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Understanding the operations of neural networks in the brain requires an un-
derstanding of whether interactions among neurons can be described by a pairwise
interaction model, or whether a higher order interaction model is needed. In this ar-
ticle we consider the rate of synchronous discharge of a local population of neurons,
a macroscopic index of the activation of the neural network that can be measured
experimentally. We analyze a model, based on physics’ maximum entropy principle,
that evaluates whether the probability of synchronous discharge can be described
by interactions up to any given order. When compared with real neural popula-
tion activity obtained from the rat somatosensory cortex, the model shows that
interactions of at least order three or four are necessary to explain the data. We
use Shannon information to compute the impact of high order correlations on the
amount of somatosensory information transmitted by the rate of synchronous dis-
charge, and we found that correlations of higher order progressively decreased the
information available through the neural population. These results are compatible
with the hypothesis that high order interactions play a role in shaping the dynamics
of neural networks, and that they should be taken into account when computing
the representational capacity of neural populations.

Keywords: Spike Synchronization; Mutual Information; Information
Geometry; Maximum Entropy

1. Introduction

Simultaneous recordings of the activity of individual neurons placed within local
networks in the central nervous system show that a large fraction of pairs of neu-
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rons are correlated. The probability of observing near-simultaneous spikes from two
different neurons is often significantly higher than the product of the probability
of observing the individual spikes from each neuron (Li et al., 1959; Perkel et al.,
1969; Mastronarde, 1983 ).

The ubiquitous presence of correlations among the activity of different neurons
has raised the question of what is the impact of correlation upon neural population
coding of sensory stimuli (see (Averbeck et al., 2006 ; Salinas et al., 2001) for recent
reviews). Although the potential role of correlations in neural population codes is
still unclear and robustly debated (Shadlen & Movshon, 1999; von der Malsburg,
1999), theoretical studies have suggested that correlations can profoundly affect the
information transmitted by neural populations. On the one hand, correlations may
play a crucial and beneficial role in the neural code, by increasing the information
content of neural populations (Abbot & Dayan, 1999; Oram et al., 1998; Pola et
al., 2003), by serving as a scheme for implementing associations and binding of
features (von der Malsburg, 1999) or by implementing strategies for error correction
(Schneidman et al., 2006). On the other hand, correlations may reflect correlated
noise arising from the structure of cortical circuits, and may act as a detrimental,
limiting factor to the representational capacity of neural populations (Zohary et al.,
1994; Mazurek & Shadlen, 2002). Whether correlations give a positive or negative
contribution depends on the precise details of the correlational structure of neural
activity (Abbot & Dayan, 1999; Oram et al., 1998; Pola et al., 2003). Determining
the precise structure of correlated activity is thus crucial for the progress of systems
neuroscience.

A particularly important question about the structure of correlated activity of
large neural populations is whether it can be described by considering only pair-
wise interactions, or if genuine high order interactions between neurons are present.
The understanding of the role of high order interactions is important for several
reasons. First, most studies of population codes are based on the recording of neu-
ral pairs and of pairwise correlations ( Panzeri et al., 1999; Nirenberg et al., 2001;
Panzeri et al. 2001; Petersen et al., 2001; Montani et al., 2007). Pairwise studies
can only inform about the behavior of large populations if higher order interac-
tions are absent. Second, the presence of high order interactions has implications
for the understanding of the functional organization of neural networks in the brain
(Martignon et al., 2000), because high order interactions are compatible with in-
formation transmission by activation of tightly connected cell assemblies (Harris,
2005). Third, understanding which is the minimal order of interaction sufficient
to describe correlations among neurons is crucial to develop simple but effective
models of decoding of neural population activity (Nirenberg & Victor, 2007). This
question is only now beginning to be addressed both at the theoretic level (Bohte
et al., 2000; Nakahara & Amari, 2002; Amari et al., 2003) and the experimental
level (Shlens et al., 2006; Schneidman et al., 2006; Tang et al., 2008).

