on this particular day.

We performed similar sensitivity tests for the zonal and

meridional wind components over the range from 25 to

15m s21 at 0.1m s21 increments using these perturbed values

in Eq. (1) while keeping the temperature and moisture fields

constant. The impact of varying u on the Rib profiles is illus-

trated in Figs. 1e and 1f, and the impact of varying y is shown in

Figs. 1g and 1h. On this particular day, variations in u and

y had a more significant impact than varying the thermody-

namic quantities on the Rib profiles and thus led to BLD

errors, which we define as dBLD, of ;100m.

The results obtained using the 11 January 2015 profile at

Amarillo help illustrate the methodology of the impact of er-

rors in the state variables on the estimation of BLDs for a

single case. However, it remains unclear how the impact of

similar errors emerges for a range of ABL regimes throughout

the year under different meteorological conditions (e.g., dif-

ferent seasons). A more detailed analysis on the impact of

these errors allows for more generalized conclusions to be

drawn and is the focus of the next section.

3. Results and discussion

a. Errors in rawinsonde-derived temperature fields

One of the driving factors behind this work is the application

of the results to evaluate errors in BLD measurements for

different ABL applications including NWP and BLD inter-

comparison efforts. To investigate how these errors affect

BLD, we plotted dBLD as a function of the temperature

error for all profiles, as was done in the single example profile

shown in Fig. 1. We then sorted dBLD into 10-m bins and

determined the number of occurrences N within each of

these bins to illustrate the spread of dBLD due to imposed

temperature errors. Because the number of cases per bin

varied significantly, we report log10(N), rather than the ac-

tual number of occurrences. Additionally, we calculated the

2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th percentiles of

dBLD to further illustrate the range of dBLD as a function

of errors in the rawinsonde-derived thermodynamic and

kinematic fields.

We found that the dBLD from Sterling, Amarillo, and Salt

Lake City behaved similarly in terms of their respective biases

when inducing an error to the rawinsonde’s temperature

measurements and then computing the BLDs (Fig. 2).

FIG. 1. Sensitivity test, using the 0000 UTC 11 Jan 2015 sounding at Amarillo on the impact of (a) temperature biases (blue lines

illustrate the error range) on (b) the Rib profile (blue lines; not visible because effect is negligible) and the BLD (red lines; again the effect

is negligible). (c) The impact of RH errors on (d) the Rib profile and BLD. The same analysis is shown for the effect of (e),(f) the u wind

component and (g),(h) y wind component. The black lines show the observed rawinsonde profile for each quantity on the x axis [identical

in (b), (d), (f), and (h)].
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FIG. 2. Dependence of dBLD on temperature biases from 238C to 138C at (a) Sterling,

(c) Amarillo, and (e) Salt Lake City. The distribution is shown in log10(N) scale (see color bar

range from 0.25 to 3.75). Here, N is the number of cases each bin, wherein the data are binned

every 10m and every 0.18C. (b), (d), and (f) show the percentiles at each of the sites, respec-

tively; purple, blue, green, black, orange, red, and brown correspond to the 2.5th, 5th, 10th,

50th, 90th, 95th, and 97.5th percentiles, respectively.
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These results indicate that negative and positive biases in

temperature mainly yield positive and negative dBLD, re-

spectively. In the extreme case of a 638C bias in temperature,

BLD errors were 6300m at the 2.5th and 97.5th percentiles

and were similar across all sites. We also noted a few instances

at all sites in which dBLD were significantly high, approaching

1000m in a few circumstances (i.e., Figs. 2a,c,e), and we found

that the BLD errors do not linearly vary from negative to

positive biases. Thus, a simple analytical correction for these

results cannot be applied.

