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ABSTRACT

The Regional Atmospheric Modeling System (RAMS) was run at a 1-km grid spacing over the Sydney

basin in Australia to assess the impact of land cover change on a simulated storm event. The simulated

storm used NCEP–NCAR reanalysis data, first with natural (i.e., pre-European settlement in 1788) land

cover and then with satellite-derived land cover representing Sydney’s current land use pattern. An intense

convective storm develops in the model in close proximity to Sydney’s dense urban central business district

under current land cover. The storm is absent under natural land cover conditions. A detailed investigation

of why the change in land cover generates a storm was performed using factorial analysis, which revealed

the storm to be sensitive to the presence of agricultural land in the southwest of the domain. This area

interacts with the sea breeze and affects the horizontal divergence and moisture convergence—the trigger-

ing mechanisms of the storm. The existence of the storm over the dense urban area of Sydney is therefore

coincidental. The results herein support efforts to develop parameterization of urban surfaces in high-

resolution simulations of Sydney’s meteorological environment but also highlight the need to improve the

parameterization of other types of land cover change at the periphery of the urban area, given that these

types dominate the explanation of the results.

1. Introduction

Land surface processes affect weather through the

exchange of heat, moisture, and momentum between

the earth’s surface and the atmosphere (Betts et al.

1996). Studies by Beljaars et al. (1996) and Viterbo and

Betts (1999) of the July 1993 floods in the United States

showed that the simulation of precipitation by the Eu-

ropean Centre for Medium-Range Weather Forecasts

was highly sensitive to the parameterization of surface

processes. Soil moisture anomalies (Schar et al. 1999),

soil freezing (Viterbo et al. 1999), surface parameters

and aggregating functions (Rodriguez-Camino and

Avissar 1999), land surface heterogeneity (Avissar and

Pielke 1989; Holtslag and Ek 1995), and the nature of

the vegetation (Pielke et al. 1997) have all been shown

to affect various aspects of the boundary layer and its

meteorological components (see Avissar et al. 2004).

Many studies have shown urban surfaces to be ca-

pable of altering natural weather patterns through the

urban heat island effect, the disruption of airflow, and

the initiation of mesoscale circulations, and by affecting

storm occurrence. For example, in an early modeling

study, Hjelmfelt (1982) demonstrated that wind flow

can be altered by an urban surface. A more recent

study by Kalnay and Cai (2003) focused on the thermal

impacts of urbanization [there is significant dispute

over their results, however; see Trenberth (2004)]. Nu-

merous other modeling studies have been undertaken

to investigate the effect of urban surfaces on weather

and climate, facilitated by improved knowledge of

physical processes coupled with enhanced computing

capacity. Thorough reviews of the urban influence on

climate are found in Pielke (2001) and Arnfield (2003).

More specific storm studies, including Atkinson (1971),

Balling and Brazel (1987), Jauregui and Romales

(1996), Bornstein and Lin (2000), and Baik et al. (2001),

demonstrate how urban areas can affect storm initia-

tion, intensity, and motion.

Observational evidence also suggests an urban influ-

ence on weather and climate. Some studies find in-

creases in warm-season rainfall downwind of cities

(e.g., Changnon 1968; Landsberg 1970; Huff 1986).

There is also evidence for cities causing decreased pre-

cipitation amounts by altering cloud microphysics
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(Rosenfield 1999; Ramanathan et al. 2001). An obser-

vational study by Shepherd and Burian (2003) notes the

significance of the sea breeze and coastline curvature in

addition to the city surface in contributing to the me-

teorological conditions of coastal cities, highlighting

some of the complexities in urban–atmosphere studies.

Evidence local to Sydney, Australia, supports both the

potential role of the sea breeze in enhancing storm fre-

quency (see Potts et al. 2000) and sea breezes as a form

of boundary layer convergence that initiates convection

[this has been found in earlier studies, including Wilson

and Schreiber (1986) and Koch and Ray (1997)]. Over-

all, the specific physical setting of cities are important in

determining meteorological outcomes, and generalized

assessments of urban influences on weather and climate

must be reviewed critically (Shepherd and Burian

2003).

This paper focuses on the Sydney basin and explores

the impact of land cover change (LCC) on a single

storm event occurring in the region. At first, LCC

within the Sydney basin was to support agriculture, but

recent urban expansion in the Sydney region has been

extensive to accommodate an influx of 50 000 people

per year (Environmental Protection Authority, New

South Wales 2003). The Sydney basin is frequently af-

fected by storms, predominantly in summer during the

early afternoon and evening (Potts et al. 2000). Case

studies of several of Sydney’s severe storms can be

found in Spillane and Dixon (1969) and Bureau of Me-

teorology (1993, 1995), and Matthews and Geerts

(1995) provide a study of the spatial distribution of Syd-

ney’s storms according to synoptic type. The possible

interaction of these storms with Sydney’s urban surface

is a growing concern as urbanization spreads, poten-

tially exerting an increasing influence on the character-

istics of severe storms. Given that the Sydney hailstorm

of April 1999 caused the most insured damage of any

natural disaster recorded in Australia (exceeding Aus-

tralian $1.7 billion; see http://www.idro.com.au), any

role of the land surface in intensifying or changing the

frequency or timing of intense storms is worthy of study

because it affects the exposure of the insurance industry

to financial risk.

In this paper we explore a particularly interesting

simulated storm. This storm did not occur in the model

under natural land cover (land cover representing pre-

European settlement that occurred in 1788) and only

occurred under land cover patterns that now exist

within the Sydney basin. We explore how the change in

land cover affects the thermodynamic conditions that

contribute to the storm and maintain it. To assess the

influence of the particular landscape pattern across the

Sydney basin, a factorial assessment of the sensitivity of

the storm to the pattern of land cover was performed.

The details of the high-resolution numerical model

used to simulate the storm are provided in section 2.

Section 3 describes and discusses the results. Section 4

presents a summary and conclusions.

2. Model description and experimental method

This study used the Regional Atmospheric Modeling

System (RAMS; version 4.3.0). RAMS implements the

fundamental equations of heat, moisture, momentum,

and continuity (Pielke 2001), and was described in de-

tail by Pielke et al. (1992) and Cotton et al. (2003). The

model has been used extensively across a range of ap-

plications, including in an operational capacity (e.g.,

McQueen et al. 1999; Aikman et al. 2000). The perti-

nent features of the model configuration used in this

study are presented in Table 1. The model configura-

tion was selected based on the desire to capture both

the small-scale convective processes and the larger me-

soscale and synoptic-scale processes that contribute to

storm occurrence. For further detail on each of the pa-

rameterization schemes, readers are referred to litera-

ture cited in Table 1.