In this study we evaluate the presence of high order correlations in the so-
matosensory cortical network, by investigating whether the observed probability of
synchronous firing to a given sensory stimulus can only be explained by considering
high order interactions, and whether such high order interactions play a role in
transmission of information about the stimuli.
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2. Information Geometry and the probability of synchronous
discharge in an homogeneous neural population

We consider a population of N neurons whose activity is simultaneously observed
during a specified short time window of size ∆t following the presentation of a
sensory stimulus s taken from a set of S different stimuli. We represent neuronal
population activity by a binary vector x = (x1, ..., xN ) in the space X of all binary
vectors of length N , where xi = 0 if neuron i is silent in some time window and xi =
1 if it is firing one or more spikes. The probability distribution P (x|s) of observing
population response conditional to the presentation of stimulus s can be expressed
using different coordinate systems. The most obvious way of characterising such
a distribution is by specifying the 2N − 1 individual probability values; these are
called the p-coordinates. Alternatively, the probability can be determined by the
2N−1 marginal probability values; these are called the η-coordinates (Amari 2001).
Provided P (x|s) 6= 0 for any x, any such distribution can be expanded in the so-
called log-linear model, or θ-coordinates system (Amari, 2001; Nakahara & Amari,
2002; Martignon et al., 2000):

P (x|s) = exp





∑
xiθ̂i +

∑

i<j

xixj θ̂ij+ (2.1)

∑

i<j<k

xixjxkθ̂ijk + ... +
∑

i<...<N

xi...xN θ̂i...N − ψ





where the 2N−1 different θ̂ coefficients uniquely determine the distribution and are,
at least in principle, stimulus dependent (although in the following their stimulus
dependence will be dropped for notational simplicity). The use of this coordinate
system to study probabilities and interactions was pioneered in the early eighties
by Amari and coworkers (Amari, 1980; Amari, 1982), and then was later refined
by the same authors (Amari & Nagaoka, 2000; Amari, 2001), in part thanks to
the influential work of Curado and Tsallis (Curado & Tsallis, 1994) in developing
a generalized theory of statistical mechanics. In this article, we will use the above
θ-coordinate system because (as demonstrated in (Amari 2001) and discussed in
the next section) it is the most natural coordinate system to study interactions
between variables.

In order to simplify the analysis, and following previous theoretical work (Bohte
et al., 2000; Amari et al., 2003), we will make a strong assumption about the neu-
ral population. We assume that the neural population is a fully homogeneous pool;
that is all the parameters characterizing single neuron properties and interactions
between any group of neurons do not depend on the precise identity of the consid-
ered neurons, but only on the number of neurons considered. With this assumption
the probability distribution is now characterised by only N parameters. Due to the
symmetry of the population all the θ-coordinates of a given order, k, are equal and
can be represented by θk. For example, all interaction coefficients at order 3, θ̂ijk,
are equal to a single parameter that we indicate by θ3. Under the homogeneous
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pool assumption, Eq. (2.1) becomes:

P (x|s) = exp





∑
xiθ1 +

∑

i<j

xixjθ2+ (2.2)

∑

i<j<k

xixjxkθ3 + ... +
∑

i<...<N

xi...xnθN − ψ





Since the neurons are identical, the probabilities of all responses with m neurons
firing are equal to each other. Thus, from the conditional distribution P (x|s) of
the population response conditional to stimulus s, it is convenient to extract a
simpler but still relevant probability distribution: the distribution P (m|s) of the
number m from the space M = {0, 1, . . . , N} of neurons simultaneously firing in
response to stimulus s during the considered post-stimulus time interval. In the
rest of the paper, we will denote m as the rate of coincident firing (because it
is proportional to the fraction of active neurons at any given time). Due to the
homogeneity assumption, P (x|s) and P (m|s) are simply related by combinatorial
factors and P (m|s) is given by the following:

P (m|s) =
∑

x∈Xm

P (x|s) (2.3)

=
(

N

m

)
P (x1 = · · · = xm = 1;xm+1 = · · · = xN = 0|s)

where Xm is the set of all vectors x containing exactly m cells firing. Hence equation
(2.1) becomes:

P (m|s) =
(

N

m

)
e

{
m∑

i=1
(m

i )·θi−ψ(θ)

}

(2.4)

θi represents the effect on the log-probability of interactions of order i in the neu-
ronal pool. The marginals ηm, which are the probabilities of any m particular
neurons firing at the same time are (Bohte et al., 2000)

ηm =
N∑

i=m

(
N −m

i−m

)
P (i)(

N
i

) (2.5)

The probability of the number of neurons coincidentally firing is of physiological
interest, because the number of near coincident inputs to a cell postsynaptic to
the considered neural population is likely to be a key factor in determining the
probability of firing of the postsynaptic cell (Softky, 1995; König et al., 1996). Thus,
the probability of coincident firing is likely to play a role in the actual information
transmission as well as in the information representation.

