
 1

The Impact of High-Performance Computing Best

Practice Applied to Next-Generation Sequencing

Workflows

Pierre Carrier, Bill Long, Richard Walsh, Jef Dawson

Cray Inc

Saint Paul, MN, USA

pcarrier@cray.com, longb@cray.com, rwalsh@cray.com

jef@cray.com

Carlos P. Sosa

Cray Inc and University of Minnesota Rochester

Saint Paul, MN, USA

cpsosa@cray.com

Brian Haas and Timothy Tickle

Broad Institute

 Cambridge, MA, USA

bhaas@broadinstitute.org, ttickle@broadinstitute.org

Thomas William

TU Dresden

Dresden, Germany

william@freme.org

Abstract—High Performance Computing (HPC) Best Practice

offers opportunities to implement lessons learned in areas such as

computational chemistry and physics in genomics workflows,

specifically Next-Generation Sequencing (NGS) workflows. In

this study we will briefly describe how distributed-memory

parallelism can be an important enhancement to the

performance and resource utilization of NGS workflows. We will

illustrate this point by showing results on the parallelization of

the Inchworm module of the Trinity RNA-Seq pipeline for de

novo transcriptome assembly. We show that these types of

applications can scale to thousands of cores. Time scaling as well

as memory scaling will be discussed at length using two RNA-Seq

datasets, targeting the Mus musculus (mouse) and the Axolotl

(Mexican salamander). Details about the efficient MPI

communication and the impact on performance will also be

shown. We hope to demonstrate that this type of parallelization

approach can be extended to most types of bioinformatics

workflows, with substantial benefits. The efficient, distributed-

memory parallel implementation eliminates memory bottlenecks

and dramatically accelerates NGS analysis. We further include a

summary of programming paradigms available to the

bioinformatics community, such as C++/MPI.

Keywords—Trinity, RNA-Seq, Next-generation sequencing,

transcriptome, sequence assembly, MPI, high-performance

computing, Cray.

INTRODUCTION

In a recent article Lockwood reported: “There is no reason a

high-performance framework for operating a distributed set of

DNA sequence reads cannot be similarly developed” [1]. In

this article the development of scientific applications in the

genomics community was being compared to practices in

computational chemistry. Computational chemistry developers

tend to make HPC best practices a priority when developing

software. Today’s genomics software ecosystem consists of a

large number of open source programs that are often

developed and adapted to desktop computers, laptops, or even

tablets and designed to operate within computing resources

confined to the device [1]. Some specialized bioinformatics

software packages are developed to utilize a distributed

computing and distributed-memory system, with examples

including Abyss [2], Novocraft [3], mpiBLAST/Abokia-

BLAST [4]-[6] or HMMER 2.3.2 [7], PhyloBayes [8], Ray

[9], Meraculous [10] and now Trinity [11]. The continued

adoption of HPC best practices by the bioinformatics

community will prove to put method development on equal

footing with communities such as chemistry, engineering, and

physics. These communities have successfully leveraged well-

established standards such as Message Passing Interface

(MPI) [12], utilized on distributed-memory parallel platforms.

Fundamentally, parallel programming enables an application

to utilize more resources, including processor cores, memory

capacity, memory bandwidth, and network interconnect

bandwidth. This is extremely important, because many

important computational problems are simply not tractable

when limited to the resources on a single core or a single

node. Two commonly used parallel programming modalities

are OpenMP and MPI.

OpenMP [13] is a shared-memory parallel programming

model. It provides syntax, primarily compiler directives,

defining threads, which can execute independently and

simultaneously. It is typical, for example, for loops to be

executed in parallel by allowing each iteration loop to be

executed on a distinct thread, and for each thread to be

assigned to a single core. All of the threads executing in an

OpenMP program have access to all of memory allocated to

mailto:pcarrier@cray.com
mailto:longb@cray.com
mailto:rwalsh@cray.com
mailto:jef@cray.com
mailto:cpsosa@cray.com
mailto:bhaas@broadinstitute.org
mailto:ttickle@broadinstitute.org
mailto:lpesce@uchicago.edu

 2

the job, but no access to memory on other compute nodes

within a system. In general, an OpenMP program can use all

of the resources (cores, memory capacity, memory bandwidth,

interconnect bandwidth) on a single node, but typically cannot

use any resources that exist on other nodes.

Figure 1. Comparison between distributed- and shared-

memory parallelism. Notice the large difference of

“resource multiplier” in the two axis.

MPI is the most commonly used distributed-memory parallel

programming model and provides a set of functions that

enable communication between nodes. In an MPI program,

one specifies multiple ranks, which by definition execute

independently and simultaneously, but can exist on distinct

nodes. Most commonly, data is decomposed into independent

sections, and processed independently, with relatively

infrequent communication between the ranks. Because MPI

allows for communication between ranks that reside on

different nodes, MPI applications can utilize all of the

resources on an arbitrary number of nodes.