For this study, four nested grids with horizontal grid

TABLE 1. Summary of model configuration used in this study.

Grid nesting structure Four grids of 1-, 3-, 12-, and 60-km horizontal grid spacing, following Pielke et al. (1997)
Initialization method Horizontally heterogeneous using NCEP–NCAR reanalysis (Kalnay et al. 1996), following

Narisma and Pitman (2003) and Peel et al. (2005)
Lateral boundary conditions Klemp and Wilhelmson (1978), following Walko and Tremback (2002)
Cumulus parameterization Kain and Fritsch (1993) for grids 1 and 2 and none for grids 3 and 4, following Castro et al.

(2001) [note that Kain and Fritsch (1993), when used with a 60-km grid, is not generally
recommended; we found it superior to Kuo (1974) as modified by Tremback (1990) in these
specific experiments but advise caution in its use generally at this grid spacing]

Radiative transfer Harrington (1997), following Walko et al. (1995) and Pielke (2001)
Microphysics Level 3, bulk microphysics (see Meyers et al. 1992), following Cotton et al. (1995)
Land surface model LEAF-2 (Walko et al. 2000), following many RAMS studies: e.g., Copeland et al. (1996), Pielke

et al. (1997), and Rozoff et al. (2003)
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increments of 60, 12, 3and 1 km, respectively, were used

(Table 2). This configuration has a relatively low nest-

ing ratio and was chosen to improve the exchange of

data between grids (Walko et al. 1995). Use of larger-

spatial-resolution jumps between grids is more compu-

tationally efficient, but it can affect reliability and ac-

curacy (Denis et al. 2003). Figure 1 shows the nested

grid configuration and topography, and Fig. 2 shows the

specific land cover classes for the fine grid (grid 4).

Lateral boundary conditions were taken from the Na-

tional Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis data (Kalnay et al. 1996) [we obtained from the

NCAR mass storage system the specific dataset NCEP–

FIG. 1. Nesting structure of grids 1–4: (a) grid 1 with an inset of grid 2, (b) grid 2 with an inset of grid 3, (c)
grid 3 with an inset of grid 4, and (d) grid 4 with topography (meters above sea level).

TABLE 2. Grid configuration. The vertical spacing is constant for all grids, with 1.16 grid stretch ratio.

Grid No.
No. of horizontal

grid points
Horizontal domain

size (km)
Horizontal grid
increment (km)

Time step
(s)

Depth
(m)

Vertical
spacing (m)

1 50 � 50 2940 � 2940 60 120 24 860 100–1500
2 42 � 42 492 � 492 12 24 24 860
3 50 � 50 147 � 147 3 6 17 360
4 92 � 92 91 � 91 1 2 9860
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NCAR Reanalysis 1: ds090.0]. These boundary condi-

tions were updated every 6 h using the Klemp–Wil-

helmson condition (Klemp and Wilhelmson 1978)

based on results from Walko and Tremback (2002).

Initialization for this study was horizontally inhomoge-

neous using data from the NCEP–NCAR reanalysis.

Inhomogeneous initialization is commonly used in nu-

merical weather prediction models in which observed

temperature, winds, and humidities are incorporated

(or assimilated) into a numerical model to provide the

best spatial estimate of the initial atmospheric structure

at each grid point and at each level in the atmosphere.

Sea surface temperatures were initialized identically,

using the same NCEP–NCAR data, at the beginning of

each run, and, because we ran for single days, these

temperatures were not updated. All of our simulations

began at 1000 LST, which was several hours before the

storm began to develop in the model. One issue with

our model configuration is that the top of the atmo-

sphere over grid 4 was limited to 9860 m. This height is

very low but was retained to ensure consistency of the

results with Gero et al. (2006). We tested the sensitivity

of the results to deeper atmospheres using current and

natural land cover, and our conclusions were not af-

fected, but we did not repeat the factorial experiments

with the deeper atmosphere.

The use of the NCEP–NCAR reanalysis has an im-

portant limitation for our study: it means that the

storms simulated are not “real” in the sense that they

can be compared with the observed meteorological

conditions of a particular day. Over the data-rich

United States it is possible that using this assimilation

product would generate meteorological phenomena

within RAMS that could be compared with observa-

tions, and a simulated storm could be validated against

an observed storm. In more data-poor regions, such as

Australia, we do not anticipate that the synoptic-scale

NCEP–NCAR product accurately reflects the meteo-

rological conditions over Sydney on a specific day, and

therefore we do not expect a nested regional model

such as RAMS to simulate accurately a specific storm

that might have occurred on a specific day. Despite

these apparent limitations we used the NCEP–NCAR

data as lateral boundary conditions for a variety of rea-

sons. We wanted the synoptic meteorological condi-

tions to be physically reasonable over southwestern

Australia (hence, we did not want to use synthetic or

idealized conditions). Lateral boundary conditions

from the Australia forecast system were incompatible

with RAMS, leading to unresolved numerical instabili-

ties in the model. Also, the NCEP–NCAR data were

available and well documented, which is something of a

luxury for research groups outside Europe and the

United States.

To represent the land surface in RAMS, the Land

Ecosystem–Atmospheric Feedback (LEAF-2) model

(Walko et al. 2000) is used. This model accounts for the

exchange of heat and moisture among the soil, vegeta-

tion, canopy, surface water, and atmosphere. LEAF-2

explicitly represents canopy processes based on Dear-

dorff’s (1978) “big leaf” concept. It also represents the

details of turbulent exchange and radiative transfer, as

well as transpiration, precipitation, and fluxes of heat

and moisture between the soil or snow and the atmo-

sphere (Lee 1992; Walko et al. 2000).

The initialization of soil moisture and soil tempera-

ture in LEAF-2 should be on the basis of observations,

but these are entirely lacking over the Sydney region.

We therefore initialized both soil temperature and soil

moisture homogeneously over the region. We initial-

ized soil moisture at 35% of moisture capacity in each

of the 11 soil layers. The soil type was uniformly sandy

clay loam. We explored the sensitivity of the simulated

storm to initial soil moisture under both current and

natural land cover by perturbing the initial soil mois-

ture to 25% and 45% of moisture capacity (we did not

run each factorial experiment). The impact of land

cover change on the simulated storm was independent

of soil moisture initialization across this initial range.

