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Abstract—High Performance Computing (HPC) Best Practice 

offers opportunities to implement lessons learned in areas such as 

computational chemistry and physics in genomics workflows, 

specifically Next-Generation Sequencing (NGS) workflows.  In 

this study we will briefly describe how distributed-memory 

parallelism can be an important enhancement to the 

performance and resource utilization of NGS workflows. We will 

illustrate this point by showing results on the parallelization of 

the Inchworm module of the Trinity RNA-Seq pipeline for de 

novo transcriptome assembly.  We show that these types of 

applications can scale to thousands of cores.  Time scaling as well 

as memory scaling will be discussed at length using two RNA-Seq 

datasets, targeting the Mus musculus (mouse) and the Axolotl 

(Mexican salamander). Details about the efficient MPI 

communication and the impact on performance will also be 

shown. We hope to demonstrate that this type of parallelization 

approach can be extended to most types of bioinformatics 

workflows, with substantial benefits. The efficient, distributed-

memory parallel implementation eliminates memory bottlenecks 

and dramatically accelerates NGS analysis. We further include a 

summary of programming paradigms available to the 

bioinformatics community, such as C++/MPI.  

 

Keywords—Trinity, RNA-Seq, Next-generation sequencing, 

transcriptome, sequence assembly, MPI, high-performance 

computing, Cray. 

 

INTRODUCTION 

In a recent article Lockwood reported: “There is no reason a 

high-performance framework for operating a distributed set of 

DNA sequence reads cannot be similarly developed” [1].  In 

this article the development of scientific applications in the 

genomics community was being compared to practices in 

computational chemistry. Computational chemistry developers 

tend to make HPC best practices a priority when developing 

software.  Today’s genomics software ecosystem consists of a 

large number of open source programs that are often 

developed and adapted to desktop computers, laptops, or even 

tablets and designed to operate within computing resources 

confined to the device [1]. Some specialized bioinformatics 

software packages are developed to utilize a distributed 

computing and distributed-memory system, with examples 

including Abyss [2], Novocraft [3], mpiBLAST/Abokia-

BLAST [4]-[6] or HMMER 2.3.2 [7], PhyloBayes [8], Ray 

[9], Meraculous [10] and now Trinity [11]. The continued 

adoption of HPC best practices by the bioinformatics 

community will prove to put method development on equal 

footing with communities such as chemistry, engineering, and 

physics. These communities have successfully leveraged well-

established standards such as Message Passing Interface 

(MPI) [12], utilized on distributed-memory parallel platforms.  

 

Fundamentally, parallel programming enables an application 

to utilize more resources, including processor cores, memory 

capacity, memory bandwidth, and network interconnect 

bandwidth.  This is extremely important, because many 

important computational problems are simply not tractable 

when limited to the resources on a single core or a single 

node. Two commonly used parallel programming modalities 

are OpenMP and MPI. 

 

OpenMP [13] is a shared-memory parallel programming 

model.  It provides syntax, primarily compiler directives, 

defining threads, which can execute independently and 

simultaneously.  It is typical, for example, for loops to be 

executed in parallel by allowing each iteration loop to be 

executed on a distinct thread, and for each thread to be 

assigned to a single core.  All of the threads executing in an 

OpenMP program have access to all of memory allocated to 
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the job, but no access to memory on other compute nodes 

within a system.  In general, an OpenMP program can use all 

of the resources (cores, memory capacity, memory bandwidth, 

interconnect bandwidth) on a single node, but typically cannot 

use any resources that exist on other nodes. 

 

 

Figure 1. Comparison between distributed- and shared-

memory parallelism. Notice the large difference of 

“resource multiplier” in the two axis. 

 

 

MPI is the most commonly used distributed-memory parallel 

programming model and provides a set of functions that 

enable communication between nodes.  In an MPI program, 

one specifies multiple ranks, which by definition execute 

independently and simultaneously, but can exist on distinct 

nodes.  Most commonly, data is decomposed into independent 

sections, and processed independently, with relatively 

infrequent communication between the ranks.  Because MPI 

allows for communication between ranks that reside on 

different nodes, MPI applications can utilize all of the 

resources on an arbitrary number of nodes. 