The assumption of a homogeneous neural pool is of course an oversimplifica-
tion of the properties of real neural networks and strongly limits the domain of
applicability of this formalism. It is however crucial to allow us to robustly study
the response probabilities of relatively large neural populations (a few tens of neu-
rons) at fixed stimuli. The analysis of tens of neurons would be more problematic
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when considering the full non-homogeneous model (Eq. 2.1), both because of com-
putational problems (Martignon et al., 2000) and data sampling issues (Panzeri et
al., 2007) related to the larger number of parameters to be estimated in the non-
homogeneous model. Fortunately, the neural populations to which we will apply
our analysis are relatively well described by the homogeneous-pool assumptions, as
we will discuss below.

3. Investigating the order of interaction through the
maximum entropy principle

A rigorous way to investigate the effects of different orders of interaction is provided
by the technique of maximum entropy, which was originally introduced in statistical
physics (Jaynes, 1957), and is now beginning to be used in neuroscience (Martignon
et al., 2000; Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2006; Nirenberg
& Victor, 2007; Montemurro et al., 2007).

The idea of the maximum entropy (ME) principle is to first fix some constraints
that are of interest. We then seek the simplest, or most random, distribution subject
to those constraints. This removes all types of correlation or structure in the data
that does not result from the constrained features. Since entropy is a measure of
randomness, looking for the most random distribution corresponds to looking for
the distribution with maximal entropy.

Here we use the ME principle to address the problem of what is the order of
interactions among neurons which is sufficient to describe the probabilities of neural
response. We will consider the distribution P (k)(x|s) with maximum entropy within
the class of all distributions with the same marginals up to order k as the real
measured distribution P (x|s). The ME condition ensures that, though interactions
of up to order k are preserved, there are no higher order interactions present.
We can then compare these ME models for different orders to the real measured
distribution. In practice, the comparison will be done on the lower-dimensional
probability distribution of coincident firing P (k)(m|s) and P (m|s), which under the
homogeneity assumption are univocally related to P (k)(x|s) and P (x|s) through
simple combinatorial factors, as given in Eq. (2.3).

The log-linear form using θ-coordinates (Eqs. 2.2, 2.4) provides a convenient
framework with which to obtain the maximum entropy distributions. The general
form of the maximum entropy solution subject to constraints (Cover & Thomas,
1991) has the same form as the log-linear model, and it has been shown (Amari
et al., 2001) that, subject to constraints on the marginals of the distribution of
up to order k, the maximum entropy solution is given by equation (2.2) with the
model truncated to include only θ’s of up to order k. Thus, it is possible to leverage
the co-ordinate systems described above and the transformations between them to
efficiently compute the maximum entropy solutions.

For a given order k, we compute the maximum entropy solutions as follows
(more details given in (Ince et al., 2009)). We start by matching interactions up to
order k to those of the measured distribution by setting the low order η-coordinates
of the maximum entropy solution to equal those of the measured distribution. Then,
following (Amari, 2001; Amari et al, 2003), the maximum entropy solution among
the distribution with the appropriate low order marginals is found by setting the
high order components of the θ-coordinates to zero.