Figure 1 illustrates the level of hardware resource availability

for shared-memory parallel applications (typically OpenMP),

distributed-memory applications (typically MPI), and hybrid

parallel applications, which use both shared- and distributed-

memory parallelism. Figure 2 shows the association of

processors (typically cores) and nodes’ memory for serial,

shared-memory parallel, and distributed-memory parallel

applications.

It is important that the HPC community understands the close

interplay between the genomics software ecosystem and

sequencing technologies. Typical NGS analysis is performed

by a selected set of independent programs that need to be

joined in a particular order (often with the help of scripts, or

workflow managers such as The Galaxy Project [14], Gene

Pattern [15], or Illumina BaseSpace [16]) in order to form a

specific genomic workflow. Genomic workflows are the

backbone of NGS secondary analysis. They are flexible and

are meant to adapt swiftly to advances in sequencing

technologies (such as the 454 Life Sciences [17], Illumina

[18], Pacific Biosciences [19], or the newer Oxford nanopore

[20] sequencers). Two examples of genomic workflows are

the so-called MegaSeq [21] and Churchill [22] workflows;

both calling sequence variants from fastq sequence files by

uniquely combining component software including: BWA

[23], Picard [24], Samtools [25], and GATK [26]. It is

important to realize that each of these component programs

performs a specific task that is of limited value on its own; it

is however the combination of tasks throughout a given

workflow that generates the desired solution. Within typical

workflows any two intermediary tasks are typically connected

through input/output (I/O). This implies a larger amount of

read/write I/O in comparison to other more conventional HPC

programs in computational chemistry or physics.

Nevertheless, bioinformatics I/O formats, starting from the

sequencer’s output to the resulting “variant calling”, is

relatively standardized and, if reduced to a minimum, may not

necessarily represent a significant bottleneck to a HPC

implementation.

Figure 2. Comparison between computer code

implementation, depending on architectures. Notice that

MPI and Threaded codes can be combined to form so-

called “hybrid MPI” codes, where threads are shared on

each node only.

Finally, to understand how the NGS community can embrace

HPC best practice, it is important to describe the current

factors that differentiate these two communities, namely

computational chemistry and NGS. As previously pointed out

[1], method implementation in computational chemistry has

evolved together with HPC. In the late 1980’s, the

performance gap between “departmental” machines and state

of the art HPC systems was at least a factor 100X. This

provided a very strong incentive to move implementations to a

HPC system. Conversely, NGS software development has

 3

evolved by reacting to the prevailing sequencing technologies.

This technology is rapidly and continually changing and

forces developers to focus on functionality rather than system

size [1].

In order to embrace HPC best practice in such a dynamic field

as NGS, it is important for HPC software development to

evolve within the ecosystem. Upon embracing HPC, the same

HPC best practices used in computational chemistry can be

applied to entire NGS workflows, including workload

distribution, compute parallelization, and system profiling to

optimize resource utilization and eliminate bottlenecks.

Figure 3. HPC best practices diagram

As an example of how HPC best practices can be applied in an

NGS application, here we describe our efforts to integrate

runtime and memory scaling into the Inchworm module of the

Trinity de novo assembly software. We introduce minimal

changes to the sequential version of Inchworm, yielding the

first generation of a distributed-memory parallel Inchworm

(termed MPI-Inchworm). MPI-Inchworm is demonstrated to

leverage distributed-memory systems and to scale computing

across hundreds to thousands of compute cores. We expect

there should exist ample opportunities to apply HPC best

practices in other NGS workflows, leveraging techniques

described here in our development of MPI-inchworm.

This paper is divided as follows: Section I contains a

discussion of the main features of HPC best practices, applied

to bioinformatics; Section II describes the original shared-

memory single-node version of Trinity; Section III is the core

of this article where we focus on the details of the distributed-

memory multi-node implementation of Inchworm and how it

relates to HPC best practices; Section IV describes the

hardware leveraged here; Section V reports results associated

with the two concepts of time-scaling and memory-scaling, as

defined in Section I on HPC best practices; and Section VI

details concluding remarks.

I. HPC BEST PRACTICE

A core concept underlying HPC best practices is distributed-

memory parallelism (described in Figure 1), which implies

two important HPC features: time scaling and memory

scaling. Time scaling helps reduce the time-to-solution and is

essential in clinical genomic settings in which medical

practitioners are in need of fast and accurate diagnostics.

Simply using embarrassingly parallel programming workflows

and leveraging supercomputers was shown capable of aligning

reads and calling variants for 240 human genomes in just over

50 hours [21]. Another application is demonstrated capable of

similar alignment and variant calling in less than two hours

per sample [22]. Time-scaling remains indeed one of the most

fundamental features of HPC, and potentially most relevant in

clinical applications of NGS analysis.