 

Figure 1 illustrates the level of hardware resource availability 

for shared-memory parallel applications (typically OpenMP), 

distributed-memory applications (typically MPI), and hybrid 

parallel applications, which use both shared- and distributed-

memory parallelism. Figure 2 shows the association of 

processors (typically cores) and nodes’ memory for serial, 

shared-memory parallel, and distributed-memory parallel 

applications. 

 

It is important that the HPC community understands the close 

interplay between the genomics software ecosystem and 

sequencing technologies. Typical NGS analysis is performed 

by a selected set of independent programs that need to be 

joined in a particular order (often with the help of scripts, or 

workflow managers such as The Galaxy Project [14], Gene 

Pattern [15], or Illumina BaseSpace [16]) in order to form a 

specific genomic workflow. Genomic workflows are the 

backbone of NGS secondary analysis. They are flexible and 

are meant to adapt swiftly to advances in sequencing 

technologies (such as the 454 Life Sciences [17], Illumina 

[18], Pacific Biosciences [19], or the newer Oxford nanopore 

[20] sequencers). Two examples of genomic workflows are 

the so-called MegaSeq [21] and Churchill [22] workflows; 

both calling sequence variants from fastq sequence files by 

uniquely combining component software including: BWA 

[23], Picard [24], Samtools [25], and GATK [26]. It is 

important to realize that each of these component programs 

performs a specific task that is of limited value on its own; it 

is however the combination of tasks throughout a given 

workflow that generates the desired solution. Within typical 

workflows any two intermediary tasks are typically connected 

through input/output (I/O). This implies a larger amount of 

read/write I/O in comparison to other more conventional HPC 

programs in computational chemistry or physics. 

Nevertheless, bioinformatics I/O formats, starting from the 

sequencer’s output to the resulting “variant calling”, is 

relatively standardized and, if reduced to a minimum, may not 

necessarily represent a significant bottleneck to a HPC 

implementation. 

 

 

Figure 2. Comparison between computer code 

implementation, depending on architectures. Notice that 

MPI and Threaded codes can be combined to form so-

called “hybrid MPI” codes, where threads are shared on 

each node only. 

 

 

Finally, to understand how the NGS community can embrace 

HPC best practice, it is important to describe the current 

factors that differentiate these two communities, namely 

computational chemistry and NGS.  As previously pointed out 

[1], method implementation in computational chemistry has 

evolved together with HPC. In the late 1980’s, the 

performance gap between “departmental” machines and state 

of the art HPC systems was at least a factor 100X.  This 

provided a very strong incentive to move implementations to a 

HPC system.  Conversely, NGS software development has 
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evolved by reacting to the prevailing sequencing technologies.  

This technology is rapidly and continually changing and 

forces developers to focus on functionality rather than system 

size [1]. 

 

In order to embrace HPC best practice in such a dynamic field 

as NGS, it is important for HPC software development to 

evolve within the ecosystem. Upon embracing HPC, the same 

HPC best practices used in computational chemistry can be 

applied to entire NGS workflows, including workload 

distribution, compute parallelization, and system profiling to 

optimize resource utilization and eliminate bottlenecks.  

 

 

 

Figure 3. HPC best practices diagram 

 

 

As an example of how HPC best practices can be applied in an 

NGS application, here we describe our efforts to integrate 

runtime and memory scaling into the Inchworm module of the 

Trinity de novo assembly software.  We introduce minimal 

changes to the sequential version of Inchworm, yielding the 

first generation of a distributed-memory parallel Inchworm 

(termed MPI-Inchworm).  MPI-Inchworm is demonstrated to 

leverage distributed-memory systems and to scale computing 

across hundreds to thousands of compute cores. We expect 

there should exist ample opportunities to apply HPC best 

practices in other NGS workflows, leveraging techniques 

described here in our development of MPI-inchworm.  

 

This paper is divided as follows: Section I contains a 

discussion of the main features of HPC best practices, applied 

to bioinformatics; Section II describes the original shared-

memory single-node version of Trinity; Section III is the core 

of this article where we focus on the details of the distributed-

memory multi-node implementation of Inchworm and how it 

relates to HPC best practices; Section IV describes the 

hardware leveraged here; Section V reports results associated 

with the two concepts of time-scaling and memory-scaling, as 

defined in Section I on HPC best practices; and Section VI 

details concluding remarks.  