Article submitted to Royal Society



6 F. Montani et. al

As shown in (Amari, 2001; Amari et al 2003), by enforcing both of these con-
straints simultaneously we obtain a set of simultaneous equations. The coordinate
transformation from p to η-coordinates is given by equation (2.5) and denoted
η̌(·). The coordinate transformation from θ to p-coordinates is given by equa-
tion (2.4) and denoted p̌(·). The maximum entropy requirement is enforced by
setting θ̄k+ = {θ̄i}i>k = 0 where θ̄i are the θ-coordinates of the maximum entropy
model. The maximum entropy distribution is then completely determined by the
θ̄k− =

{
θ̄i

}
i≤k

. These can be obtained through numerical solution of the following
equation

ηk− − η̌k−
(
p̌

(
θ̄k− , θ̄k+ = 0

))
= 0 (3.1)

where ηk− = {ηi}i≤k of the measured distribution. This is a system of k equations
in k unknowns. The Jacobian of this function can also be obtained analytically
allowing efficient solution using a range of numerical optimization methods. Here
we solve it by employing a least-squares approach using a Levenberg-Marquandt
algorithm (Jones et al. 2001). Using this we are able to solve for orders up to ∼ 10
for populations of ∼ 30 cells in a few minutes on a laptop computer. Solutions of
all orders are possible, but computation time grows exponentially with the order
considered.

It is important to note that we maximize the entropy of the distribution of the
population response x, over the probabilities defined on the space X and given the
constraints on marginals of up to order k. We do not maximize the entropy of the
distribution of the rate of coincident firing m. This is correct because we want to
impose no interactions among neurons apart form those fixed by the marginals of
up to level k, and the interactions among neurons are defined in the population
response space X. The entropy of the stimulus-conditional population response
H[X|s] is not equal to the entropy of the rate of coincident firing H[M|s]. In
addition, the relationship between the two is not monotonic, so maximising H[X|s],
does not result in H[M|s] being maximal. However, a relationship between the two
entropies can be derived, using Eq (2.3):

H[X|s] = −
∑
m

∑

x∈Xm

P (m|s)(
N
m

) log2

P (m|s)(
N
m

) (3.2)

= H[M|s] +
∑
m

P (m|s) log2

(
N

m

)

Since the relationship is not monotonic, it is possible that a distribution which
has maximum entropy on the population responses x is not a maximum entropy
distribution of the rate of coincident firing m. For example, as noted in (Amari et
al., 2003), the model where all neurons are independent from each other is a model
of maximum entropy given the single-neuron marginal probability but it leads to
a fully concentrated distribution of the number of coincidentally active neurons in
the large N limit.
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4. Predictions from theoretical analyses of the distribution
of synchronous discharge in homogenous populations

Recent seminal theoretical articles using the ME principle (Bohte et al., 2000; Amari
et al., 2003) have begun to elucidate the effect of high order interactions on the prob-
ability of the number of synchronously firing neurons P (m|s). Particular important
predictions come from the work of (Amari et al., 2003), in which the authors con-
sider the behavior of P (m|s) in the thermodynamic (large N) limit. They found
that, in the absence of correlations, P (m|s) is concentrated around its mean due
to the central limit theorem. They analyzed what conditions are required to obtain
a widespread distribution, in which (even in the thermodynamic limit) different
numbers of neurons simultaneously firing are possible. They found that even when
pairwise or third order interactions are considered, the concentration is not resolved.
Weak interactions at all orders are needed to obtain widespread distributions.

These predictions assign a strong role to high order interactions for all neu-
ral systems exhibiting widespread distribution of synchronous firing. Since these
predictions are obtained in the thermodynamic limit, it is difficult to test these
predictions on real data because the number of simultaneously recorded neurons in
a typical experiment is small (up to a few tens of neurons at best). However, it is in-
teresting to consider whether real data tend to produce concentrated or widespread
distributions, and whether observed widespread distributions require high order in-
teractions in order to be explained. We address this question directly in the next
section.