Soil temperature was initialized at 2 K below the tem-

perature of the lowest atmospheric level for the top soil

layer, to 5 K warmer than the temperature of the lowest

FIG. 2. Current land cover pattern for grid 4 (EU: established
urban, A: agriculture, NU: new urban, B: bushland, and DU:
dense urban; 1: Broken Bay, 2: Port Jackson, 3: Botany Bay, 4:
Parramatta, 5: Campbelltown, and 6: Penrith).
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atmospheric level for the deepest soil layer. Again, we

explored the effect on our results of small perturbations

in soil temperature initialization, and the simulated

storm was insensitive. However, we did not explore the

sensitivity of the storm to an introduction of a hetero-

geneous initialization of soil temperature or soil mois-

ture.

To differentiate between land cover types in LEAF-

2, various biophysical parameters need to be modified

that reflect the nature of the terrestrial surface. These

biophysical parameters include albedo �, leaf area in-

dex (LAI), vegetation fraction �fm, aerodynamic rough-

ness length z0, zero-plane displacement height d, emis-

sivity �, and root depth Rd. For this study, new land

surface classes were required to represent the specific

land cover types found within the Sydney basin. The

classes included in this study are

1) dense urban [confined to the city core and Parra-

matta central business district (CBD), approxi-

mately 20 km west of Sydney’s CBD],

2) new urban (newly established residential suburbs

lacking mature trees),

3) established urban (residential suburbs with mature

trees),

4) agricultural land (incorporating all agricultural ac-

tivity; in western Sydney, most agricultural land is

pasture for grazing or market gardens), and

5) bushland (i.e., natural vegetation, primarily �20-m-

high trees with 40% cover).

This number and definition of land cover classes was

based on previous studies of a similar nature (Sailor

1995; Brown and Williams 1998; Grimmond and Oke

1999; Brown 2000), combined with the specific nature

of Sydney’s land use patterns. The principal character-

istics defining these classes are built versus green space,

canopy height, and building density (Brown 2000).

Table 3 shows the actual biophysical parameter values

used and the supporting literature.

To explore the potential impact of LCC over the

Sydney region, high-resolution land cover datasets de-

scribing the Sydney basin’s current land use patterns

and the land cover prior to European settlement were

needed. The land use prior to European settlement in

1788 is not known at the level of spatial detail required

by RAMS. We therefore assume that the region was

homogeneously covered by native bush, primarily 20-m

eucalypt forest. This vegetation still covers some areas

of the Sydney region. The current land use datasets

were generated by GIS classification techniques from

Landsat Thematic Mapper (TM) satellite imagery and

were incorporated into LEAF-2. Classification of het-

erogeneous urban areas from remotely sensed imagery
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is a difficult task because of the challenges in differen-

tiating urban areas from other land use types (Treitz et

al. 1992; Gao and Skillcorn 1998; Zha et al. 2003). How-

ever, it is recognized to be a valuable tool in realistically

investigating land surface impacts on meteorological

processes (Dupont et al. 2004). For the purpose of this

study, images from the Landsat 7 Enhanced Thematic

Mapper Plus (ETM�) were used. ETM� includes

bands in the visible, near infrared, midinfrared, and

thermal infrared (Haack 1983). Six bands (excluding

thermal infrared) were included when classifying the

land surface. Supervised classification was performed in

which representative areas of land use are selected to

classify an image on the original multispectral image

(Maunsel et al. 1990). The resulting land cover datasets,

for the present day, are qualitatively similar to other

sources of data such as air photographs, maps, and an-

ecdotal evidence. However, we have not systematically

assessed the current land cover used in RAMS with

field observations.

The method to test the effect of land cover on this

particular storm involved simulating the storm with the

control (natural) land cover, followed by simulating the

same event (using identical boundary conditions and

model configuration) with current land cover. This ex-

perimental design (i.e., using identical boundary condi-

tions and altering the land surface) follows Sailor

(1995), Pielke et al. (1999), and Eastman et al. (2001) in

testing model sensitivity to the land surface. Thus, using

identical boundary conditions and model configuration,

the changed land cover allows the influence of the land

surface on the behavior of the storm to be examined. If

we had run a single realization of natural land cover

and a single realization of current land cover there

would be a high risk that the results we obtained could

be because of internal model variability. We therefore

also use a factorial approach based on Henderson-

Sellers (1993) and Rivers and Lynch (2004) to explore

the impact of LCC on the simulated storm. The facto-

rial approach has two advantages. First, it can reveal

the significance of each individual land cover type and

the potential interactions existing between each type.

Second, it highlights the consistency of results. If results

from the simulations are inconsistent (e.g., a range of

storms occurring in different locations), it suggests a

nondeterministic outcome. If a small number of types

of results are obtained (e.g., storms are in one location

or do not occur at all), it builds confidence that there is

an association between the perturbation and the simu-

lated results. We used a two-level full factorial experi-

ment with the parameters (or factors) being the four

current land cover classes of interest: dense urban, new

urban, established urban, and agriculture. The full

mode of factorial assessment was selected, and all 16

possible runs were performed (see Table 4).

3. Results and discussion

Figure 3 shows results from the natural versus cur-

rent land cover simulation for a single storm. Shown is

the simulated wind field over the finest grid (grid 4) for

natural vegetation (first column of panels) and for cur-

rent vegetation (middle column of panels). Also shown

is the difference between the two (right column of pan-

els). The shaded region in the first difference panel

(top-right) shows areas where land cover was changed

(see Fig. 2 for details). There are no differences in the

initialization of the two storms or in the boundary con-

ditions, and the difference plot shows no differences

between the resulting simulations. At 1345 LST the

natural and current simulations are similar, but a care-

ful examination shows that the sea breeze under cur-

rent vegetation propagates farther inland (see also 1400

LST).

At 1415 LST, a storm is initiated under current land

cover, close to Sydney’s dense CBD (Fig. 2). This storm

quickly intensifies, growing to 26 km in diameter with a

precipitation rate of 70 mm h�1. At 1430 LST, two

separate intense regions are discernable, and during the

following two time steps the storm splits to form two

distinct and still intense (i.e., 60–70 mm h�1) storm

cells, with the northern cell moving directly over Syd-

TABLE 4. Design matrix for factorial assessment (AG: agricul-
ture, DU: dense urban, NU: new urban, EU: established urban,
and B: bushland). The areas of each type in the current land cover
experiment (header row) are shown in Fig. 2. Simulations that
generated/did not generate storms are indicated in the second
column.

