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Abstract. Online classification learners operating under concept drift can be 

subject to latency in examples arriving at the training base. A discussion of 

latency and the related notion of example filtering leads to the development of 

an example life cycle for online learning (OLLC). Latency in a data stream is 

modelled in a new Example Life-cycle Integrated Simulation Environment 

(ELISE). In a series of experiments, the online learner algorithm CD3 is 

evaluated under several drift and latency scenarios. Results show that systems 

subject to large random latencies can, when drift occurs, suffer substantial 

deterioration in classification rate with slow recovery. 

Keywords: Online Learning, Classification, Concept Drift, Data stream, 
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1   Introduction 

Online learning for classification involves inducing an initial classifier and updating 

this at intervals from a data stream of time-stamped training examples.  Current 

approaches deploy a variety of machine learning algorithms either individually or in 

ensembles. They use a variety of means of handling concept and /or population drift 

and of maintaining a set of valid training examples.  See [1], [2] and [3] for an 

introduction to and review of existing work and underlying issues; the potential for 

lack of representativeness of examples in a data stream is discussed in [4]. 

There has been very little discussion in the literature on the time-stamp itself and 

what it represents. Implicitly it is taken to be the time at which an example becomes 

available to the learning algorithm for use at some point in the future. 

 A training example is supposed to be representative of some underlying true rule 

operating at a particular time. Yet an example may only become available after that 

time. This leads to a time discrepancy or latency. Such latencies may impact on 

learning updates when drift occurs and are the subject of this work. 

In section 2, latency is discussed. This leads to an extended model of the life cycle 

of an example within an online learning system. An experimental test-bed for 

investigating the impact of latency on learning is described in section 3 and results are 

presented and analysed in section 4. 



2   Latency and the Online Learning Life-Cycle  

In on-line classification learning, the learning algorithm receives new training 

examples on a periodic basis and adopts a learning update regime to maintain 

currency of the classifier. These new examples are time-stamped and placed in a 

training base. The time-stamps will influence the learner.  

The issue as to what the time-stamp of a new training example should be has 

received little attention in the literature. When a classifier makes a classification at 

time t, it is attempting to replicate the classification that would be made by an oracle 

(possibly a human expert), were such available. This oracle is indexed by time and 

can change its rules over time, i.e. concept drift. It is the role of the learning regime to 

try to capture and maintain the oracle’s rules over time.  

In due course, the true class for this example may be revealed. Consider a credit 

card fraud prevention system which aims to identify fraud at the time of  transaction. 

Suppose the current classifier accepts the transaction as legitimate. At a later date it 

may become apparent that the transaction was fraudulent. This information may be 

returned to the online learning system as a new training example. 

 When fed to the learner at the next update of learning, what should the time-stamp 

of this example be? At first sight it might appear that the time-stamp should be that at 

which the fraud was verified. The training example, however, is to be regarded as a 

window into the behaviour of the oracle that was current at the time of classification. 

The time-lapse until verification is seen as purely administrative. Although a decision 

is made by the company, at the time of verification, to designate the transaction as 

fraudulent, perhaps after extensive investigation, this decision-making process is 

distinct from that of the oracle operating at the time of classification. Thus the 

appropriate time-stamp for the training example, when presented to the learner, is the 

time of classification.  

The time-interval from classification until the verified class for the example is 

discovered is called its verification latency. 

In contrast, consider an online medical diagnostic system which receives, from 

time to time, cases that have been classified by a medical expert. The aim of this 

system is to emulate the expert. Here the verification latency is zero: there is no gap 

between the application of the oracle, i.e. the expert, and the appearance of the 

verified class.  

It may transpire in the future that the classification made by the medical expert was 

wrong, e.g. the patient did not have the disease as diagnosed. Given, however that the 

purpose of the learner is to emulate the expert, this is not relevant. Were the disease 

that the patient actually had to be regarded as the verified class and fed back to the 

learner, this would amount to using nature as the oracle and not the human expert. In 

this latter situation, the system becomes identical to the fraud system and verification 

latency should be regarded as the time difference between that when the patient’s 

symptoms were noted and when the correct diagnosis was obtained.  