5. The role of high order correlations in shaping
synchronous discharge in somatosensory cortex

We apply the techniques described above related to a pooled population of neurons
recorded from the whisker representation in the somatosensory cortex of urethane
anaesthetised rats. The data set (previously published in (Arabzadeh et al., 2003;
Arabzadeh et al., 2004)) consists of 24 simultaneously recorded neural clusters, each
sampled with a different electrode with a minimal inter-electrode distance of 400
µm. Spike times from each electrode were determined by a voltage threshold set to
a value 2.5 times the root mean square voltage. Since it was not possible to sort
well-isolated units from each channel, spikes from the same recording channel were
considered together as a single neural cluster. It has been estimated that, under
these recoding conditions, each cluster captured the spikes of approximately two
to five neurons located near the tip of the electrode (see Petersen & Diamond,
2000). Neural activity was recorded in response to stimulation (with a piezoelectric
wafer controlled by a voltage generator) consisting of sinusoidal whisker vibrations,
each defined by a different value of vibration velocity and delivered for 500 ms (see
Arabzadeh et al. 2004, for full details). Thirteen different values of vibration veloc-
ity were tested, ranging between Af = 0.15 mm/s and Af = 47.7 mm/s. Each value
of vibration velocity was treated as a different stimulus s (there were 13 stimulus
classes in total). The number of recorded repetitions for each stimulus (called “tri-
als” in neurophysiology), from which the probability of response at fixed stimulus is
determined, varied between a minimum of 200 and a maximum of 1400 across the
stimulus classes. We note that this dataset is a convenient one for studying a neu-
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ral population under the homogenous-pool assumption. In fact, it was found that
(i) the neurons analyzed here all respond with the same type of profile to velocity
(Arabzadeh et al., 2003), and (ii) when considering pairs of neurons, neglecting the
label of which neuron fired which spikes (which is equivalent to transforming the
response x into the response m) did not lead to any significant information loss
(Arabzadeh et al., 2004), which suggests that non-homogeneities are negligible as
far as information transmission is concerned.

We measure the neural responses as follows. We first select a post-stimulus
window in which to measure the neural response. It has been shown (Arabzadeh
et al., 2004) that the majority of the information is transmitted very early post
stimulus onset (typically between 5 and 30 ms). We therefore concentrate on data
taken from these early, highly informative windows. In each trial, the population
response x is computed as follows. For each recording channel we set the response
to 1 if at least one spike occurs in the time window, and 0 otherwise. The number m
of neural clusters coincidentally firing is simply computed as the number of clusters
firing at least one spike in the considered window.

We use these data to study the shape of the distribution of the number of clusters
simultaneously firing at fixed stimulus, and the order of neural interactions needed
to describe this distribution. We note that some previous studies (Schneidman et
al, 2006) have focused on the overall probability of response to many different
stimuli. However, this has the potential problem that the resulting correlation may
arise both from correlations in the stimulus and in correlations arising from actual
neural interactions, and it is difficult to separate them (Nirenberg & Victor; 2007).
Here, we have decided to consider distributions at fixed stimuli to ensure we only
investigate interactions of neural origin.

We first consider whether the distribution of the number of clusters simultane-
ously firing at fixed stimulus are widespread or concentrated. Distributions condi-
tional to one particular stimulus (velocity = 2.66 mm/s; 1400 trials available) are
shown in Fig. 1, for different values of the size of the post-stimulus window used
to measure the response. For all windows considered, the distribution is clearly
widespread, with no concentration around a single value. Choosing a larger win-
dow, we observe a higher expectation value of the number of neurons firing, but the
distribution remains widespread. These results and trends apply to all 13 stimuli
considered (data not shown).

We next consider whether the observed widespread distributions need high order
interactions among neural activity to be explained. We investigate this issue by
applying the ME algorithms described in Section 3 to the stimulus-conditional
neural response probabilities and considering maximum entropy solutions of various
orders.

Fig. 2 reports a comparison between the real distribution of synchronously fir-
ing clusters in response to stimulus velocity = 2.66 mm/s and the corresponding
maximum entropy models at orders k between 1 and 5. The first and second order
models provide a bell-shaped distribution which are a very poor approximation to
the measured distribution. It is clear that third order is a better approximation
than first and second order, and at fourth and fifth order the maximum entropy
model become difficult to be distinguished from the true distribution. To quantify
the goodness of fit of the maximum entropy models, we used standard χ2 statistics.
The maximum entropy model at order k = 1, · · · , 3 had to be rejected at p = 0.05.
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Figure 1. Effect of Window on Response Distribution. The distributions obtained depend
on the window used to define synchronous activity. Here the distributions in response to
stimulus velocity 2.66 mm/s (the best sampled stimulus) from three different time windows
relative to stimulus onset are shown.