Storm (S)
vs no storm

(NS) Agriculture
Dense
urban

New
urban

Established
urban

Run 1 NS B DU NU EU
Run 2 NS B B NU EU
Run 3 NS B B B EU
Run 4 S AG B B B
Run 5 NS B DU B B
Run 6 NS B B NU B
Run 7 S AG DU B B
Run 8 S AG DU NU B
Run 9 S AG DU B EU
Run 10 NS B DU B EU
Run 11 S AG B B EU
Run 12 S AG B NU B
Run 13 S AG B NU EU
Run 14 NS B DU NU B
Run 15 S AG DU NU EU
Run 16 NS B B B B
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ney’s CBD. These cells move off the coast because of

the westerly winds at a height of 2–4 km. At 1430 LST,

the arrival of a weak precipitation feature can be seen

for both land cover regimes. However, particular atten-

tion is drawn to the left column of Fig. 3, which shows

a complete absence of isolated convective storm for the

natural land cover simulation with the sea breeze domi-

nating the meteorological features of the basin until the

arrival of the weak precipitation feature.

A reasonable assumption would be that the existence

of the dense and new urban surfaces coincident with the

storm was the key factor in explaining the presence of

the storm under current land cover. To explore this

possible cause for the presence of the storm under cur-

rent land cover, factorial experiments were conducted

that capture all of the possible combinations of land

cover change imposed in the change from natural to

current land cover. Land cover classes (Table 3) were

reverted to natural land cover (i.e., bushland) following

the factorial design matrix shown in Table 4. For ex-

ample, in run 1, the area of agriculture represented in

the current land cover experiment is returned to bush-

land, as in the natural land cover experiment. In run 2,

both the agricultural land and dense urban areas are

returned to bushland (see Table 4 for full details).

Figure 4 shows the time step at which maximum pre-

cipitation was recorded in each factorial simulation.

Some simulations produce a storm (runs 4, 7, 8, 9, 11,

12, and 13; herein referred to as storm runs) that each

individually look very similar to the simulation with

current land cover (top left panel of Fig. 4). All other

simulations produce no precipitation (runs 1, 2, 3, 5, 6,

10, and 14; herein referred to as nonstorm runs) and are

similar to the simulation with natural vegetation. Thus,

the simulations fall into two groups: those that are very

similar to the current land cover simulation and those

that are very similar to the natural land cover simula-

tion. There are no other results: the storm is never dis-

placed, nor is it very much weakened or strengthened.

In effect, the storm is either “on” or “off” with no

solution in between.

The results shown in Fig. 4 are unambiguous in terms

of the pattern of land cover used to simulate the two

possible outcomes. Every simulation that includes the

agricultural land over southwestern Sydney generates a

storm; every simulation that omits the agricultural land

fails to simulate the storm. Indeed, the presence or ab-

sence of agricultural land is the only feature within the

factorial experiments that the storm runs have in com-

mon. This is not what we expected when we attempted

to explain our initial results of LCC generating a storm

over the urban surfaces of Sydney, and we clearly need

to explain the link between the LCC over the agricul-

tural land with the generation of a storm 10–20 km east

of this area.

Convective cell intensification occurs for the storm

runs by three concurrent mechanisms (relating to hori-

zontal winds, temperature, and vertical velocity, dis-

cussed later) driven by prestorm horizontal divergence

and convergence patterns associated with the sea-

breeze front. Figure 5 shows horizontal divergence at

850 hPa (�1500 m) and wind vectors in the region of

storm initiation (prior to storm outbreak, i.e., between

1000 and 1300 LST) for the factorial and the current

land cover run. For the nonstorm runs, a relatively uni-

form pattern is seen whereby the divergence field

stretches in a southwest-to-northeast direction, mark-

ing the return flow of the sea-breeze front (i.e., there is

very little along-frontal variability, with a smooth line

extending across the domain from the northeast to the

southwest). The horizontal divergence pattern for the

storm runs shows a disjunction in the uniform diver-

gence pattern around 34.1°S, 150.9°E, denoting the ex-

istence of the heterogeneous landscape pattern below

(the smoothness of the divergence pattern is per-

turbed). This difference in divergence pattern is due to

the smooth agricultural land exerting less drag on the

atmosphere and allowing faster surface wind speeds in

comparison with the rough bush (Table 3). This condi-

tion generates a horizontal divergence pattern higher in

the atmosphere that acts as a trigger to initiate the

storm. Figure 6 shows a vertical cross section (at

33.95°S) across grid 4 with agricultural land on the left

and dense urban areas on the right. The difference in

horizontal wind speed is shown and an acceleration in

the near-surface winds over the smoother agricultural

land is apparent, propagating to about 1000 m. At

higher altitude (between 1500 and 3000 m), the atmo-

sphere decelerates, but only above the agricultural

land.

A term closely coupled to horizontal divergence and

convergence is vorticity [a measure of the rotation of a

fluid (Holton 2004)], which is useful in the examination

of cyclonic systems. Vorticity is frequently assessed in

storm studies, including those focusing on the role of

sea breezes in storm initiation (see Rotunno et al. 1988;

Wilson and Megenhardt 1997; Dailey and Fovell 1999),

because convergent surface flow associated with sea-

breeze fronts tends to result in concentrated vorticity

(Holton 2004). Figure 7 shows prestorm vorticity at 850

hPa (surface winds are also shown). Again, the pattern

is unambiguous. For every storm run, the vorticity field

is stronger with more variable values over the agricul-

tural areas (negative vorticity in the Southern Hemi-

sphere denotes cyclonic vorticity). The vorticity pattern

at 850 hPa is also closely aligned to the precise location
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FIG. 3. Simulated storm showing precipitation rate (gray shades; mm h�1) and surface
winds (arrowed vectors; m s�1) with (left) natural and (middle) current land cover condi-
tions, and (right) difference (current � natural). In the top-right panel, the area of land
cover change is shown for reference. Rows are the 15-min time intervals of outputs, with
local standard time shown above each plot. Results are taken from the fine grid (grid 4).
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of the return flow of the sea breeze, which in turn is

associated with the nature of the underlying surface.

Local vorticity maxima are located at the convergence

zone associated with the sea-breeze front and are

linked to the speed of the flow both at the surface and

higher in the atmosphere. The location of storm initia-

tion consequently coincides with local vorticity maxima

and the convergence zone at the sea-breeze front where

propagation has advanced the farthest inland.

At an altitude of around 1600 m, horizontal winds

weaken by up to 2 m s�1, temperature increases by up

to 1.6°C, and vertical velocity increases by up to 2

m s�1, providing positive feedbacks for storm growth

through the low surface pressure these mechanisms in-

duce. The updrafts feed warm, moist surface air into the

convective cell, allowing surface convergence to inten-

sify. The difference with all nonstorm runs is that at no

stage do surface winds weaken or depart from their

consistent easterly direction, temperatures are consis-

tent, and the weak convective cell does not intensify.