 

I. HPC BEST PRACTICE 

 

A core concept underlying HPC best practices is distributed-

memory parallelism (described in Figure 1), which implies 

two important HPC features: time scaling and memory 

scaling.  Time scaling helps reduce the time-to-solution and is 

essential in clinical genomic settings in which medical 

practitioners are in need of fast and accurate diagnostics. 

Simply using embarrassingly parallel programming workflows 

and leveraging supercomputers was shown capable of aligning 

reads and calling variants for 240 human genomes in just over 

50 hours [21]. Another application is demonstrated capable of 

similar alignment and variant calling in less than two hours 

per sample [22]. Time-scaling remains indeed one of the most 

fundamental features of HPC, and potentially most relevant in 

clinical applications of NGS analysis.  

 

The second HPC focus, memory scaling, is by no means less 

important, but often neglected. Memory constraints are often 

an issue on shared-memory nodes (e.g., a typical desktop), 

because large NGS problems can easily require more memory 

than is available on a typical single node. Excellent parallel 

threading (i.e., time scaling) can be achieved on a single node 

using, for example, OpenMP [13]. Unfortunately, such 

parallel threading can never solve the problem of being 

restricted to a single shared memory. On distributed-memory 

architectures, however, once the data for assembling or 

aligning a DNA/RNA sequence is distributed among typical 

(low-cost) microprocessors, the memory limitation no longer 

imposes an inherent constraint. Such memory scaling, in 

principle, enables HPC computation on any genome size, from 

the modest human genome at ~3.2 Gb (giga base pairs or 

billion base pairs) to the spruce (~20 Gb), or even larger 

genomes that have not yet been sequenced, such as the axolotl 

(~30Gb), or Paris japonica (~149 Gb) - the Japanese flower 

estimated to have the largest estimated genome size [27].  

Moreover, the ability of a single program to use the memory 

of multiple nodes allows systems to be configured 

homogeneously, rather than requiring a number of expensive 

large-memory nodes for special cases.  

 

In practice, distributing the data might require refactoring 

certain parts of an existing serial implementation. Although 

the concept of message passing (MPI) is straightforward, it 

does involve added computational complexity and requires 

developers to overcome certain barriers. This can easily be 

achieved by becoming familiar with MPI [12]. In the case of 

Trinity, the challenges in integrating MPI for distributed-

memory allocation and distributed computational processing 

involved deciding exactly how to distribute the input 

sequencing reads and deciding which data needed to be 

communicated among the distributed computations. Our effort 
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to integrate MPI into the Inchworm component of the Trinity 

software is further discussed in Section IV. 

 

What exactly are HPC best practices? Figure 3 shows a 

diagram depicting steps to guide one in applying HPC best 

practices. Evaluations start with I/O; any unnecessary I/O 

occurring inside a particular task of the workflow should be 

eliminated, keeping only the I/O that is necessary (i.e., 

keeping essentially only the I/O situated at the beginning and 

the end of a given task inside that workflow). The second 

item, memory usage, is related to the I/O; ideally input data 

files are read in parallel by each MPI rank and then data is 

distributed among the ranks to best support the program 

algorithm.  Once distribution of the data is optimized, the CPU 

usage and communications can be evaluated to further 

improve time-scalability. The last two items, CPU time and 

communication patterns, are not generically approached but 

often require solutions more specific to the algorithm itself. 

We summarize issues relating to HPC best practices below: 

(comparing with Figure 3).  

   

Profiling is essential to HPC best practices. This process 

consists of timing each important step of any application; 

separating the time spent on the I/O from the time spent 

computing, locating code constructs that are slower than 

others, and determining how much memory is used. Profiling 

should always be included in any complex application. There 

are two major ways to implement profiling. First, including 

the logic to perform profiling directly within your code 

controlled via command-line options or compiler flags (e.g., a 

“PROFILE” logical flag that can be turned on and off in the 

Makefile), with the help of libraries such as <ctime> (time.h), 

or MPI_wtime() for timing sections of code, or alternatively, 

using ‘third party’ software tools such as Cray PerfTools [28], 

Tau [29], or Collectl [30]. Once the serial application is 

thoroughly profiled, then the developer can begin parallelizing 

the application, such as by leveraging MPI.  