The relationship between temperature biases and dBLD

initially appears counterintuitive, since one would expect a

positive temperature bias to increase the BLD. However, this

is not consistently the case because of how the errors in tem-

perature are propagated to compute Rib. When keeping all

other variables constant, a change in temperature results in a

change to the saturation vapor pressure es. We computed es
using the following equation from Magnus (1844), where T is

the air temperature:

e
s
5 6:1078exp

�

17:269T

T1 237:3

�

. (2)

Because we are keeping RH constant, changing es results in a

change in the actual vapor pressure e. The change to e results in

differences to q, thereby modifying not only uy but, more im-

portant, modifying the uy gradient, affecting Rib and thus the

computed BLDs.

b. Errors in rawinsonde-derived relative humidity fields

We performed similar analyses for RH as for temperature

and found that dBLD was larger for RH errors than for tem-

perature errors (Fig. 3). In the extreme scenario of a210%RH

bias, errors in BLDwere up to 500–700m at Sterling, Amarillo,

and Salt Lake City. In contrast, a 110% RH bias resulted in

errors at the 97.5th percentile of around 500m at Amarillo and

Salt Lake City but around 400m at Sterling. As was the case

with temperature biases, there were instances at all three sites

in which dBLD approached 1000m even for relatively small

perturbations to the RH field. A similar argument can be made

for the relationship between dBLD and RH bias. Changes in

RH result in changes to e, causing q to change. The change in q

affected uy, thus affecting the uy gradient, which altered Rib
and the computed BLD.

Errors in rawinsonde-derived RH measurements of 5%–

10% in the daytime ABL have been reported in, e.g.,

Dupont et al. (2020), who attributed RH errors in the

lowest 2 km of the ABL to errors in temperature between

the temperature measured by the RH sensor itself and the

actual air temperature observed by the rawinsonde’s tem-

perature sensor. Furthermore, the manufacturer-stated

accuracies of many commercially available rawinsondes are

on the order of 4%–5% (cf. Table 1), which does not include,

for example, considerations of the sensor’s time response

when the rawinsonde is ascending through rapidly changing

moisture regimes such as those that can occur atop the ABL

(e.g., von Engeln and Teixeira 2013). As we show here, RH

errors of even 4%–5% can have a significant impact on the

calculated BLD.

c. Errors in rawinsonde-derived kinematic fields

So far, we have focused on the impact of errors in the

rawinsonde-derived thermodynamic measurements on dBLD,

which are important for ABLs governed by buoyancy-driven

turbulence. However, we have not yet considered the impact of

errors in the rawinsonde-derived kinematic fields. Knowledge

of the potential impacts of errors in these fields is especially

important for highly sheared ABLs (e.g., Conzemius and

Fedorovich 2006; Fedorovich and Conzemius 2008; Liu et al.

2018). Additionally, it has been found that frontal envi-

ronments pose additional challenges characterizing BLD

variability when temperature, moisture and wind change

drastically before and after frontal passages (e.g., Boulte et al.

2010; Clark et al. 2020).We found nontrivial BLD errors across

all stations when introducing perturbations to the u and y wind

components as compared with the thermodynamic quantities.

At Sterling, a 25m s21 bias in the u wind component resulted

in dBLD of about 900m at the 2.5th percentile, and there

were a few cases in which dBLD exceed 1000m (Fig. 4). Errors

were smaller at Amarillo and Salt Lake City than at Sterling,

but dBLD was still at times . 500m.

The findings for errors in the uwind component were largely

consistent with those for the y wind component (Fig. 5), as

dBLD was generally between 2500 and 1 500m. Unlike for

temperature and moisture, there was no clear tendency be-

tween negative biases and positive biases, as dBLDwas similar

for the u and y wind components. As a result, themedian dBLD

was ;0m. Knowledge of wind-induced errors on BLD is im-

portant because, as noted in section 1 and summarized here,

the pendulum-like motion of the rawinsonde during its ascent

through the ABL can induce errors in the kinematic fields

(e.g., MacCready 1965; Wang et al. 2009).

d. Dependence of dBLD on BLD regimes

From the analyses presented in the previous sections of in-

troducing errors to rawinsonde-derived thermodynamic and

kinematic fields and then computing the BLD, we conclude

that dBLD as a function of the biases that we introduced is

similar across all three sites. So far, we have not discussed the

different regimes in which dBLD is largest. Doing so is es-

sential because of the different types of BLD variabilities that

are routinely observed. For example, shallow and deep BLDs

can occur both in the cold and warm seasons (e.g., Liu and

Liang 2010; Seidel et al. 2012; Lee and Pal 2017), spatial

BLD variability exists for terrain-following versus terrain-

independent ABL regimes (e.g., Kalthoff et al. 1998;

Kossmann et al. 1998; Lee and De Wekker 2016; Pal et al.