FIG. 3. (Continued)

FEBRUARY 2006 G E R O A N D P I T M A N 291



FIG. 4. Factorial simulations showing the development of the storm with precipitation
rate (mm h�1) and surface winds (arrowed vectors; m s�1, with scale of 10 m s�1) at 1415
LST. “Current” is shown for reference in the top-left panel. Run 16 is not shown because
it is the natural land cover simulation shown in Fig. 3.
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FIG. 5. Horizontal divergence (s�1) and winds at 850 hPa prior to the storm for the
factorial runs, with the current land cover simulation shown for reference in the top-left
panel. Note that values are multiplied by 104 to aid clarity. Labels S and NS denote storm
and no storm, respectively, from Fig. 4.
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Furthermore, in the west of the domain the sea-breeze

front is more visible for runs that lack agricultural land

(i.e., nonstorm runs), because in the runs with agricul-

tural land included the smoother surface permits unob-

structed flow. This is directly related to horizontal di-

vergence and moisture convergence, which effectively

provide the explanation for the development of the

storm.

Note that we explored a suite of other possible rea-

sons for the relationship between the land cover change

and the storm. Figure 8 shows the impact of land cover

change on the simulation of the latent heat flux aver-

aged from 1000 to 1300 LST. Only runs 9 and 10 are

shown because the simulated flux for all storm runs is

very similar to that in Fig. 8a and that for all nonstorm

runs is very similar to what is shown in Fig. 8b. The

introduction of the agricultural area reduces the latent

heat flux by 20–40 W m�2, and the sensible heat flux is

increased by �100 W m�2 (Fig. 9). This change is pos-

sible because of a change in the net radiation related to

the albedo, which is higher over the agricultural land

than over the natural bush. The reduction in the latent

heat flux under crops may seem counterintuitive, but

irrigation is limited in this region (and is not param-

eterized in the model). The lower albedo of the natural

vegetation, coupled with the higher roughness length,

supports a higher latent heat flux; hence, when it is

replaced by nonirrigated crops the latent heat flux is

reduced. The change in the partitioning of the available

energy affects temperature (Fig. 10), which is about

0.5°C warmer over the agricultural land. Although the

change in land cover and the resulting changes in the

partitioning of available energy and temperature pro-

vide a possible explanation for the changed behavior of

the storm through the impact on the depth of the

boundary layer [which can initiate convection (Wilson

et al. 1997)], this is not the case in our simulation of the

storm. However, the changes in temperature and the

turbulent energy fluxes may be sufficient to affect other

aspects of the meteorological conditions over Sydney

that are not apparent on this day.

To demonstrate that roughness length over the agri-

cultural land explains the behavior of this specific

storm, we performed additional sensitivity tests. We

modified the roughness length of the agricultural land

from 0.04 m (Table 3) for run 4 (storm) to 0.03 and 0.05

m. The simulation using 0.03 m produces an identical

storm to that of run 4, but the simulation using 0.05 m

(and higher) did not generate a storm. There is there-

fore a threshold associated with the impact of the

roughness length on the regional meteorological behav-

ior in the case of this specific storm. We did not explore

this further because this threshold is not a fundamental

property of the system—it will be dependent on the

particular meteorological conditions and initialization

of this day, and it is possible that interactions between

roughness length and other modeled quantities would

change the sensitivity to roughness under different con-

ditions. What is important is that the perturbation to

the regional roughness length field imposed by a

change in roughness length from 2.21 (bushland) to 0.04

(agricultural land) m is enough to trigger the system to

exceed the threshold on this day in the model. It is

clearly important to explore the nature of this threshold

further for observed storms in the Sydney basin and

elsewhere.

4. Summary and conclusions

This study has examined the impact of land cover

change on a single storm event in the Sydney basin. A

numerical model (RAMS) was run at high resolution (1

km) over the Sydney basin driven by boundary condi-

tions from the NCEP–NCAR reanalysis. Four nested

FIG. 6. Vertical cross section along 33.95°S showing the differ-
ence in wind speed (current � natural; m s�1). Here, Ag is agri-
culture, NU is new urban, and DU is dense urban. Note the faster
surface winds over agriculture by up to 0.6 m s�1.
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FIG. 7. Vorticity (s�1) and winds at 850 hPa prior to the storm for factorial runs, with the
current land cover simulation shown for reference in the top-left panel. Note that values
are multiplied by 104 to aid clarity. Labels S and NS denote storm and no storm, respec-
tively, from Fig. 4.
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grids were used to downscale to the Sydney basin. The

model used parameterization schemes implemented in

previous studies with similar scope. The surface was

modified within the model from natural conditions to a

satellite-derived current land cover distribution, and

biophysical parameters selected to represent these land

cover types were based on the particular nature of Syd-

ney’s surface in conjunction with values used in previ-

ous studies.

In this case study we found that a storm simulated in

close proximity to the dense urban area of Sydney’s

CBD using current land cover was entirely absent un-

der natural land cover. We explored in detail the rea-

sons for this difference using a factorial design. We

showed that the presence of the agricultural land in the

western region of the Sydney basin initiated processes

that led to the occurrence of the storm. When this re-

gion was returned to bushland the storm was not simu-

lated. All other possible variations in land cover con-

tributed no explanation to the presence/absence of the

storm; the dense or new urban areas specifically did not

cause the storm.

The presence of the agricultural land leads to the

development of a storm remote from this area because

agricultural land is aerodynamically very much smoother

than any other type of land cover in the Sydney basin.

The smoothness of the agricultural land permits a rela-

tive acceleration of the atmosphere in comparison with

the aerodynamically rough bushland. If we increase the

roughness length over the agricultural area to that of

bushland, the storm does not develop. The acceleration

of the atmosphere perturbs the mesoscale dynamics

sufficiently to affect the advancement of the sea breeze

as well as modifying the local-scale vertical structure of

the atmosphere, which promotes the buildup of insta-

bility. The factorial experiments also highlighted a per-

turbation to the horizontal divergence field associated

with the area of agriculture that explains whether a

storm is triggered.

This study has several limitations that should be ad-

dressed in future work. The inclusion of observational

data for boundary conditions rather than NCEP–NCAR

boundary conditions is one priority for future work.

Such an inclusion would enable a direct simulation of

FIG. 8. Averaged (1000–1300 LST) prestorm latent heat fluxes
(W m�2) for runs (a) 9 and (b) 10.