Following verification, there may be a further delay, possibly administrative, 

before a training example becomes available as a new example to the learner. Such 

delays can affect both types of systems discussed above.  



Clearly latency only becomes an issue should concept drift occur. In a new episode 

of learning to update the classifier, some or all of the examples received since the last 

episode will be input to the learner. If drift has occurred from one episode of learning 

to the next, then some examples will reflect the old oracle and so may be out of date. 

The extent to which this is the case depends on the magnitude of latency and the time 

between learning episodes. 

Depending on the application, latency can be fixed or random. In a system which 

predicts rise or fall in a share price from the close of business in a stock market from 

the end of one day until the end of the next day, verification latency is fixed at one 

day and there is no administrative delay. In the fraud application, verification latency 

and administrative delay are likely to be random. With random latency, training 

examples will become available out of chronological order.  

Random latency may be different for different classes or may depend on the 

example description. In a loan approval system, where the classes are applicant 

will/will not default on loan,  the class will default on loan can become known before 

the end of the loan period, whereas the class will not default on loan cannot be 

determined until the loan is completed.      

In addition to latency, examples can be subject to filtering. Trackability filtering 

refers to the rejection of examples so that they never return to the example base. This 

is referred to as one-sided feedback [5]. In the fraud domain, transactions classified as 

fraudulent will be blocked thus no verified class will ever be obtained An example 

filtered in this way can also be regarded as having infinite verification latency.  

Selection filtering refers to the sampling of examples for verification and, 

therefore, their subsequent availability to return as training examples. For instance, in 

an online spam detection system it would be highly unlikely that every email sent 

would be verified as spam or non-spam.   

In general, filtering can be class dependent and may also be dependent on attribute 

values within the description of an example. 

2.1   The Online Learning Life Cycle 

Table 1.  OLLC Stages 

Stage Description 

Initial example 

collection 

Initial supervised example collection takes place using external 

sources and is placed into the training base.   

Initial classifier 

induction 

Upon receiving data from the training base, the learning algorithm 

is applied and generates the first classifier. 

Classification A new case, <description>, arrives at time tc for classification, This 

is given its predicted class, pclass, by the current classifier and 

stored as (tc, <description>, pclass). 

Verification and 

return to the 

example base 

At time, tv > tc, the true class, vclass, may be obtained. Verification 

latency is t1 
lat. After further delay, t2 

lat, this may be fed back, at tab, 

to the example training base as (<description>, vclass). 

Learning update 

regime 

The learner is applied periodically to examples returned to the 

training example base since the last episode of learning. 

 



The online learning life cycle (OLLC) can be modeled to take account of latency and 

filtering. The key stages are summarised in Table 1 and illustrated in Figure 1. 

 

 
 

Figure 1. The OLLC Model 

3 Experiments on Latency 

To investigate the impact of latency on learning under concept drift, a series of 

experiments was performed using a variety of latency and drift scenarios. In these, 

latency was modeled as both fixed and random and was assumed to be independent of 

description attribute values of the examples and of class. No filtering was applied.  

3.1 Data Sets 

Training and test examples were generated using AutoUniv [6]. AutoUniv creates an 

artificial universe (U), a complete probabilistic model of the joint distribution of the 

description attribute and the class, comprising four components: attribute definitions; 

attribute factorization (into independent factors); attribute factor distributions; and, a 

rule set. Noise is modelled as the degree of uncertainty in the class distributions of 

each rule.   

Drifted models can be obtained by retaining attribute and class definitions and 

altering some of the other components of the universe. Drift can be in rules only 

(concept drift) or in attribute distributions only (population drift) or both. 

For the experiments, three universes were generated all with the same attributes 

and classes, details of which are summarised in table 2. The second universe was 

obtained by applying concept drift to the first; the third was obtained by applying 

concept drift to the second. Details are given in tables 3 (a) and 3 (b). 