The second HPC focus, memory scaling, is by no means less

important, but often neglected. Memory constraints are often

an issue on shared-memory nodes (e.g., a typical desktop),

because large NGS problems can easily require more memory

than is available on a typical single node. Excellent parallel

threading (i.e., time scaling) can be achieved on a single node

using, for example, OpenMP [13]. Unfortunately, such

parallel threading can never solve the problem of being

restricted to a single shared memory. On distributed-memory

architectures, however, once the data for assembling or

aligning a DNA/RNA sequence is distributed among typical

(low-cost) microprocessors, the memory limitation no longer

imposes an inherent constraint. Such memory scaling, in

principle, enables HPC computation on any genome size, from

the modest human genome at ~3.2 Gb (giga base pairs or

billion base pairs) to the spruce (~20 Gb), or even larger

genomes that have not yet been sequenced, such as the axolotl

(~30Gb), or Paris japonica (~149 Gb) - the Japanese flower

estimated to have the largest estimated genome size [27].

Moreover, the ability of a single program to use the memory

of multiple nodes allows systems to be configured

homogeneously, rather than requiring a number of expensive

large-memory nodes for special cases.

In practice, distributing the data might require refactoring

certain parts of an existing serial implementation. Although

the concept of message passing (MPI) is straightforward, it

does involve added computational complexity and requires

developers to overcome certain barriers. This can easily be

achieved by becoming familiar with MPI [12]. In the case of

Trinity, the challenges in integrating MPI for distributed-

memory allocation and distributed computational processing

involved deciding exactly how to distribute the input

sequencing reads and deciding which data needed to be

communicated among the distributed computations. Our effort

 4

to integrate MPI into the Inchworm component of the Trinity

software is further discussed in Section IV.

What exactly are HPC best practices? Figure 3 shows a

diagram depicting steps to guide one in applying HPC best

practices. Evaluations start with I/O; any unnecessary I/O

occurring inside a particular task of the workflow should be

eliminated, keeping only the I/O that is necessary (i.e.,

keeping essentially only the I/O situated at the beginning and

the end of a given task inside that workflow). The second

item, memory usage, is related to the I/O; ideally input data

files are read in parallel by each MPI rank and then data is

distributed among the ranks to best support the program

algorithm. Once distribution of the data is optimized, the CPU

usage and communications can be evaluated to further

improve time-scalability. The last two items, CPU time and

communication patterns, are not generically approached but

often require solutions more specific to the algorithm itself.

We summarize issues relating to HPC best practices below:

(comparing with Figure 3).

Profiling is essential to HPC best practices. This process

consists of timing each important step of any application;

separating the time spent on the I/O from the time spent

computing, locating code constructs that are slower than

others, and determining how much memory is used. Profiling

should always be included in any complex application. There

are two major ways to implement profiling. First, including

the logic to perform profiling directly within your code

controlled via command-line options or compiler flags (e.g., a

“PROFILE” logical flag that can be turned on and off in the

Makefile), with the help of libraries such as <ctime> (time.h),

or MPI_wtime() for timing sections of code, or alternatively,

using ‘third party’ software tools such as Cray PerfTools [28],

Tau [29], or Collectl [30]. Once the serial application is

thoroughly profiled, then the developer can begin parallelizing

the application, such as by leveraging MPI.

Below, we show an example of a small MPI program written

in C, which demonstrates two key features of an MPI

program: (1) each rank can execute specific sections of code

as determined by its rank assignment, and (2) different ranks

can communicate by sending/receiving messages. This

program runs as two distributed parallel processes where

process rank 1 uses MPI communication to send a message

containing the nucleotide sequence ‘GATTACA’ to process

rank 0, which simply reports the message it received.

Incorporating MPI into any parallel C/C++ program requires

a minimum of six extra lines, as shown below in our example

program’s “SendDNA.c” file, see [31]-[33] and some extra

useful examples of parallel sorting in [34]:

#include <stdio.h>

#include <string.h>

#include "mpi.h"

main(int argc, char* argv[]){

 int rank_of_process;

 int number_of_processes;

 int rank_of_sender;

 int rank_of_receiver;

 int tag_for_sequence = 0;

 char message[100];

 MPI_Status status_of_receiver;

 /* Start up MPI */

 MPI_Init(&argc, &argv);

 /* Find out processor rank */

 MPI_Comm_rank(MPI_COMM_WORLD, &rank_of_process);

 /* Find out number of processes */

 MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);

 if (rank_of_process == 1) {

 /* create “message” content */

 sprintf(message, "GATTACA from process %d!", rank_of_process);

 rank_of_receiver = 0;

 MPI_Send(message,100,MPI_CHAR,rank_of_receiver,

 tag_for_sequence, MPI_COMM_WORLD);

 } else if (rank_of_process == 0){

 rank_of_sender = 1;

 MPI_Recv(message,100, MPI_CHAR, rank_of_sender,

 tag_for_sequence, MPI_COMM_WORLD,&status_of_receiver);

 printf("%s\n", message); /* print message to stdio*/

 }

 /* Shut down MPI */

 MPI_Finalize();

} /* main */

This program is compiled using:

CC -o ./SendDNA SendDNA.c

A batch job contains the following line:

mpirun -n2 ./SendDNA

where “-n 2” specifies the number of MPI ranks. The result is:

GATTACA from process 1!

which is actually output by the MPI process with rank 0.