Models of order 4 and higher were not rejected at p = 0.05. The results shown in
Fig. 2 are a good description of the typical behavior of the dataset. Considering
all probabilities of coincident firing to all the 13 stimuli, 11 stimulus conditional
distributions needed at least order 3 interactions to fit the real data (p=0.05), 8
needed at least order 4 (p=0.05), and 6 needed at least order 5 (p=0.05). The only
two distributions that could be fit by a model of order two or higher were those
with fewer number of trials (those with less statistical power).

6. Effect of Interactions on somatosensory information encoding

Determining the presence of high order interactions suggests that they cannot
be neglected in models of information transmission, but it does not tell how much
these correlations are important. To quantify this, we next compute the information
between the stimulus and the population activity, and we compare it to that derived
from the maximum entropy models.

The mutual information between the stimuli and the neural population activity
is defined as follows:

I(S; X) = H(X)−H(X|S) (5.1)

where H(X) and H(X|S) are the response entropy and noise entropy respectively:

H(X) = −
∑
x

P (x) log2 P (x) (5.2)

H(X|S) = −
∑
x,s

P (s)P (x|s) log2 P (x|s) (5.3)

where in the above P (x) =
∑

s P (x|s)P (s). Note that, because of the homogeneity
assumption, and because of the data processing inequality, the information about
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Figure 2. Effect of Interactions on Response Distribution. Here, the distribution condi-
tional on stimulus velocity 2.66 mm/s (the best sampled stimulus) is considered. The
maximum entropy solutions are computed for 5 orders (k = 1 . . . 5) and compared to the
measured distribution (black line). The windows used to define synchronous firing is 1:30
ms.

the stimuli I(S;X) carried by the population response is equal to the one carried by
the rate of coincident firing I(X; M), although as previously discussed the entropies
are different.

We investigate the impact of interactions at a given order k by calculating
the mutual information that would result from a system exhibiting the probability
distributions obtained from the maximum entropy solution, as follows:

I(k)(S; X) = H(k)(X)−H(k)(X|S) (5.4)

where H(k)(X) and H(k)(X|S) are the response and noise entropies respectively of
the k-th order maximum entropy model. These entropies are obtained by replacing
P (X|s) and P (X|s) with P (k)(X|s) and P (k)(X|s) in Eqs. (5.2,5.3) where P (k)(X|s)
is the maximum entropy solution preserving up to kth order marginals equal to
P (X|s) and P (k)(X) =

∑
s P (k)(X|s)P (s). Then

I(k)(S; X) =
∑
m,s

P (s)P (k)(X|s) log2

P (k)(X|s)
P (k)(X)

(5.5)

Ik(S;X) was computed as follows. First, we obtain the homogenous maximum
entropy solution, P (k)(X|s), for each order of interest and for each stimulus condi-
tional response. Then, from each of these stimulus-conditional maximum entropy
solutions, we simulate data with the same number of trials as available in the exper-
imental data (this is different for each stimulus). These trials are generated using
inverse transform sampling. This is done to ensure a fair comparison between the
measured data and the generated data; any bias effects should affect both equally.
Bias is corrected for using the quadratic extrapolation method (Strong et al., 1998)
from the Pyentropy library (Ince et al., 2009). The values obtained are averaged over
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1000 repetitions to remove any trial to trial variation from the inverse transform
sampling step.

Figure 3. Effect of Interactions on Mutual Information. Here the measured mutual in-
formation for three post-stimulus windows are shown, and compared with the mutual
information obtained from maximum entropy distributions preserving marginals of up to
order k = 1 . . . 5. Interactions of order higher than 3 do not affect the information.

Fig. 3 shows the effect of including higher order interactions on information.
Correlations have a limiting rather than an enhancing effect in this neural system.
The first and second order maximum entropy models convey significantly higher
information than the true system. The third order information is significantly lower
than the second order one, suggesting that correlations of order higher than two still
have a sizable effect on limiting information. Correlations of order higher than four
(though present, see previous section) do not influence information to a significant
amount.