Table 2. Universe attributes (common to all drift variations). 

Relevant Attributes Noise 

Attributes 

Attribute Factors Minimum Number of 

Attribute Values 

8 2 3 2 

Maximum Number 

of Attribute Values 

Number of 

Classes 

Minimum Rule 

Length 

Maximum Rules 

Length 

5 4 2 5 

Table 3. (a) Universe drift variations. 

Universe Rules Average Rule Length Noise % Bayes Rate % 

1 60 4.2 21.4 78.6 

2 88 4.3 19.5 80.5 

3 82 4.3 22.1 77.9 

(b)  Cross-classification rates (XCR)  between universes. 

Old New XCR (%) 

Universe 1 Universe 2 32.1 

Universe 2 Universe 3 26.8 

Universe 1 Universe 3 33.6 

 

From table 3 (a) all three universes have similar Bayes rate, i.e. the maximum 

classification accuracy possible. The complement of the Bayes rate is the noise level.  

The cross-classification rate (XCR), [7], provides a simple measure of the extent of 

drift. This is defined as the classification rate that would be obtained if the universe 

rules operating before a drift point were applied to classify examples after drift had 

occurred. Intuitively this provides a base-line for the consequences of failing to detect 

drift. The XCR is bounded above by the Bayes rate for the drifted universe, that is, no 

rule set can outperform the true rules. From table 3(b) it is seen that XCR is very low, 

in relation to the corresponding Bayes rate in all cases. If an online learner correctly 

induces rules for universe 1 but fails to detect the drift to universe 2 and then to 

universe 3,  the classification rate will drop first to about 32% and then rise to about 

34%. In practice, the learner will usually not induce a completely correct set of rules 

for universe 1 and this imperfect rule set could achieve classification rates after drift 

that are higher than that of the XCR, but still far short of the Bayes rate. 

3.2 The Learning Algorithm 

The CD3 algorithm [7] was selected as the online learner. CD3 uses the decision tree 

algorithm, ID3, along with post pruning as a base learner.  In each episode of 

learning, CD3 receives in a batch, training examples that have become available since 

the last episode. These are time-stamped as new and added to examples retained from 

previous episodes, time-stamped as current. The time-stamp is added to an example’s 



description prior to induction by ID3. In effect, CD3 is assessing the relevance of the 

time-stamp attribute to classification. This is the time-stamp attribute relevance 

(TSAR) principle [7].  Following induction, rules are extracted from the tree and 

those which specify the time-stamp value as current are deemed to be out of date and 

purged. Current examples which are covered by a purged rule are purged. Finally, the 

new examples have their time-stamp changed to current for the next learning episode. 

By this means, CD3 aims to dynamically maintain a base of training examples 

considered to be valid, that is, they reflect the current oracle. It is an important feature 

of CD3 that it does remove training examples simply on the basis of age, the 

argument being that, under concept drift, typically not all rules are subject to drift and 

so examples covered by un-drifted rules retain their relevance to the learner. 

3.3 Example Life-cycle Integration Simulator Environment (ELISE) 

Designed to complement examples generated from AutoUniv, ELISE has been 

developed to load example files into a database and to generate initial time point and 

additional latency values to include with each example in accordance with the online 

learner life cycle model in figure 1. Test examples are also loaded into the database. 

The system allows for the selection of either constant or random latency types. 

Random latency offers a further breakdown into latency models generated according 

to a Normal distribution or negative exponential: a Normal distribution representing 

latency scenarios where examples may return early or late but will more likely be 

closer to an expected time, and, negative exponential for the scenario where examples 

will most likely return soon after classification but still allow for very late example 

return. When selecting a Normal distribution the user has control over a number of 

preset variance levels. Overall, random latency is determined from an inputted 

average latency value. 

In addition to the latency periods, the user can specify a regime for examples 

arriving to be classified. These arrivals can be fixed or random and modeled as above.  