2016), and both shallow and deep BLD regimes can be present

during the early-morning (e.g., Lenschow et al. 1979) and

early-evening (e.g., Acevedo and Fitzjarrald 2001) transition

periods. Furthermore, there are different ABL regimes in

which deep versus shallow BLDs prevail, i.e., stable ABLs

versus convective ABLs (e.g., Stull 1988), sheared versus

nonsheared ABLs (e.g., Fedorovich and Conzemius 2008),

cloud-topped versus cloud-free ABLs (e.g., Garratt 1994),

moist ABLs versus entrainment-dryingABLs (e.g., Stull 1988),

quasi-stationary versus growing ABLs (e.g., Pal and Haeffelin 2015;
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Muppa et al. 2016), ABLs over land versus ABLs over

water (e.g., Garratt 1994), and rural versus urban ABLs

(e.g., Pal et al. 2012).

Because of the many causes of BLD variability, it is critical

to investigate the uncertainties in BLDs for shallow versus

deepABLs. To investigate the relationship between dBLDand

BLDob, we sorted BLDobs into 500-m bins and calculated the

BLD errors caused by temperature biases. Here we selected

temperature biases,63.08C although we note that our results

are not significantly affected by our choice of this threshold,

as the trends are present for other thresholds as well based

on sensitivity tests using thresholds of 60.58 and 61.08C

FIG. 3. As in Fig. 2, but for relative humidity. Data are binned every 10m and every 0.2%.
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(not shown). When using a threshold of638C, we found only

very small values of dBLD for shallow BLDs (i.e., those

;500m AGL). For deep BLDs (i.e., those .3000 m AGL),

dBLD ranges from about 2300 to about 125 m at the 2.5th

and 97.5th percentiles, respectively, as is shown in the

example from Amarillo (Fig. 6a). The relationship between

dBLD and BLD is consistent at Sterling and Salt Lake City

(not shown).

We found a similar increase in dBLD as a function of BLD

when selecting RH biases,610%, although the magnitude of

FIG. 4. As in Fig. 2, but for the zonal (i.e., u) wind component. Data are binned every 10m and

every 0.1m s21.
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the errors is larger for deeper BLDs (Fig. 6b). For example,

BLDs exceeding 3000m have errors at the 2.5th and 97.5th

percentiles ranging from 2500 to 2600m and from 1200 to

1300m, respectively. Sensitivity results for RH biases , 62.5%

and, 65% (not shown) yielded similar conclusions on the

relationship between dBLD and BLD, and this relationship

is consistent with Sterling and Salt Lake City (not shown).

The relationship between dBLD and BLD is less clear when

selecting u- and y-wind biases , 65m s21 and plotting dBLD

as a function of BLDobs (Figs. 6c,d). In both cases, we found a

FIG. 5. As in Fig. 2, but for themeridional (i.e., y) wind component. Data are binned every 10m

and every 0.1m s21.
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decrease in dBLD as a function of BLD. For example, BLDs

that are ;500 m have a dBLD that ranges from ; 2100

to 1400m at the 2.5th and 97.5th percentiles, respectively,

whereas BLDs that are ;3500 m have a dBLD that ranges

from ; 2200 to 1150 m at the 2.5th and 97.5th percentiles,

respectively. Sensitivity tests for u- and y-wind biases , 61

and , 63m s21, as well as analyses of the other two sites,

yielded similar conclusions regarding the relationship be-

tween dBLD and BLD. In the future, we plan to extend

these analyses by selecting sheared versus nonsheared ABL

regimes and will investigate the dependencies of u and

y errors on dBLD.