This minimalistic MPI program shows the six required lines,

marked in red, that are exclusively related to MPI (in addition

to the code inside the two boxes that define the

communication pattern). Each of the two ranks is running as a

separate process and is aware of its individually assigned rank

number. Based on its rank, each process will need to know

what its role is and what data it should be responsible for

processing and which sections of code to execute. The

different ranks communicate messages with each other via

MPI_Send() and MPI_Recv(), as shown schematically in

Figure 2, and as implemented in the program above. In our

example, the code in the top box is only executed by rank 1,

putting the message “GATTACA from process 1” into the

variable message, and then sending this message to rank 0.

The code in the bottom box is only executed by rank 0

residing at a different compute node, where it receives the

message from rank 1, stores it in its local variable message,

and prints the message to standard output.

Finding the best approach for distributing data among MPI

ranks is of fundamental importance, because it will also

determine the amount of communication incurred by the

algorithm. Having the data properly distributed allows the

total memory footprint at each compute node to diminish with

 5

increasing number of nodes or MPI ranks. The memory

footprint can also be profiled and will be discussed in section

IV. Once proper scalable memory distribution is achieved then

one can work on parallelizing the algorithm for computing on

these data. This requires practical testing as much as

theoretical algorithmic evaluation. Throughout this process of

developing a parallel application it is imperative to keep in

mind the diagram of HPC best practices in Figure 3.

The next two sections show how we applied HPC best

practices to the parallelization of Trinity-Inchworm.

II. TRINITY RNA-SEQ

Trinity [11] is a popular de novo RNA-Seq assembly tool that

reconstructs transcript sequences from RNA-Seq data and,

unlike other related popular methods such as the Tuxedo tool

suite [35], Trinity does not require a reference genome

sequence. Trinity, as the name suggests, consists of three

main components: Inchworm, Chrysalis, and Butterfly. These

three components form a workflow that is united by a Perl

script called Trinity.

Figure 4 Parallel Inchworm algorithm (a) Phase 1: K-mer

distribution (b) Phase 2: Contig building

Briefly, the components of Trinity operate as follows.

Inchworm builds a catalog of k-mers (sequence of bases of

length k, default of k=25) from all the reads such that every k-

mer is associated with its frequency of occurrence within the

full set of reads. The single ‘seed’ k-mer with the greatest

occurrence is selected from the catalog, and a contig is

constructed by greedily extending the seed from each end,

selecting overlapping k-mer that has the highest occurrence

and extends the growing contig by a single base. Single base

extensions continue to occur until no k-mer exists in the

catalog that can yield an extension, in which case the resulting

contig sequence is reported by Inchworm, and the k-mers

comprising the reported contig are eliminated from the k-mer

catalog. Rounds of seed selection and contig extension

continue until the k-mer catalog is exhausted.

The remaining steps of Trinity involve Chrysalis clustering

Inchworm contigs that are related due to alternative splicing

[Inchworm contigs sharing (k-1)-mers], and building a de

Bruijn graph for each cluster, with ideally one cluster of

contigs per gene and a corresponding de Bruijn graph

representing the transcriptional complexity exhibited by that

gene. The Butterfly software then threads the original reads

through the de Bruijn graphs and reconstructs the full-length

transcript sequences and splicing patterns best represented by

the reads in the context of the graph.

Trinity was initially designed as a single node large memory

application, where only the final phase involving Butterfly

was embarrassingly parallel and could be computed using a

distributed computing environment. Profiling of the original

Trinity code using Collectl was performed and published

previously in [36]. Those profiles have shown improvements

in terms of shared-memory parallelism, using up to 32 CPU

cores. Most importantly, profiling has identified time and

memory bottlenecks located in the Trinity workflow. Those

bottlenecks were shown to exist at specific sections of the

Inchworm and Chrysalis codes.

Here, we engineered a version of the Inchworm software to

scale efficiently, both in terms of memory footprint and wall

clock time, leveraging MPI. (MPI-based parallelization of

Trinity’s Chrysalis module has also been implemented by a

separate group as a separate effort [37].) The next section

describes our implementation of the distributed and massively

parallel version of Inchworm we named MPI-Inchworm.

III. DEVELOPMENT OF MPI-INCHWORM

The general structure of MPI-inchworm contains two main

phases, a k-mer Distribution Phase (Fig 4a) and a Contig

Building Phase (Figure 4b). The first phase populates the k-

mer catalog in distributed-memory. The second phase builds

 6

the contigs via the seeded k-mer greedy extension algorithm

described earlier. The number of ranks can easily vary from 1

(not distributed) to thousands of ranks (distributed). The

input data and the assembly computations are equally

distributed among all of the ranks. Below, we describe the

overall architecture of MPI-Inchworm and how we distribute

the data and computations.