FIG. 9. Averaged (1000–1300 LST) prestorm sensible heat fluxes
(W m�2) for runs (a) 9 and (b) 10.
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observed storms. Assessing the robustness of the model

configuration is also important to improve the accuracy

of the simulations. It is also recognized that this study

presents only one storm. Previous work has indicated a

nonsystematic result among different storm types in

which LCC ranges from having minimal influence

through to the impact presented in this paper (see Gero

et al. 2006). The results in this paper are not “typical”—

we have no evidence that the presence of the agricul-

ture in southwestern Sydney has affected the climato-

logical characteristics of storms over the Sydney urban

core, or that replacing the agricultural area with urban

surfaces would have a statistically robust impact on any

storm climatological description. However, we do show

that there is now modeling evidence to suggest that

Sydney may be affected by complex urban land use–

weather feedbacks in similar ways to other large coastal

cities overseas (see Shepherd 2005) and that further

investigation of these feedbacks over Sydney would be

worthwhile.

Despite there being no evidence that the results in

this paper demonstrate a systematic impact of the land

cover on storms (this is a single case study), it does not

mean that the results are not useful. Our results suggest

that groups developing parameterizations of urban sur-

faces for forecasting or climate-change projection need

to consider all types of nonnatural surfaces, given that

our results indicate that it was LCC at the periphery of

the urban surface that was significant in explaining this

particular storm. If we were trying to forecast this

storm, the observed land cover would be a prerequisite.

For this storm, the roughness-length field was the key

parameter, but the impact of specific land cover types

on the latent and sensible heat fluxes points to an at-

mospheric forcing term that may be important to in-

clude in other meteorological conditions.

Our results also offer a warning to all of us working

in mesoscale modeling. The results shown in Fig. 3 are

“perfect” in that we appeared to find a causal relation-

ship between the urban surface and storms. It would

have been attractive to accept this result and to argue a

cause-and-effect relationship between the building of

cities and the intensification of storms. In our case

study, such an argument would have been fundamen-

tally misleading, as demonstrated by the factorial ex-

periments. This result strongly points to the need to

explore either multiple examples or to use factorial or

ensemble methods when exploring the impact of LCC

on meteorological behavior. To be specific, a single

simulation of “before” and a single simulation of “af-

ter” an LCC is extremely limiting and is potentially

misleading.

In conclusion, our results demonstrate an impact of

agricultural land on a storm that forms over Sydney’s

new and dense urban areas. The mechanisms that link

the smooth agricultural land to mesoscale atmospheric

processes are consistent across all of our experiments.

This result strongly suggests that the changes in the

mesoscale circulations that trigger this single storm are

likely to exist in other case studies and that the nature

of the land cover over the Sydney basin does affect the

regional meteorological behavior because it perturbs a

particularly important component of that meteorologi-

cal behavior (the sea breeze). Implications of this re-

search also extend to the insurance industry. The most

expensive insured event of Australia’s history was the

Sydney hailstorm of April 1999. The clear impact of

LCC on one Sydney storm at least points to a need for

a more systematic assessment of the relationship be-

tween land cover and climate. There is the possibility

that further urban development might change (increase

or decrease) the exposure of the insurance industry to

weather-related risk.

Given that many major cities are coastal and that

land clearing for agriculture farther inland from the city

FIG. 10. Averaged (1000–1300 LST) prestorm temperatures (°C)
for runs (a) 9 and (b) 10.
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is common, we suspect that the results described in this

paper would be common in many areas. Our results

suggest that groups forecasting the meteorological be-

havior of these areas need to consider the changing

nature of the land surface when attempting to improve

forecast models.

Acknowledgments. The authors thank Carol Jacob-

son for her assistance with the land cover datasets. We

also thank Professor Roger Pielke Sr. for his support of

our use of RAMS. Doctors Bart Geerts and Gemma

Narisma provided valuable advice and suggestions on

this paper.

REFERENCES

Aikman, F., III, J. G. W. Kelley, J. T. McQueen, T. F. Gross, and
G. Szilagyi, 2000: Atmospheric and oceanographic analyses
and forecasts for the Chesapeake Bay region during the
Coastal Marine Demonstration Project. Proc. Fifth Symp. on

Integrated Observing Systems, Alberqurque, NM, Amer. Me-
teor. Soc., CD-ROM, 2.3.

Arnfield, A. J., 2003: Two decades of urban climate research: A
review of turbulence, exchanges of energy and water, and the
urban heat island. Int. J. Climatol., 23, 1–26.

Atkinson, B. W., 1971: The effect of an urban area on the pre-
cipitation from a moving thunderstorm. J. Appl. Meteor., 10,

47–55.

Avissar, R., and R. A. Pielke, 1989: A parameterization of het-
erogeneous land surfaces for atmospheric numerical models
and its impact on regional meteorology. Mon. Wea. Rev., 117,

2113–2136.

——, C. P. Weaver, D. Werth, R. A. Pielke, R. Rabin, A. J. Pit-
man, and M. A. Silva-Dias, 2004: The regional climate in Ka-
bat. Vegetation, Water, Humans and the Climate, P. M. Claus-
sen et al., Eds., Springer-Verlag, 21–32.

Baik, J. J., Y.-K. Kim, and H. Y. Chun, 2001: Dry and moist con-
vection forced by an urban heat island. J. Appl. Meteor., 40,

1462–1474.

Balling, R. C., and S. W. Brazel, 1987: Recent changes in Phoenix,
Arizona, summertime diurnal precipitation patterns. Theor.

Appl. Climatol., 38, 50–54.

Beljaars, A. C. M., P. Viterbo, and M. J. Miller, 1996: The anoma-
lous rainfall over the United States during July 1993: Sensi-
tivity to land surface parameterization and soil moisture
anomalies. Mon. Wea. Rev., 124, 362–383.

Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A.
Viterbo, 1996: The land surface–atmosphere interaction: A
review based on observational and global modeling perspec-
tives. J. Geophys. Res., 101, 7209–7225.

Bornstein, R., and Q. Lin, 2000: Urban heat islands and summer-
time convective thunderstorms in Atlanta: Three case stud-
ies. Atmos. Environ., 34, 507–516.

Brest, C., 1987: Seasonal albedo of an urban/rural landscape from
satellite observations. J. Climate Appl. Meteor., 26, 1169–

1187.

Brown, M. J., 2000: Urban parameterizations for mesoscale me-
teorological models. Mesoscale Atmospheric Dispersion, Z.
Boybeyi, Ed., Wit Press, 193–255.

——, and M. D. Williams, 1998: An urban canopy parameteriza-

tion for mesoscale models. Proc. of the Second Urban Symp.,

Albuquerque, NM, Amer. Meteor. Soc., 144–147.