e. Combined effects of errors in the thermodynamic and

kinematic fields on dBLD

So far, we have considered the effects of individual factors

on the estimated BLDs separately. However, it is also impor-

tant to consider the cumulative impact of different factors (i.e.,

simultaneous uncertainties of temperature, RH, and horizontal

wind) on the estimated boundary layer depth. To examine the

FIG. 6. The dBLD as a function of BLD at Amarillo for (a) temperature biases , 638C, (b) relative humidity

biases, 610%, (c) u-wind-component biases , 65m s21, and (d) y-wind-component biases , 65m s21. Purple,

blue, green, black, orange, red, and brown lines correspond to the 2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th

percentiles, respectively. BLD is binned into 500-m bins.
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combined effect of different factors on the estimated BLDs, we

simultaneously perturbed the temperature, humidity, and wind

fields over the entire profile and then recalculated the BLDs as

presented via box-and-whisker analyses of dBLD for a range of

biases in T, RH, and wind components (Fig. 7). We found that,

in the extreme cases (i.e., a temperature, RH, u-wind, and

y-wind bias of 238C, 210%, 25, and 25m s21, respectively),

dBLD ranged from about 2900m at the 2.5th percentile to

around 1500m at the 97.5th percentile, as shown in the ex-

ample from Amarillo (Fig. 7). At the other extreme (i.e., a

temperature, RH, u-wind, and y-wind bias of138C,110%,15,

and15m s21, respectively), dBLD ranged from about2200 to

1000m at the 2.5th and 97.5th percentiles, respectively. These

conclusions were consistent at Sterling and Salt Lake City (not

shown). Since this is the first time this has been investigated, we

are unable to place these results into the context of other

studies. Notwithstanding, it became evident once again that the

impact of errors of the horizontal wind components (i.e., ki-

nematics) on dBLD is substantial.

f. Mean biases in the rawinsonde-derived thermodynamic

and kinematic fields

Averaging the biases across all three sites also allows for us

to quantify the expected errors given a known bias in tem-

perature, RH, and wind obtained from rawinsondes. To this

end we report the mean dBLD, that is, dBLD, at the 2.5th and

97.5th percentiles, as 95% of all cases will fall within these

bounds. dBLD for the thermodynamic fields is summarized in

Tables 3 and 4 and highlights the nontrivial errors associated

with biased moisture measurements as dBLD was 609 and

483m for a210% and110% RH bias, respectively. Computing

dBLD at the 2.5th and 97.5th percentiles also allows us to il-

lustrate the errors present in the u and y wind components

(Table 5), which, when averaged across all three stations, range

from2705 to 432m (from2569 to 591m) for a25m s21 in the

u (y) wind component and from 2241 to 731m (from 2453 to

634m) for a 1 5m s21 in the u (y) wind component.

g. Comparison with previous studies

Our results indicate errors in BLD measurements were

similar across different geographic regions and climate re-

gimes. Accordingly, we conclude that our approach for BLD

error characterization is universal and can be implied to other

sites. Thus, the results provide information on the magnitude

of errors in BLD caused by errors in rawinsonde-derived

temperature, moisture, and wind fields. We show that these

FIG. 7. Box-and-whisker plot illustrating the combined effects of biases in temperature,

humidity, and wind on dBLD at Amarillo. The boxes encompass the 25th–75th percentiles, the

x indicates the 50th percentile, and the whiskers extend out to the 10th and 90th percentiles.

Filled circles represent the 2.5th, 5th, 95th, and 97.5th percentiles. The number of cases in each

category is shown at the bottom of the figure.

TABLE 3. Mean 2.5th and 97.5th percentiles of BLD differences

over all stations for temperature biases, ranging from 23.08 to

3.08C in increments of 0.58C.