Each distributed MPI rank is composed of two internally

parallel OpenMP threads that further subdivide the work at

each MPI rank. In Figure 4, each distributed MPI rank is

depicted as a box with a blue outline, and the two internally

parallel threads are shown as the ‘contig builder (cb)’ thread

(purple outline) and ‘k-mer server (ks)’ thread (green outline).

In describing the distributed computations, we make reference

to the role of each of these threads within a rank. In general,

the cb thread of one rank sends a message to the ks thread of

another rank, and that ks thread then responds accordingly.

In the initial k-mer Distribution Phase (Figure 4a), MPI-

Inchworm parses the input RNA-Seq reads, extracts the k-

mers from the read sequences, and stores each k-mer in

distributed memory. Here, MPI-inchworm employs the

parallel I/O programming model. The input file is subdivided

into as many sections as there are MPI ranks requested for a

particular run, and each MPI rank reads and processes only its

assigned section of that file. The cb thread is responsible for

parsing the reads, extracting the k-mers, and defining the

location where the k-mer will be distributed. In addition to

each rank reading a section of the reads file, each rank is

responsible for locally storing k-mers, however, the k-mers

being extracted by a given rank are not necessarily stored

locally by that rank. Each k-mer inherently encodes the

identity of the rank that is responsible for storing it by virtue

of its nucleotide composition. By extracting the central

sequence of a k-mer (excluding the base at each terminus), the

destination rank is identified. This simply involves converting

the k-mer sequence to an integer value, and dividing it by the

total number of ranks, with the value of the remainder used to

identify the rank at which the k-mer is to be stored. If the

destination rank is the same as the rank to which the cb thread

is assigned, then the cb thread stores that k-mer locally.

Otherwise, the cb thread uses MPI to send (MPI_Send) the k-

mer to the destination rank, where the corresponding

destination ks thread will receive (MPI_Recv) the k-mer and

store it at that location. In addition to storing the k-mer, the

frequency of that k-mer is stored. If the k-mer already exists at

a given location, then its count is incremented to reflect the

additional occurrence. This k-mer distribution pattern ensures

that the memory footprint decreases with an increase number

of nodes, as discussed in Section II on HPC best practices.

Once all the k-mers have been stored in distributed memory,

the subsequent Contig Building Phase can begin. In this

phase, each rank builds a different contig according to the

Inchworm greedy extension algorithm, with slight

modifications
1
. Starting with a seed k-mer, the cb thread will

search for a greedy extension. Any of the four possible single-

base extensions to the seed (G, A, T, or C) would involve an

extension k-mer containing the same central sequence, and

given that the destination rank for a k-mer is based on the

central sequence (described above), all four possible extension

k-mers would be co-located at a single destination rank. If the

destination rank is that of the cb thread, then the cb thread will

look up the greedy extension k-mer locally. Otherwise, the cb

thread sends a message to the rank containing the extension k-

mers, requesting the greedy extension. The ks thread at the

destination rank receives the request, identifies the four

possible extension k-mers and responds with that k-mer that is

most frequent, or with a message that no such k-mer was

available. Once the cb thread completes building a contig, it

then sends ‘delete k-mer’ messages to destination ranks so that

those k-mers are removed from the fully distributed k-mer

catalog.

This process of seed selection and contig extension is repeated

throughout all the MPI ranks. As each rank constructs contigs,

it writes the contig sequences to a rank-specific output file.

After all ranks have exhausted their local k-mer stores, the

MPI-Inchworm contig construction phase is complete. A final

“harvesting” (serial) routine operates to consolidate the

contigs output from each of the ranks, remove any

redundancy, and prepare a single output file to be used as

input to Chrysalis, the next step of Trinity.

In terms of HPC best practices, communication has been

minimized. This was done through examining profiling data,

as shown in Figs. 5 and 6. The entire communication pattern

in MPI-Inchworm essentially requires two MPI commands:

MPI_Send and MPI_Recv, as in our earlier example code.

Additional information about the MPI inchworm

implementation can be found in the following recorded

seminar presented by author BH [38].

IV. HARDWARE RESOURCES

The primary system utilized in this study was a Cray XC40.

The processor is a 64-bit Intel® Xeon® E5-2698 V3

"Haswell" 16 core 2.3 GHz processor. There are two

processors per compute node and 384 processors per cabinet.

The processor peak performance per core is 36.8 GF. The

memory consists of 128 GB DDR4-2133 MHz per compute

node. Memory bandwidth is 120 GB/s per node. The system

interconnect is Cray Aries multilevel dragonfly topology,

which provides a low latency, high bandwidth network. There

is one Aries router ASIC per four compute nodes. Each Aries

has 40 external network ports over 3 levels, providing more

than 10 GB/sec bidirectional point-to-point bandwidth, with

less than 1.5 µs latency.