ELISE then proceeds to simulate an online environment by handing over batch 

files of training examples at an inputted time interval, e.g. every 1000 time points (t) 

to a learner, currently CD3.  The learner interface, as well as allowing for learning, 

also has testing and single classification.  Upon every learning cycle, the system will 

call on a learner to test its most recent classifier with a batch of test examples.  The 

learner then writes out its test results to a file. 

ELISE requires all initial training examples to be provided as a representation of 

the first learner supervised example stage. These first examples are given the time 

point of zero since they represent historic example collection with unknown times. 

Additional training examples are added through a domain example file. These 

examples are given chronological initial ID times starting from one and in intervals of 

one unit. Additional times are then generated and stored to represent the various 

latency periods the example incurs through the life cycle.   



The user inputs the drift points, i.e. the time points at which the first example of 

each new drifted universe is experienced. They also enter the time point at the end of 

each test batch and the total number of test examples that make up a batch. 

In all, 21 experiments were scripted to run in ELISE.  For each of the drift 

scenarios in table 4, each latency scenario in table 5 was conducted for both a medium 

and high latency value, as presented in table 6.  The first experiment in each drift 

scenario, i.e. zero latency experiment, was performed to determine CD3 baseline 

performance under each drift scenario prior to the addition of latency.  This made 

possible an assessment of the nature of and extent to which latency impacted upon the 

various drift scenarios.  Ten iterations of each of these experiments were performed 

using different sets of data taken from each drifted universe.  

 

Table 4. Drift scenarios 
 

Table 5. Latency scenarios 
  

Drifts Drift points 

0 0 

1 4501 

2 3001, 6001 

 

Latency Type Latency Model 

Zero n/a 

Constant n/a 

Random Normal Distribution 

Random Negative Exponential 

Table 6. Standard deviations for random latency 

Average Latency Normal Distribution  

Standard Deviation 

Negative Exponential  

Standard Deviation 

500 96 500 

2000 516 2000 

 

Data was supplied as described in table 7.  It should be noted that the combined 

total of examples, 10000, used for learning never changes in the experiments.  The 

effect of increasing the number of drifts reduces the overall time for recovery and 

therefore represents an increasingly drift-active domain. Also, these initial 

experiments only consider the impact of latency on domains susceptible to 

revolutionary drift, i.e. a sudden and immediate change in the rules. This gives a 

clearer interpretation of the impact of latency. However, it is intended that 

evolutionary drift, i.e. gradual change in rules, will also be explored in later latency 

experiments. 

Table 7. Example data artificial universe(U) breakdown for each drift scenario. 

Category Training 

Examples 

Domain Examples Test Examples 

No drift U1 (1000) U1(9000) U1(10000) 

One drift U1 (1000) U1(4500), U2(4500) U1(10000), Universe 2(10000) 

Two drift U1 (1000) U1(3000), U2(3000), U3(3000) U1(10000), U2(10000), U3(10000) 

 



Finally, learning and testing cycles were performed in the ELISE simulation every 

500 time points. 

 

4 Analysis of Results 

 
The initial experiments involving no drift performed as expected.  With the learner 

commencing at time point zero, having already conducted an initial learning run of 

1000 training examples, it quickly achieved a high classification accuracy bordering 

on the Bayes rate for the universe, as in figure 2.  Under latency, the only difference 

was in the return of examples after the last true time point of 9001, indicating that the 

examples were returning later than their true time, i.e. lagging as the result of latency. 

 

 

 
 

Figure 2 Test result for no drift with zero latency experiment. 

The subsequent one drift experiments demonstrate interesting latency rate impacts 

upon the learner’s ability to provide accurate classifiers in time for drift.  With zero 

latency (see figures 3 and 4), the classification rate (CR) crashes at the drift point and 

then immediately recovers.  As seen in comparison to table 8, the lowest accuracy in 

each of the latency and drift scenarios is comparable to the cross-classification rate 

(XCR). However, the pattern of recovery is entirely different under latency 

conditions. 

Under the medium latency experiments shown in figure 3, it can be seen that for 

each of the three latencies a delay is incurred prior to recovery being made.  This 

impact is even more pronounced under high latency.  