The fact that correlations of increasing order limit the information may appear
surprising at first glance, but can be explained by considering the variance of the
distributions of the rate of coincident firing in Fig. (2). The rate of coincidences from
low order maximum entropy solutions have the same mean as the true distribution,
but are much more concentrated. As a consequence, the noise entropies of the
distributions of coincident firing H(M |S) (obtained from Eq. (5.3) by replacing
P (m|s) in lieu of P (x|s)) also increase with the interaction order (Fig. 4). Since, as
explained above, the only informative variable in homogenous population activity
is the rate of coincident firing m, the information value has to decrease as the
interaction order k increases.

Fig. 4 reports the noise and response entropies of the population activity as a
function of the interaction order considered. Because of the constrained maximiza-
tion, the noise entropies have to decrease with the interaction order. However, the
noise entropy H(X), which is made up mixing all stimulus conditional responses,
is not constrained to necessarily decrease as fast as H(X|S) with the interaction
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order (Schultz & Panzeri, 2001). In fact, H(X) decreases more quickly with k than
H(X|S) does ( Fig. 4), thus leading to an overall information decrease with increase
of order k.

Figure 4. Effect of Interactions on Entropies. Here we show the conditional and uncon-
ditional entropies of the measured distribution (True) and maximum entropy solutions
preserving marginals of up to order k = 1 . . . 5 for the maximally informative window 9:15
ms. Both the entropy of coincident rate and the entropy of the full population response are
shown. The entropies over population response decrease with increasing order, as required
by the maximum entropy condition, but this is not true of the entropies of the rate of
coincident firing. However, the information transmitted (difference between the two bars
in each plot) is the same for both.

It is interesting that the mutual information of the system is already well ap-
proximated by models containing interactions of up to order 3. Interactions of order
higher than 3, though statistically significant, do not appear to play a qualitatively
important role in information transmission. This is a significant simplification since
it greatly reduces the parameters required to describe the system. While it is still
challenging to sample up to third order marginals it is a much more tractable prob-
lem than the case where all orders of interaction must be accurately determined.

6. Discussion

Here, we have considered, to our knowledge for the first time, how an homegenous-
pool model containing interactions of arbitrary order (Bohte et al., 2000; Amari et
al. 2003) fits real distributions of the rate of coincident firing in real in vivo neural
networks. We found that, when considering stimulus-conditional distributions of
the rate of simultaneous discharge in populations including tens of recorded neu-
ral clusters, interactions of order higher than two are typically needed to describe
the distributions. Thus, interactions of order two may not always be sufficient to
describe the correlational structure of neural activity, as recently reported (Schnei-
dman et al., 2006; Shlens et al., 2006; Tang et al., 2008). In addition to studying
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the effects of interactions on the mutual information, it would also be interesting to
investigate the θ-coordinate scaling properties as proposed in (Amari et al., 2003).
However, the currently available experimental data is insufficient, since it does not
contain enough simultaneously recorded channels to approach the large N regime
of the theory.

In this paper we have also reported what constitutes, to our knowledge, the first
calculation of the impact of higher order firing on the mutual information about sen-
sory stimuli carried by a neural population. Previous studies mostly concentrated
on the effect of interaction on response entropy. Since typically mutual information
is smaller compared to both the response and the noise entropy, an impact that
may be proportionally small for entropy may be proportionally much longer when
considering information. In the system considered here, we found that correlations
decreased the information, and the decrease in information became larger as the in-
teraction order grew, and saturated at order 3. This suggests that, when evaluating
the computational capacity of cortical population in sensory areas, it may be nec-
essary sometimes to take into account correlations of order higher than two. Thus,
it is particularly important to be able to extend analytical models of the effect of
correlation on information to order higher than two, and to be able to compute
their scaling in their thermodynamic limit. We believe that this will become an
important topic for future theoretical research on the encoding capacity of neural
networks.

7. Acknowledgments.

This work was supported by BMI project at IIT (Italy) and by the EPSRC ‘CAR-
MEN’ grant (UK).

References

Abbott, L.F. and Dayan, P. [1999] “The effect of correlated variability on the accuracy of
a population code”, Neural Comput., 11, 1, 91–101.

Amari, S. [1980] “Theory of information spaces – a geometrical foundation of statistics”,
Post-RAAG Reports, 106.

Amari, S. [1982] “Differential geometry of curved exponential families – curvature and
information loss”, Ann. Stat., 10, 357–385.