1 Seed selection follows a two-phased approach. First a random k-mer is

selected from the k-mer store at the corresponding rank. A greedy extension is

performed to identify a k-mer with maximum abundance, and that k-mer is
chosen as the proper seed for Inchworm contig extension.

 7

Figure 5 (a) Memory scaling and (b) Time scaling of MPI-

Inchworm on the mouse RNA-Seq data. Computations are

done on XC40 Haswell-16, 2 sockets (32cores/node;

128GB/node).

V. RESULTS AND DISCUSSION

In this section we discuss time scaling and memory scaling for

two relevant transcriptome data sets corresponding to mouse

and axolotl (Mexican salamander), both organisms of

importance to biomedical research. The human genome and

the mouse are similar in size (~3 Gb), and the mouse is an

important model organism used in many contexts including

clinical cancer research. The axolotl is known for its

extraordinary regenerative abilities in reconstituting limbs,

retina, liver, and even minor regions of the brain [39]. The

axolotl’s genome contains about 10 times as many base pairs

as that of the mouse or the human, and has yet to be sequenced

and assembled due to its massive size and the related cost and

complexity of such an effort. The RNA-Seq data leveraged for

each organism is described below.

Figure 6(a) Memory and (b) Time scaling of MPI-Iinchworm

on the axolotl RNA-Seq data. Computations are done on XC40

Haswell-16, 2 sockets (32 cores/node;128GB/node).

Figure 5 and 6 summarize the (a) memory scaling and (b) time

scaling results for MPI-Inchworm on the mouse and axolotl

RNA-Seq data, respectively. The memory usage clearly scales

with the number of MPI ranks (Figures 5a and 6a). The

importance of memory scaling cannot be over-emphasized.

For example, the input fastq file for the mouse contains

approximately 50 million 76 base length paired-end Illumina

RNA-Seq reads. In addition to storing k-mers, additional

memory is needed at each node to reconstruct contigs. We

find that the mouse can easily run on one 128-GB node with

two Haswell-16 processors. Figure 5 shows scaling results for

the mouse as performed using 1 node (32 MPI ranks/node) up

to 256 nodes on the Cray XC40. In contrast to the mouse data,

the axolotl data set consists of ~1.2 billion 100 base length

paired-end Illumina RNA-Seq reads, and this very large data

set requires a minimum of 8 nodes just to have adequate

memory capacity. Figure 6 shows scaling results for the

axolotl performed on 8 nodes up to 512 nodes. Out-of-

memory errors occur if one tries to run the axolotl’s RNA-Seq

on a typical single 128-GB XC40 Haswell-16 node. This is

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

M
e

m
o

ry
 s

ca
li

n
g

 (
M

B
/

ra
n

k
)

MPI ranks

of Bytes comm.

of MPI comm.

Mem. (MB/rank)

(a)

10

100

1000

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

T
im

e
 (

se
co

n
d

s)

MPI ranks

Total

Kmer distribution

Contig building

(b)

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

M
e

m
o

ry
 s

ca
li

n
g

 (
M

B
/

ra
n

k
)

MPI ranks

of Bytes comm.

of MPI comm.

Mem. (MB/rank)

(a)

100

1000

10000

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

T
im

e
 s

ca
li

n
g

 (
se

co
n

d
s)

MPI ranks

Total

Kmer distribution

Contig building

(b)

 8

one of the most striking, and often under recognized,

advantages of distributed-memory parallelism: memory

scalability. Most importantly, the original (non-distributed)

Inchworm program can only run jobs on single node, and

therefore, cannot run the axolotl’s RNA-Seq on commodity

hardware. Distributed-memory parallelism allows researchers

to do research that would otherwise not be possible.

The MPI-Inchworm algorithm demonstrates excellent time

scaling properties up to 2048 MPI ranks (64 nodes) with the

mouse RNA-Seq (Figure 3b), and up to 8192 MPI ranks (256

nodes) with the axolotl RNA-Seq (Figure 4b). The larger the

RNA-Seq data set, the better the time scaling. We are

currently exploring how to improve scalability beyond 2048

MPI ranks and 8192 MPI ranks for the mouse and axolotl

datasets, respectively. Overall, the memory and time scaling

are excellent up to multiple thousands of MPI ranks. Time

scaling is of fundamental importance for instance in clinical

environments, where time-to-solution could have a critical

impact on patients’ recovery.

VI. CONCLUSIONS

We have shown how HPC best practices can be applied to the

parallelization of an important component of the Trinity RNA-

Seq application, the Inchworm contig assembler. The

distributed MPI-Inchworm application is now up to 18 times

faster on 128 nodes (4096 MPI ranks) than on a single node

(i.e., using still 32 MPI ranks on that single node) and can

handle data sets that are much larger than what the original

non-distributed code is capable of processing, as a result of

applying HPC best practices to NGS analysis. In general, we

believe that any bioinformatics workflow can greatly benefit

from HPC, in terms of time-to-solution as well as enabling

new research. Distributed-memory parallelism allows

researchers to complete research that otherwise would not be

possible given the limitations of commodity hardware.