For constant latency, a low classification plateau occurs for the duration of the 

example latency, i.e. the nature of constant latency presents as being an overall 

constant lag behind the current domain.  In the high latency scenario, the example 

latency was for 2000 time points and this matches the duration of the lag prior to 

recovery.  This highlights issues in selecting the time stamp to represent an example 

in online learners. 

While recovery under constant latency appears to be quicker, the Normal 

distribution performs similarly, although slightly behind.  It would appear that the 

benefit of earlier examples from the new universe is counteracted by the possibility of 



old examples from the previous.  However, a near Bayes rate classification accuracy 

is achieved by the end of the last true domain time point of 9001.   

Negative exponential latency provides the most interesting results. While initially 

beginning its recovery quicker than under constant latency, the overall rate of 

recovery is much slower than the other latency models with a failure to achieve 

anywhere near the Bayes rate. The overall impact of these patterns becomes even 

more pronounced and obvious when examined in the two drift experiment results as 

in figure 4. 

In this instance it is seen that even without latency the learner is beginning to 

struggle by the second drift: failing to achieve a near Bayes rate classification by the 

last example’s true domain time point of 9001.  The reduction in time between each 

drift sees a compounding realisation in the classification rate crash and recovery with 

the second drift point occurring prior to full recovery. 

   

 

 

 
 

 

Figure 3 Test results for one drift scenario experiments. 

 

The latency models provide further revelations as to their impact on an online 

learner under the two drift scenario.  While it can be seen that the effect observed 

under the one drift experiments for both constant and Normal distribution latency is 

exaggerated further, the extent of damage that a negative exponential latency has 

upon a learner’s classification accuracy becomes more apparent. 



The first drift under negative exponential fails to recover in any useful way before 

the second drift occurs.  This results in the second rate of recovery attempt being even 

lower and stabilising at only 54% classification accuracy around time point 17000 

therefore never recovering: 23.9% less than the Bayes rate.  In fact, it is only after 

time point 22001 that the final examples return. 

 

Upon further consideration, the cause of the negative exponential latency’s severe 

impact upon the learner is clear.  At the first drift point the learner is still receiving 

late examples from universe one delaying its recovery.  By the second drift point, the 

learner is still receiving examples from both universe 1 and universe 2 in addition to 

the new universe. See table 8 where the composition of the first two batches after the 

drift point are displayed.  The contamination caused from the mixing of the universes 

presents itself to the learner as a new compounded pseudo-universe. 

Negative exponential latency in this experiment gives a mixture of examples that 

are not only contaminated but that also have a majority representation from a previous 

universe.  As a result, it is not possible for the learner to achieve a successful 

classifier. 

 
 

 
 

Figure  4 Test results for two drift scenario experiments. 



Table 8. Example batch composition for two drift, high latency experiment . 

 Average Percentage % 

Batch Times (t) Universe 1 Universe 2 Universe 3 

6001 - 6501 16 72 12 

6501 - 7001 12.7 55.7 31.6 

5 Conclusion and Future Work 

Latency in training examples, as defined here, has been shown to have a marked 

impact on the ability of the online learner CD3 to recover from concept drift. It is 

reasonable to suppose that other online learners are likely to be similarly affected. 

Systems in which there is capacity for large latencies such as modelled here by the 

negative exponential distribution are especially vulnerable. It can therefore be argued 

that any online learner subject to latency should be tested for accuracy and recovery 

under these various latency models prior to being deployed. 

Further experiments are planned to investigate the performance of an online learner 

under latency involving different drift scenarios including evolutionary drift as well as 

under class / attribute - specific example filtering.  

Meta attributes such as classification and verification times and latency itself were 

defined here in an example life cycle for online learning. The resulting meta data can 

be retained in the training base. The statistical information it provides will enable 

profiling of the data stream and the training base in addition to directly supporting 

learning.  

As a first step towards equipping an online learner to handle latency, CD3 will be 

augmented to make use of latency as a meta or context attribute in learning.  
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