Bureau of Meteorology, 1993: Report on the Sydney hailstorm,
March 1990. Bureau of Meteorology Phenomena Rep. F2.16,
44 pp.

——, 1995: The 21st January 1991 Sydney severe thunderstorm.

Bureau of Meteorology Phenomena Rep. F2.17, 26 pp.

Castro, C. L., R. A. Pielke, and G. E. Liston, 2001: Simulation of
the North American monsoon in different Pacific SST re-
gimes using RAMS. Proc. 26th Annual Climate Diagnostics

and Prediction Workshop, La Jolla, CA, NOAA. [Available on-
line at http://www.cpc.ncep.noaa.gov/products/proceedings/
cdw_proceedings/Castro.pdf.]

Changnon, S. A., 1968: The La Porte weather anomaly—Fact or
fiction? Bull. Amer. Meteor. Soc., 49, 4–11.

Collins, D. C., and R. Avissar, 1994: An evaluation with the Fou-
rier amplitude sensitivity test (FAST) of which land surface
parameters are of greatest importance in atmospheric mod-
eling. J. Climate, 7, 681–703.

Copeland, J. H., R. A. Pielke, and T. G. F. Kittel, 1996: Potential
climatic impacts of vegetative change: A regional modeling
study. J. Geophys. Res., 101, 7409–7418.

Cotton, W. R., J. F. Weaver, and B. A. Beitler, 1995: An unusual
summertime downslope wind event in Fort Collins, Colora-
do, on 3 July 1993. Wea. Forecasting, 10, 786–797.

——, and Coauthors, 2003: RAMS 2001: Current status and future
directions. Meteor. Atmos. Phys., 82, 5–29.

Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the
interaction between the sea breeze front and horizontal con-
vective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev.,

127, 858–878.

Deardorff, J. W., 1978: Efficient production of ground surface
temperature and moisture with the inclusion of a layer of
vegetation. J. Geophys. Res., 83, 1889–1903.

Denis, B., R. Laprise, and D. Caya, 2003: Sensitivity of a regional
climate model to the resolution of the lateral boundary con-
ditions. Climate Dyn., 20, 107–126.

Dupont, S., J. Ching, and S. Burian, 2004: Introduction of urban
canopy parameterization into MM5 to simulate urban meteo-
rology at neighborhood scale. Preprints, Symp. on Planning,

Nowcasting, and Forecasting in the Urban Zone, Seattle, WA,
Amer. Meteor. Soc., paper 4.4.

Eastman, J. L., M. B. Coughenhour, and R. A. Pielke, 2001: Does
grazing affect regional climate? J. Hydrometeor., 2, 243–253.

Environment Protection Authority, New South Wales, 2003: State
of the environment report 2003. [Available online at http://
www.epa.nsw.gov.au/soe/soe2003/.]

Gao, J., and D. Skillcorn, 1998: Capability of SPOT XS data in
producing detailed land cover maps at the urban rural pe-
riphery. Int. J. Remote Sens., 19, 2877–2891.

Gero, A. F., A. J. Pitman, G. T. Narisma, C. Jacobson, and R. A.
Pielke, 2006: The impact of land cover change on storms in
the Sydney Basin. Global Planet. Change, in press.

Grimmond, C., and T. R. Oke, 1999: Aerodynamic properties of
urban areas derived from analysis of surface form. J. Appl.

Meteor., 38, 1262–1292.

Haack, B. N., 1983: An analysis of Thematic Mapper simulator
data for urban environments. Remote Sens. Environ., 13, 265–

275.

Harrington, J. Y., 1997: The effects of radiative and microphysical
processes on simulated warm and transition season Arctic
stratus. Ph.D. dissertation, Atmospheric Science Paper 637,
Colorado State University, 289 pp.

298 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45



Henderson-Sellers, A., 1993: A factorial assessment of the sensi-
tivity of the BATS land-surface parameterization scheme. J.

Climate, 6, 227–247.
Hjelmfelt, M. R., 1982: Numerical simulation of the effects of St.

Louis on mesoscale boundary layer airflow and vertical air
motion: Simulation of urban vs. non-urban effects. J. Appl.

Meteor., 21, 1239–1257.

Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th
ed. International Geophysics Series, Vol. 88, Academic Press,
535 pp.

Holtslag, A. A. M., and M. Ek, 1995: The simulation of surface
fluxes and boundary layer development over the pine forest
in HAPEX-MOBILHY. J. Appl. Meteor., 35, 202–213.

Huff, F. A., 1986: Urban hydrological review. Bull. Amer. Meteor.

Soc., 67, 703–712.

Jauregui, E., and E. Romales, 1996: Urban effects on convective
precipitation in Mexico City. Atmos. Environ., 30, 3383–3389.

Kain, J. S., and M. Fritsch, 1993: Convective parameterization for
mesoscale models: The Kain-Fritsch scheme. The Represen-

tation of Cumulus Convection in Numerical Models, Meteor.

Monogr., No. 24, Amer. Meteor. Soc., 165–170.

Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use
change on climate. Nature, 423, 528–531.

——, and Coauthors, 1996: The NCEP/NCAR 40-Year Reanaly-
sis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three
dimensional convective storm dynamics. J. Atmos. Sci., 35,

1070–1096.

Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime
convergence zones in central and eastern North Carolina.
Wea. Forecasting, 12, 56–77.

Kuo, H. L., 1974: Further studies of the parameterization of the
influence of cumulus convection on large-scale flow. J. At-

mos. Sci., 31, 1232–1240.

Landsberg, H. E., 1970: Man-made climate changes. Science, 170,

1265–1274.

Lee, T. J., 1992: The impact of vegetation on the atmospheric
boundary layer and convective storms. Ph.D. dissertation,
Colorado State University, 137 pp.

Matthews, C., and B. Geerts, 1995: Characteristic thunderstorm
distribution in the Sydney area. Aust. Meteor. Mag., 44, 127–

138.

Maunsel, P. W., W. J. Kamber, and J. K. Lee, 1990: Optimum
band selection for supervised classification of multispectral
data. Photogramm. Eng. Remote Sens., 56, 55–60.

McQueen, J. T., and Coauthors, 1999: Development and evalua-
tion of a non-hydrostatic atmospheric prediction system for
the Chesapeake Bay region. Proc. Third Conf. on Coastal

Atmospheric and Oceanic Prediction, New Orleans, LA,
Amer. Meteor. Soc., 189–194.

Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New pri-
mary ice nucleation parameterizations in an explicit cloud
model. J. Appl. Meteor., 31, 708–721.