ACKNOWLEDGMENTS

We thank Cray Inc. for the computing time on the

XC30/XC40 marketing machine. We thank Broad Institute

principal investigator Aviv Regev for generously supporting

Trinity development efforts and related activities. Finally, we

thank Jessica Whited at the Brigham Regenerative Medicine

Center for access to the axolotl RNA-Seq data used in our

performance studies.

Research reported in this publication was supported by the

National Cancer Institute of the National Institutes of Health

under Award Number 1U24CA180922-01. The content is

solely the responsibility of the authors and does not

necessarily represent the official views of the National

Institutes of Health.

Author contributions are as follows: PC performed software

performance analytics and drafted the initial version of the

manuscript. BH engineered MPI-Inchworm based on input

from all authors, and assisted in writing the final manuscript.

All authors contributed to and approved the final version of

this manuscript.

Our MPI-Inchworm program is open source and freely

available within the current distribution of Trinity [40]. The

source code MPIinchworm.cpp (located in the directory

“Inchworm/src” of the current distribution) needs to be

compiled separately using the Makefile template (make –f

MPI_cray.Makefile). The name of the executable is

“MPIinchworm” and can be used with parameters equivalent to

the original Inchworm software.

REFERENCES

[1] G. Lockwood, (2015, March). “DNA Sequencing: not quite HPC yet”,
The Platform. Available: http://www.theplatform.net/2015/03/03/dna-
sequencing-not-quite-hpc-yet/

[2] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, I. Birol,
“ABySS: A parallel assembler for short read sequence data,” Genome
Research, vol. 19, pp. 1117-1123, 2009.

[3] NovoAlign. Available: http://www.novocraft.com

[4] O. Thorsen, B. Smith, C. P. Sosa, K. Jiang, H. Lin, A. Peters, W. Feng,
“Parallel Genomic Sequence-Search on a Massively Parallel System”,
ACM International Conference on Computing Frontiers, May 2007.

[5] H. Lin, P. Balaji, R. Poole, C. P. Sosa, X. Ma, W. Feng, “Massively
Parallel Genomic Sequence Search on the Blue Gene/P Architecture”,
IEEE/ACM SC2008: The International Conference on High-
Performance Computing, Networking, and Storage , November 2008.

[6] H. Lin, X. Ma, W. Feng, N. Samatova, “Coordinating Computation and
I/O in Massively Parallel Sequence Search”, IEEE Transactions on
Parallel and Distributed Systems, May 2010.

[7] K. Jiang, O. Thorsen, A. Peters, B. Smith, C. P. Sosa, “An Efficient
Parallel Implementation of the Hidden Markov Methods for Genomic
Sequence-Search on a Massively Parallel System,” IEEE Transactions
on Parallel & Distributed Systems, vol. 19, pp.15-23, 2008.

[8] N. Lartillot, N. Rodrigue, D. Stubbs, J. Richer, (2013, April
9)“PhyloBayes MPI. Supplementary information,” Available:
http://megasun.bch.umontreal.ca/People/lartillot/www/downloadmpi.ht
ml

[9] S. Boisvert, F. Raymond, É. Godzaridis, F. Laviolette and J. Corbeil,
“Ray Meta: scalable de novo metagenome assembly and profiling,”
Genome Biology, vo. 13, pp. R122, 22 December 2012.

[10] E. Georganasy, A. Buluc¸ J. Chapman, L. Olikery, D. Rokhsar, K. Yelic,
“Parallel De Bruijn Graph Construction and Traversal for De Novo
Genome Assembly,” Supercomputing Proceedings, pp. 437, 2014.

[11] M.G. Grabherr, B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I.
Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E.
Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C.
Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev, “Full-length
transcriptome assembly from RNA-seq data without a reference
genome,”. Nature Biotechnology vol. 29, pp. 644-52, 2011.

[12] Message P Forum. 1994, MPI: a Message-Passing Interface Standard.
Technical Report. University of Tennessee, Knoxville, TN, USA.

[13] OpenMP: Available: http://openmp.org/wp/

[14] J. Goecks, A. Nekrutenko, J. Taylor, and The Galaxy Team. “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences.” Genome Biol.
vol. 11, pp. R86, 2010.