 

Below, we show an example of a small MPI program written 

in C, which demonstrates two key features of an MPI 

program: (1) each rank can execute specific sections of code 

as determined by its rank assignment, and (2) different ranks 

can communicate by sending/receiving messages.  This 

program runs as two distributed parallel processes where 

process rank 1 uses MPI communication to send a message 

containing the nucleotide sequence ‘GATTACA’ to process 

rank 0, which simply reports the message it received.  

 

Incorporating MPI into any parallel C/C++  program requires 

a minimum of six extra lines, as shown below in our example 

program’s “SendDNA.c” file, see [31]-[33] and some extra 

useful examples of parallel sorting in [34]: 
 

 

 

 

 

 

 

 

 

 

 

#include <stdio.h> 

#include <string.h> 

#include "mpi.h" 

 

main(int argc, char* argv[]){ 

   int rank_of_process; 

   int number_of_processes; 

   int rank_of_sender; 

   int rank_of_receiver; 

   int tag_for_sequence = 0; 

   char message[100]; 

   MPI_Status status_of_receiver; 

 

   /* Start up MPI */ 

   MPI_Init(&argc, &argv);  

   /* Find out processor rank */ 

   MPI_Comm_rank(MPI_COMM_WORLD, &rank_of_process);  

  /* Find out number of processes */ 

   MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);  

 

   if (rank_of_process == 1) { 

      /* create “message” content */ 

      sprintf(message, "GATTACA from process %d!", rank_of_process); 

      rank_of_receiver = 0; 

      MPI_Send(message,100,MPI_CHAR,rank_of_receiver, 

               tag_for_sequence, MPI_COMM_WORLD); 

 

   } else if (rank_of_process == 0){ 

      rank_of_sender = 1; 

      MPI_Recv(message,100, MPI_CHAR, rank_of_sender, 

               tag_for_sequence, MPI_COMM_WORLD,&status_of_receiver); 

      printf("%s\n", message); /* print message to stdio*/ 

   } 

   /* Shut down MPI */ 

   MPI_Finalize();  

} /* main */ 

 

 

This program is compiled using: 
 
CC -o ./SendDNA SendDNA.c 

 

A batch job contains the following line: 
 

mpirun -n2 ./SendDNA 

 

where “-n 2” specifies the number of MPI ranks. The result is: 
 

GATTACA from process 1! 

 

which is actually output by the MPI process  with rank 0. 

 

This minimalistic MPI program shows the six required lines, 

marked in red, that are exclusively related to MPI (in addition 

to the code inside the two boxes that define the 

communication pattern). Each of the two ranks is running as a 

separate process and is aware of its individually assigned rank 

number. Based on its rank, each process will need to know 

what its role is and what data it should be responsible for 

processing and which sections of code to execute. The 

different ranks communicate messages with each other via 

MPI_Send() and MPI_Recv(), as shown schematically in 

Figure 2, and as implemented in the program above. In our 

example, the code in the top box is only executed by rank 1, 

putting the message “GATTACA from process 1” into the 

variable message, and then sending this message to rank 0. 

The code in the bottom box is only executed by rank 0 

residing at a different compute node, where it receives the 

message from rank 1, stores it in its local variable message, 

and prints the message to standard output.  

 

Finding the best approach for distributing data among MPI 

ranks is of fundamental importance, because it will also 

determine the amount of communication incurred by the 

algorithm. Having the data properly distributed allows the 

total memory footprint at each compute node to diminish with 



 5 

increasing number of nodes or MPI ranks. The memory 

footprint can also be profiled and will be discussed in section 

IV. Once proper scalable memory distribution is achieved then 

one can work on parallelizing the algorithm for computing on 

these data. This requires practical testing as much as 

theoretical algorithmic evaluation. Throughout this process of 

developing a parallel application it is imperative to keep in 

mind the diagram of HPC best practices in Figure 3.  

 

The next two sections show how we applied HPC best 

practices to the parallelization of Trinity-Inchworm. 

 

II. TRINITY RNA-SEQ 

Trinity [11] is a popular de novo RNA-Seq assembly tool that 

reconstructs transcript sequences from RNA-Seq data and, 

unlike other related popular methods such as the Tuxedo tool 

suite [35], Trinity does not require a reference genome 

sequence.  Trinity, as the name suggests, consists of three 

main components: Inchworm, Chrysalis, and Butterfly. These 

three components form a workflow that is united by a Perl 

script called Trinity.  