T bias (8C)

dBLD, 2.5th

percentile (m)

dBLD, 97.5th

percentile (m)

23.0 222.0 310.2

22.5 218.3 257.5

22.0 214.9 199.8

21.5 211.2 146.8

21.0 27.6 92.9

20.5 23.9 43.8

0.0 0.0 0.0

0.5 244.5 4.2

1.0 294.3 8.6

1.5 2153.8 13.8

2.0 2214.0 18.8

2.5 2279.1 24.5

3.0 2341.1 30.3
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errors can be nontrivial. The errors that we identify are of

similar magnitude to those found by Seidel et al. (2012) in their

study of the sensitivity of BLDs computed using the Rib ap-

proach to several different metrics. In their study, they also

used IGRA-derived rawinsonde observations and examined

the sensitivity of BLDs computed using the Rib approach to

1) the choice of Ric, 2) errors caused by using 0m s21 for the

surface wind speeds, 3) interpolation of the Rib profile to Ric,

and 4) the sounding vertical resolution. The choice of Ric and

interpolation of the Rib profile to Ric yielded the smallest er-

rors in BLD. Using values of 0.25 and 0.30 for Ric, Seidel et al.

(2012) found that uncertainties in the BLD were ,50

and ,80m at the 50th and 75th percentiles, respectively,

whereas interpolation errors yielded BLD uncertainties of

;100 and ;150m at the 50th and 75th percentiles, respec-

tively. The vertical resolution of the rawinsonde data, as well as

errors caused by using 0m s21 for the surface wind speeds,

were nontrivial error sources in the computed BLDs, particu-

larly for shallowABLs (i.e., ABLs, 1 km deep) in which BLD

errors were as high as 50% (Seidel et al. 2012). Surface wind

speed errors yield BLD errors of ;50–200m (;200–600m) at

the 50th (75th) percentiles (Seidel et al. 2012), which are

comparable to the errors we identified in the present work.

4. Summary and concluding remarks

We used 35 years of rawinsonde observations from three

sites in the contiguous United States to investigate the impact

of errors of thermodynamic and kinematic variables on re-

trieved BLDs, allowing for a quantitative assessment of the

dBLD based on large datasets over land. The thermodynamic

and kinematic errors arise due to 1) inherent errors in the

rawinsonde measurements themselves based onmanufacturer-

reported uncertainties, and 2) errors caused by the envi-

ronment (e.g., radiative effects on the thermodynamic

measurements). We found similarities among the three sites,

which were located in different geographic and climactic

TABLE 4. Mean 2.5th and 97.5th percentiles of BLD differences

over all stations for RH biases, ranging from 210.0% to 10.0% in

increments of 1.0%.

RH bias (%)

dBLD, 2.5th

percentile (m)

dBLD, 97.5th

percentile (m)

210.0 2609.1 16.5

29.0 2559.2 15.0

28.0 2493.1 12.9

27.0 2432.8 11.1

26.0 2364.5 8.9

25.0 2301.1 7.4

24.0 2237.3 5.8

23.0 2175.3 4.1

22.0 2110.5 2.2

21.0 252.7 0.7

0.0 0.0 0.0

1.0 20.4 47.0

2.0 20.9 98.2

3.0 21.3 147.7

4.0 21.8 200.5

5.0 22.4 248.7

6.0 23.2 290.6

7.0 24.0 337.8

8.0 24.8 390.8

9.0 25.2 438.1

10.0 26.2 482.9

TABLE 5. Mean 2.5th and 97.5th percentiles of BLD differences over all stations for biases in the u and y wind components, ranging from

25.0 to 5.0m s21 in increments of 0.5m s21.