Narisma, G. T., and A. J. Pitman, 2003: The impact of 200 years of
land cover change on the Australian near surface climate. J.

Hydrometeor., 4, 424–436.

Noilhan, J., and S. Planton, 1989: A simple parameterization of
land surface processes for meteorological models. Mon. Wea.

Rev., 117, 536–549.

Oke, T. R., 1973: City size and the urban heat island. Atmos.

Environ., 7, 769–779.

Peel, D. R., A. J. Pitman, L. A. Hughes, and R. A. Pielke, 2005:
The impact of realistic biophysical parameters for eucalyptus

on the simulation of the January climate of Australia. Envi-

ron. Model. Software, 20, 595–612.

Pielke, R. A., 2001: Mesoscale Meteorological Modeling. 2d ed.
International Geophysics Series, No. 78, Academic Press, 676
pp.

——, and Coauthors, 1992: A comprehensive meteorological
modeling system—RAMS. Meteor. Atmos. Phys., 49, 69–91.

——, T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and
C. A. Finley, 1997: Use of USGS-provided data to improve
weather and climate simulations. Ecol. Appl., 7, 3–21.

——, R. L. Walko, L. T. Steyaert, P. L. Vidale, G. E. Liston,
W. A. Lyons, and T. N. Chase, 1999: The influence of anthro-
pogenic landscape change on weather in south Florida. Mon.

Wea. Rev., 127, 1663–1673.

Potts, R. J., T. D. Keenan, and P. T. May, 2000: Radar character-
istics of storms in the Sydney area. Mon. Wea. Rev., 128,

3308–3319.

Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfield,
2001: Aerosols, climate and the hydrological cycle. Science,

294, 2119–2124.

Rivers, A. R., and A. H. Lynch, 2004: On the influence of land
cover on early Holocene climate in northern latitudes. J.

Geophys. Res., 109, D21114, doi:10.1029/2003JD004213.

Rodriguez-Camino, E., and R. Avissar, 1999: Effective param-
eters for surface fluxes in heterogeneous terrain. Tellus, 51A,

387–399.

Rosenberg, N. J., 1974: Microclimate: The Biological Environ-

ment. John Wiley and Sons, 315 pp.

Rosenfield, D., 1999: TRMM observed first direct evidence of
smoke from forest fires inhibiting rainfall. Geophys. Res.

Lett., 26, 3105–3108.

Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for
strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation
of St. Louis, Missouri, land use impacts on thunderstorms. J.

Appl. Meteor., 42, 716–738.

Sailor, D. J., 1995: Simulated urban climate response to modifica-
tion in surface albedo and vegetative cover. J. Appl. Meteor.,

34, 1694–1704.

Schar, C., D. Luthi, U. Beyerle, and E. Heise, 1999: The soil–
precipitation feedback: A process study with a regional cli-
mate model. J. Climate, 12, 722–741.

Seaman, N. L., F. F. Ludwig, E. G. Donall, T. T. Warner, and
C. M. Bhumralkar, 1989: Numerical studies of urban plan-
etary boundary layer structure under realistic synoptic con-
ditions. J. Appl. Meteor., 28, 760–781.

Shepherd, J. M., 2005: A review of current investigations of urban-
induced rainfall and recommendations for the future. Earth In-

teractions, 9. [Available online at http://EarthInteractions.
org.]

——, and S. J. Burian, 2003: Detection of urban-induced rainfall
anomalies in a major coastal city. Earth Interactions, 7.
[Available online at http://EarthInteractions.org.]

Spillane, K. T., and B. Dixon, 1969: A severe storm radar signa-
ture in the Southern Hemisphere. Aust. Meteor. Mag., 17,

134–142.

Strugnell, N. C., W. Lucht, and C. Schaaf, 2001: A global albedo
data set derived from AVHRR data for urban climate simu-
lations. Geophys. Res. Lett., 28, 191–194.

Treitz, M., P. J. Howarth, and P. Gong, 1992: Application of sat-
ellite and GIS technologies for land cover and land use map-
ping at the urban rural fringe: A case study. Photogramm.

Eng. Remote Sens., 58, 439–448.

FEBRUARY 2006 G E R O A N D P I T M A N 299



Tremback, C. J., 1990: Numerical simulation of a mesoscale con-
vective complex: Model development and numerical results.
Ph.D. dissertation, Atmospheric Science Paper 465, Colorado
State University, 187 pp.

Trenberth, K. E., 2004: Rural land-use change and climate. Na-

ture, 427, 213
Viterbo, P., and A. K. Betts, 1999: Impact on ECMWF forecasts

of changes to the albedo of the boreal forests in the presence
of snow. J. Geophys. Res., 104, 27 803–27 810.

——, A. C. M. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The
representation of soil moisture freezing and its impact on the
stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 2401–

2426.
Walko, R. L., and C. J. Tremback, 2002: RAMS: Regional Atmo-

spheric Modeling System, version 4.3/4.4—Introduction to
RAMS 4.3/4.4. *ASTER Division, Mission Research, Inc.,
Rep., 11 pp. [Also available online at http://www.atmet.com.]

——, ——, and R. F. A. Hertenstein, 1995: RAMS: The Regional
Atmospheric Modeling System, version 3b, user’s guide.
*ASTER Division, Mission Research, Inc., Rep., 117 pp.
[Also available online at http://www.atmet.com.]

Walko, R. L., and Coauthors, 2000: Coupled atmosphere–

biophysics–hydrology models for environmental modeling. J.

Appl. Meteor., 39, 931–944.

Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective
storms at radar-observed boundary-layer convergent lines.
Mon. Wea. Rev., 114, 2516–2536.

——, and D. L. Megenhardt, 1997: Thunderstorm initiation, or-
ganization, and lifetime associated with Florida boundary
layer convergence lines. Mon. Wea. Rev., 125, 1507–1525.

Zha, Y., J. Gao, and S. Ni, 2003: Use of normalised difference
built-up index in automatically mapping urban areas from
TM imagery. Int. J. Remote Sens., 24, 583–594.

300 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45


	283-300.p1.pdf
	283-300.p2.pdf
	283-300.p3.pdf
	283-300.p4.pdf
	283-300.p5.pdf
	283-300.p6.pdf
	283-300.p7.pdf
	283-300.p8.pdf
	283-300.p9.pdf
	283-300.p10.pdf
	283-300.p11.pdf
	283-300.p12.pdf
	283-300.p13.pdf
	283-300.p14.pdf
	283-300.p15.pdf
	283-300.p16.pdf
	283-300.p17.pdf
	283-300.p18.pdf