 

 

Figure 4 Parallel Inchworm algorithm (a) Phase 1: K-mer 

distribution (b) Phase 2: Contig building 

 

Briefly, the components of Trinity operate as follows.  

Inchworm builds a catalog of k-mers (sequence of bases of 

length k, default of k=25) from all the reads such that every k-

mer is associated with its frequency of occurrence within the 

full set of reads.  The single ‘seed’ k-mer with the greatest 

occurrence is selected from the catalog, and a contig is 

constructed by greedily extending the seed from each end, 

selecting overlapping k-mer that has the highest occurrence 

and extends the growing contig by a single base.  Single base 

extensions continue to occur until no k-mer exists in the 

catalog that can yield an extension, in which case the resulting 

contig sequence is reported by Inchworm, and the k-mers 

comprising the reported contig are eliminated from the k-mer 

catalog.  Rounds of seed selection and contig extension 

continue until the k-mer catalog is exhausted. 

 

The remaining steps of Trinity involve Chrysalis clustering 

Inchworm contigs that are related due to alternative splicing 

[Inchworm contigs sharing (k-1)-mers], and building a de 

Bruijn graph for each cluster, with ideally one cluster of 

contigs per gene and a corresponding de Bruijn graph 

representing the transcriptional complexity exhibited by that 

gene.  The Butterfly software then threads the original reads 

through the de Bruijn graphs and reconstructs the full-length 

transcript sequences and splicing patterns best represented by 

the reads in the context of the graph. 

 

 

 

 

Trinity was initially designed as a single node large memory 

application, where only the final phase involving Butterfly 

was embarrassingly parallel and could be computed using a 

distributed computing environment. Profiling of the original 

Trinity code using Collectl was performed and published 

previously in [36]. Those profiles have shown improvements 

in terms of shared-memory parallelism, using up to 32 CPU 

cores. Most importantly, profiling has identified time and 

memory bottlenecks located in the Trinity workflow. Those 

bottlenecks were shown to exist at specific sections of the 

Inchworm and Chrysalis codes. 

 

Here, we engineered a version of the Inchworm software to 

scale efficiently, both in terms of memory footprint and wall 

clock time, leveraging MPI. (MPI-based parallelization of 

Trinity’s Chrysalis module has also been implemented by a 

separate group as a separate effort [37].) The next section 

describes our implementation of the distributed and massively 

parallel version of Inchworm we named MPI-Inchworm. 

 

 

III. DEVELOPMENT OF MPI-INCHWORM 

 

The general structure of MPI-inchworm contains two main 

phases, a k-mer Distribution Phase (Fig 4a) and a Contig 

Building Phase (Figure 4b).  The first phase populates the k-

mer catalog in distributed-memory.  The second phase builds 
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the contigs via the seeded k-mer greedy extension algorithm 

described earlier. The number of ranks can easily vary from 1 

(not distributed) to thousands of ranks (distributed).   The 

input data and the assembly computations are equally 

distributed among all of the ranks.  Below, we describe the 

overall architecture of MPI-Inchworm and how we distribute 

the data and computations. 

 

Each distributed MPI rank is composed of two internally 

parallel OpenMP threads that further subdivide the work at 

each MPI rank. In Figure 4, each distributed MPI rank is 

depicted as a box with a blue outline, and the two internally 

parallel threads are shown as the ‘contig builder (cb)’ thread 

(purple outline) and ‘k-mer server (ks)’ thread (green outline). 

In describing the distributed computations, we make reference 

to the role of each of these threads within a rank.  In general, 

the cb thread of one rank sends a message to the ks thread of 

another rank, and that ks thread then responds accordingly. 

 

In the initial k-mer Distribution Phase (Figure 4a), MPI-

Inchworm parses the input RNA-Seq reads, extracts the k-

mers from the read sequences, and stores each k-mer in 

distributed memory.  Here, MPI-inchworm employs the 

parallel I/O programming model.  The input file is subdivided 

into as many sections as there are MPI ranks requested for a 

particular run, and each MPI rank reads and processes only its 

assigned section of that file. The cb thread is responsible for 

parsing the reads, extracting the k-mers, and defining the 

location where the k-mer will be distributed. In addition to 

each rank reading a section of the reads file, each rank is 

responsible for locally storing k-mers, however, the k-mers 

being extracted by a given rank are not necessarily stored 

locally by that rank. Each k-mer inherently encodes the 

identity of the rank that is responsible for storing it by virtue 

of its nucleotide composition.  By extracting the central 

sequence of a k-mer (excluding the base at each terminus), the 

destination rank is identified. This simply involves converting 

the k-mer sequence to an integer value, and dividing it by the 

total number of ranks, with the value of the remainder used to 

identify the rank at which the k-mer is to be stored.  If the 

destination rank is the same as the rank to which the cb thread 

is assigned, then the cb thread stores that k-mer locally.  