[15] M. Reich, T. Liefeld, J. Gould, J. Lemer, P. Tamayo, JP. Mesirov,
GenePattern 2.0”, Nature Genetics vol. 38, no 7, pp. 500-501, 2006.
Available: http://www.broadinstitute.org/cancer/software/genepattern/

http://www.theplatform.net/2015/03/03/dna-sequencing-not-quite-hpc-yet/
http://www.theplatform.net/2015/03/03/dna-sequencing-not-quite-hpc-yet/
http://openmp.org/wp/
http://www.broadinstitute.org/cancer/software/genepattern/

 9

[16] BaseSpace Genomics Cloud Computing. available:
https://basespace.illumina.com/home/index

[17] 454 Sequencing. Available: http://454.com/products/technology.asp

[18] Illumina. http://www.illumina.com

[19] Pacific Biosciences. Available; http://www.pacificbiosciences.com/

[20] Nanopore. Available: https://www.nanoporetech.com/

[21] M.J. Puckelwartz, L.L. Pesce, V. Nelakuditi, L. Dellefave-Castillo, J.R.
Golbus, S.M. Day, T.M. Cappola, G.W. Dorn II, I.T. Foster, and E.M.
McNally, “Supercomputing for the parallelization of whole genome
analysis,” Bioinformatics vol. 30, pp. 1508, 2014.

[22] B.J. Kelly, J.R. Fitch, Y. Hu, D.J. Corsmeier, H. Zhong, A.N. Wetzel,
R.D. Nordquist, D.L. Newsom and P. White, “Churchill: An Ultra-Fast,
Deterministic, Highly Scalable and Balanced Parallelization Strategy for
the Discovery of Human Genetic Variation in Clinical and Population-
Scale Genomics,” Genome Biology vol. 16, pp. 6, 2015.

[23] H. Li H. and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler Transform,” Bioinformatics vol. 25, pp. 1754, 2009.

[24] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G.
Marth, G. Abecasis G., R. Durbin and 1000 Genome Project Data
Processing Subgroup. “The Sequence alignment/map (SAM) format
and SAMtools,” Bioinformatics, vol. 25, pp. 2078-9, 2009. Available:
http://broadinstitute.github.io/picard/

[25] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G.
Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data
Processing Subgroup, “The Sequence alignment/map (SAM) format and
SAMtools,” Bioinformatics vol. 25, pp. 2078, 2009.

[26] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A.
Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A.
DePristo, “The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data,” Genome Research
vol. 20, pp. 1297 , 2010.

[27] J. Pellicer, M.F. Fay, and I.J. Leitch, “The largest eukaryotic genome of
them all?,” Botanical Journal of the Linnean Society vol. 164 pp. 10,
2010.

[28] Using Cray Performance Measurement and Analysis Tools, S-2376-610,
Available: http://docs.cray.com/books/S-2376-610/

[29] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
Int.l J.l High Perf. Comp. App. vol. 20, pp. 287, 2006.

[30] Collectl. Available: http://collectl.sourceforge.net/

[31] P. Pacheco, “An introduction to Parallel Programming” (Morgan
Kaufmann Publishers, Inc, San Francisco, 2011).

[32] D. Rouson, J. Xia, X. Xu, “Scientific Software Design, The Object-
Oriented Way,” Cambridge University Press, New York, 2014.

[33] G.E. Karniadakis, R.M. Kirby II, “Parallel Scientific Computing in C++
and MPI ‘” Cambridge University Press, New-York, 2003.

[34] B. Wilkinson and M. Allen, “Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers,”
Pearson, UpperSaddle River, 2014.

[35] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelly, H. Pimentel, S.L.
Salzberg, J.L. Rinn, and L. Pachter, “Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and Cufflinks,” Nature Protocols
vol. 7, pp. 562 , 2012.

[36] R. Henschel, M. Lieber, I.-S. Wu, P.M. Mista, B.J. Haas, R. D. LeDuc,
“Trinity RNA-Seq Assembler Performance Optimization,” XSEDE12.
Pp. 16-20, 2012.

[37] V. Sachdeva, C.S. Kim, K.E. Jordan, M.D. Winn, “Parallelization of the
Trinity pipeline for de novo transcriptome assembly,” IEEE 28th Int.
Parallel & Dist. Proc. Symp. Workshop pp. 566, 2014.

[38] Brian Haas, Leveraging a Cray Supercomputer for Parallel De Novo
Transcriptome assembly using Trinity, 2014. Available:
https://www.youtube.com/watch?v=thHLF3eCl5Q .

[39] K. Muneoka, H. Manjong, and D. M. Gardiner, “Regrowing Human
Lims,” Scientific Americam, vol. 298, pp. 56-63, 2008.

[40] Trinity v2.0.4 release. Available:
https://github.com/trinityrnaseq/trinityrnaseq/releases

https://basespace.illumina.com/home/index
http://454.com/products/technology.asp
http://www.illumina.com/
http://www.pacificbiosciences.com/
https://www.nanoporetech.com/
http://broadinstitute.github.io/picard/
http://docs.cray.com/books/S-2376-610/
http://collectl.sourceforge.net/
https://www.youtube.com/watch?v=thHLF3eCl5Q
https://github.com/trinityrnaseq/trinityrnaseq/releases