Bias (m s21)

dBLD, 2.5th-percentile

u component (m)

dBLD, 97.5th-percentile

u component (m)

dBLD, 2.5th-percentile

y component (m)

dBLD, 97.5th-percentile

y component (m)

25.0 2704.8 431.9 2568.7 591.5

24.5 2653.8 397.3 2538.2 539.2

24.0 2601.7 361.7 2508.5 492.0

23.5 2549.2 321.0 2470.6 443.8

23.0 2481.9 285.4 2427.4 394.5

22.5 2414.3 241.3 2368.1 343.6

22.0 2343.9 204.7 2306.8 280.3

21.5 2259.2 153.6 2240.4 208.6

21.0 2176.3 104.0 2166.2 140.6

20.5 286.3 53.5 283.9 71.3

0.0 0.0 0.0 0.0 0.0

0.5 249.4 86.3 269.1 87.7

1.0 288.6 173.6 2135.1 173.9

1.5 2121.8 264.9 2196.6 252.6

2.0 2154.7 352.1 2247.3 331.4

2.5 2176.6 430.6 2293.8 391.5

3.0 2193.3 497.1 2335.2 454.7

3.5 2211.2 555.4 2371.1 500.8

4.0 2225.4 611.6 2406.1 546.1

4.5 2235.1 667.7 2429.4 591.5

5.0 2240.9 731.1 2453.3 633.6
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regimes, when inducing perturbations to the rawinsonde-

derived thermodynamic and kinematic fields. For example,

for a 228C (128C) bias in temperature, dBLD ranged from

215 to 200m (from2214 to 18m); for a25% (15%) RH bias,

dBLD ranged from 2302 to 7m (from 2 to 249m). In the case

of a 62m s21 bias in the zonal and meridional wind compo-

nents, BLD errors were around 6300m. dBLD increased as a

function of BLD when introducing errors to the thermody-

namic fields, and dBLD decreased as a function of BLD when

introducing errors to the kinematic fields.

As the Rib approach is the most widely applicable method

for computing BLDs from rawinsonde observations, the find-

ings in this study expand upon previous work quantifying er-

rors in BLDs from rawinsondes (e.g., Seidel et al. 2012; Dupont

et al. 2020) by providing a framework to determine the sensi-

tivity and the range of expected BLD errors due to errors in

rawinsonde-derived temperature, RH, and wind measure-

ments. This work also proposes a new approach to identify the

dependencies of these errors across a range of BLDs that fre-

quently occur due to diverse meteorological conditions.

Furthermore, this work underscores that errors in BLD es-

timates obtained from rawinsondes are not systematic, which is

important because rawinsondes are oftentimes used as the

primary source for ABL and upper-air observations. These

errors can be problematic when performing BLD climatologies

across multiple seasons and for multiple geographic and cli-

matic regions. For this reason, we recommend that, when

BLDs from rawinsondes are reported, there also needs to be an

uncertainty reported with these values. Utilizing these uncer-

tainties is also important when comparing rawinsonde-derived

BLDs with different datasets, including both profile-derived

BLDs (i.e., BLDs obtained from lidars, sodars, AERIs, etc.)

and BLDs obtained from numerical simulations. In lieu of the

quantified errors in dBLD, we recommend using quality flags,

providing metadata based on the errors in the thermodynamic

variables via routine sensor calibrations on seasonal scales,

and/or reporting ascent rates of the rawinsondes over the lower

part of the troposphere (e.g., 1.5 times the BLD).

In future work, similar sensitivity analyses as those pre-

sented in the present study should be applied to other ap-

proaches that can be used for determining BLDs from

rawinsondes (e.g., the parcel method, height of the elevated

inversion), as well as from other surface-based and remote

sensing instruments (water vapor and temperature lidars, mi-

crowave radiometers) used to determine the BLD (e.g.,

Behrendt et al. 2005; Cimini et al. 2013; Dupont et al. 2020).

Other future research avenues include the exploration of BLD

errors for 1) different atmospheric stability regimes, 2) sea-

sonal changes in surface forcing, 3) complex ABL regimes

(e.g., coastal regions, complex terrain, interface of urban-rural

regions), and 4) diverse advection regimes (e.g., Pal and Lee

2019a,b; Pal et al. 2020).
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