Otherwise, the cb thread uses MPI to send (MPI_Send) the k-

mer to the destination rank, where the corresponding 

destination ks thread will receive (MPI_Recv) the k-mer and 

store it at that location. In addition to storing the k-mer, the 

frequency of that k-mer is stored. If the k-mer already exists at 

a given location, then its count is incremented to reflect the 

additional occurrence. This k-mer distribution pattern ensures 

that the memory footprint decreases with an increase number 

of nodes, as discussed in Section II on HPC best practices.   

 

Once all the k-mers have been stored in distributed memory, 

the subsequent Contig Building Phase can begin.  In this 

phase, each rank builds a different contig according to the 

Inchworm greedy extension algorithm, with slight 

modifications
1
.  Starting with a seed k-mer, the cb thread will 

search for a greedy extension.  Any of the four possible single-

base extensions to the seed (G, A, T, or C) would involve an 

extension k-mer containing the same central sequence, and 

given that the destination rank for a k-mer is based on the 

central sequence (described above), all four possible extension 

k-mers would be co-located at a single destination rank.  If the 

destination rank is that of the cb thread, then the cb thread will 

look up the greedy extension k-mer locally. Otherwise, the cb 

thread sends a message to the rank containing the extension k-

mers, requesting the greedy extension.  The ks thread at the 

destination rank receives the request, identifies the four 

possible extension k-mers and responds with that k-mer that is 

most frequent, or with a message that no such k-mer was 

available.  Once the cb thread completes building a contig, it 

then sends ‘delete k-mer’ messages to destination ranks so that 

those k-mers are removed from the fully distributed k-mer 

catalog. 

 

This process of seed selection and contig extension is repeated 

throughout all the MPI ranks. As each rank constructs contigs, 

it writes the contig sequences to a rank-specific output file. 

After all ranks have exhausted their local k-mer stores, the 

MPI-Inchworm contig construction phase is complete. A final 

“harvesting” (serial) routine operates to consolidate the 

contigs output from each of the ranks, remove any 

redundancy, and prepare a single output file to be used as 

input to Chrysalis, the next step of Trinity.  

 

In terms of HPC best practices, communication has been 

minimized. This was done through examining profiling data, 

as shown in Figs. 5 and 6. The entire communication pattern 

in MPI-Inchworm essentially requires two MPI commands: 

MPI_Send and MPI_Recv, as in our earlier example code. 

Additional information about the MPI inchworm 

implementation can be found in the following recorded 

seminar presented by author BH [38]. 

 

IV. HARDWARE RESOURCES 

The primary system utilized in this study was a Cray XC40.   

The processor is a 64-bit Intel® Xeon® E5-2698 V3 

"Haswell" 16 core 2.3 GHz processor.   There are two 

processors per compute node and 384 processors per cabinet.  

The processor peak performance per core is 36.8 GF.  The 

memory consists of 128 GB DDR4-2133 MHz per compute 

node.  Memory bandwidth is 120 GB/s per node.  The system 

interconnect is Cray Aries multilevel dragonfly topology, 

which provides a low latency, high bandwidth network.  There 

is one Aries router ASIC per four compute nodes.  Each Aries 

has 40 external network ports over 3 levels, providing more 

than 10 GB/sec bidirectional point-to-point bandwidth, with 

less than 1.5 µs latency. 

                                                           
1  Seed selection follows a two-phased approach. First a random k-mer is 

selected from the k-mer store at the corresponding rank. A greedy extension is 

performed to identify a k-mer with maximum abundance, and that k-mer is 
chosen as the proper seed for Inchworm contig extension. 
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Figure 5 (a) Memory scaling and (b) Time scaling of MPI-

Inchworm on the mouse RNA-Seq data. Computations are 

done on XC40 Haswell-16, 2 sockets (32cores/node; 

128GB/node). 