Amari, S. and Nagaoka, H. [2000] Methods of Information Geometry, (OXFORD Univer-
sity Press).

Amari, S. [2001] “Information geometry on hierarchy of probability distributions”, IEEE
T. Inform. Theory., 47, 5, 1701–1711.

Amari, S., Nakahara, H., Wu, S. and Sakai, Y. [2003] “Synchronous firing and higher-order
interactions in neuron pool”, Neural Comput., 15, 127–142.

Arabzadeh, E., Petersen, R.S., and Diamond, M.E. [2003] “Encoding of whisker vibration
by rat barrel cortex neurons: implications for texture discrimination”, J. Neurosci., 23,
9146–9154.

Arabzadeh, E., Panzeri, S., and Diamond, M.E. [2004] “Whisker Vibration Information
Carried by Rat Barrel Cortex Neurons”, J. Neurosci., 24, 6011–6020.

Averbeck, B.B., Lathan P.E. and Pouget A. [2006] “Neural correlations, population coding
and computation”, Nat. Rev. Neurosci. 7, 358-366.

Article submitted to Royal Society



14 F. Montani et. al

Bohte, S. M., Spekreijse, H. and Roelfsema, P.R. [2000] “The Effects of pair-wise and
higher-order correlations on the firing rate of a postsynaptic neuron”, Neural Comput.,
12, 153-159.

Cover, T.M. and Thomas, J.A. [1991] Elements of Information Theory (Wiley).

Curado, E.M.F. and Tsallis, C. [1991] “Generalized statistical mechanics: connections with
thermodinamics”, J. Phys. A., 24,L69–L72.

Harris, K.D. [2005] “Neural signatures of cell assembly organization”, Nat. Rev. Neurosci.,
6, 5, 399–407.

Ince, R.A.A., Petersen, R.S., Swan, D.C. and Panzeri, S. [2009] “Python
for information theoretic analysis of neural data”, Front. Neuroinform., 3:4.
doi:10.3389/neuro.11.004.2009.

Jaynes, E.T. [1957] “Information theory and statistical mechanics”, Phys. Rev., 106, 4,
620–630.

Jones, E., Oliphant, T., Peterson, P. and others [2001] “Scipy: Open source scientific tools
for Python”, http://www.scipy.org

König, P., Engel, A.K., and Singer, W. [1996] “Integrator or coincidence detector? The
role of the cortical neuron revisted”, Trends Neurosci., 19, 130–137.

Li, C-L. [1959] “Synchronization of unit activity in the cerebral cortex”, Science, 129,
3351, 783–784

von der Malsburg, C. [1999] “The what and why of binding: The modeler’s perspective”,
Neuron, 24, 95–104

Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W. and Vaadia, E. [2000]
“Neural coding: Higher-order temporal patterns in the neurostatistics of cell assemblie”,
Neural Comput., 12, 11, 2621–2653.

Mastronarde, D. N., [1983] “Correlated firing of cat retinal ganglion cells. I. Spontaneously
active inputs to X and Y- cells”, J. Neurophysiol. 49, 303–324.

Mazurek, M.E. and Shadlen, M.N. [2002] “Limits to the temporal fidelity of cortical spike
rate signals”, Nat. Neurosci., 5, 5, 463–471.

Montani, F., Kohn, A., Smith, A., and Schultz, S.R. [2007] “The role of correlations in
direction and contrast coding in the primary visual cortex”, J. Neurosci., 27, 9, 2338–
2348.

Montemurro, M.A., Senatore, R. and Panzeri, S. [2007] “Tight data-robust bounds to mu-
tual information combining shuffling and model selection techniques”, Neural Comput.,
19, 11, 2913–2957.

Nakahara, H. and Amari, S. [2002] “Information-geometric measure for neural spikes”,
Neural Comput.,14, 2269–2316.

Nirenberg, S.H., Carcieri, S.M., Jacobs, A.L. and Latham, P.E. [2001] “Retinal ganglion
cells act largely as independent encoders”, Nature 411, 698-701.

Nirenberg, S.H. and Victor, J.D. [2007] “Analyzing the activity of large populations of
neurons: how tractable is the problem?”, Curr. Opin. Neurobiol., 17, 4, 397–400.
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