 

V. RESULTS AND DISCUSSION 

In this section we discuss time scaling and memory scaling for 

two relevant transcriptome data sets corresponding to mouse 

and axolotl (Mexican salamander), both organisms of 

importance to biomedical research. The human genome and 

the mouse are similar in size (~3 Gb), and the mouse is an 

important model organism used in many contexts including 

clinical cancer research.  The axolotl is known for its 

extraordinary regenerative abilities in reconstituting limbs, 

retina, liver, and even minor regions of the brain [39]. The 

axolotl’s genome contains about 10 times as many base pairs 

as that of the mouse or the human, and has yet to be sequenced 

and assembled due to its massive size and the related cost and 

complexity of such an effort. The RNA-Seq data leveraged for 

each organism is described below. 

 

 

 

 

Figure 6(a) Memory and (b) Time scaling of MPI-Iinchworm 

on the axolotl RNA-Seq data. Computations are done on XC40 

Haswell-16, 2 sockets (32 cores/node;128GB/node). 

 

 

Figure 5 and 6 summarize the (a) memory scaling and (b) time 

scaling results for MPI-Inchworm on the mouse and axolotl 

RNA-Seq data, respectively. The memory usage clearly scales 

with the number of MPI ranks (Figures 5a and 6a). The 

importance of memory scaling cannot be over-emphasized. 

For example, the input fastq file for the mouse contains 

approximately 50 million 76 base length paired-end Illumina 

RNA-Seq reads. In addition to storing k-mers, additional 

memory is needed at each node to reconstruct contigs. We 

find that the mouse can easily run on one 128-GB node with 

two Haswell-16 processors. Figure 5 shows scaling results for 

the mouse as performed using 1 node (32 MPI ranks/node) up 

to 256 nodes on the Cray XC40. In contrast to the mouse data, 

the axolotl data set consists of ~1.2 billion 100 base length 

paired-end Illumina RNA-Seq reads, and this very large data 

set requires a minimum of 8 nodes just to have adequate 

memory capacity. Figure 6 shows scaling results for the 

axolotl performed on 8 nodes up to 512 nodes. Out-of-
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one of the most striking, and often under recognized, 

advantages of distributed-memory parallelism: memory 

scalability. Most importantly, the original (non-distributed) 

Inchworm program can only run jobs on single node, and 

therefore, cannot run the axolotl’s RNA-Seq on commodity 

hardware. Distributed-memory parallelism allows researchers 

to do research that would otherwise not be possible. 

 

The MPI-Inchworm algorithm demonstrates excellent time 

scaling properties up to 2048 MPI ranks (64 nodes) with the 

mouse RNA-Seq (Figure 3b), and up to 8192 MPI ranks (256 

nodes) with the axolotl RNA-Seq (Figure 4b). The larger the 

RNA-Seq data set, the better the time scaling. We are 

currently exploring how to improve scalability beyond 2048 

MPI ranks and 8192 MPI ranks for the mouse and axolotl 

datasets, respectively.  Overall, the memory and time scaling 

are excellent up to multiple thousands of MPI ranks. Time 

scaling is of fundamental importance for instance in clinical 

environments, where time-to-solution could have a critical 

impact on patients’ recovery. 

 

VI. CONCLUSIONS 

We have shown how HPC best practices can be applied to the 

parallelization of an important component of the Trinity RNA-

Seq application, the Inchworm contig assembler. The 

distributed MPI-Inchworm application is now up to 18 times 

faster on 128 nodes (4096 MPI ranks) than on a single node 

(i.e., using still 32 MPI ranks on that single node) and can 

handle data sets that are much larger than what the original 

non-distributed code is capable of processing, as a result of 

applying HPC best practices to NGS analysis.  In general, we 

believe that any bioinformatics workflow can greatly benefit 

from HPC, in terms of time-to-solution as well as enabling 

new research.  Distributed-memory parallelism allows 

researchers to complete research that otherwise would not be 

possible given the limitations of commodity hardware. 
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Our MPI-Inchworm program is open source and freely 

available within the current distribution of Trinity [40]. The 

source code MPIinchworm.cpp (located in the directory 

“Inchworm/src” of the current distribution) needs to be 

compiled separately using the Makefile template (make –f 

MPI_cray.Makefile). The name of the executable is 

“MPIinchworm” and can be used with parameters equivalent to 

the original Inchworm software. 
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