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Abstract

Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes 

imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously 

identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with 

missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with 

established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense 

mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus 

associations. The low-frequency variants increased the proportion of variance explained, 

particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency 

variants in complex traits and show that imputation offers a cost-effective alternative to re-

sequencing.

Genome-wide association (GWA) studies have been successful in identifying genetic loci 

associated with complex diseases and traits. Due to the design of genotyping arrays, most of 

the associated variants have been common in population samples. While thousands of loci 

have been associated with complex diseases and traits, they so far typically explain only a 

fraction of the heritability1.

It has now become possible to search for associations with variants that are less frequent 

than in previous GWA studies by the analysis of large numbers of samples using whole 

genome or exome sequencing approaches. However, costs have so far limited the possibility 

for sequencing of tens of thousands of samples likely needed to detect significant 

associations for low-frequency variants.

Stochastic imputation to individuals genotyped using genotyping arrays in large enough 

samples offers an alternative and cost-effective design to study associations of low-

frequency and rare variants at a genome-wide level. GWA studies of circulating lipids have 

been highly successful in identifying loci with common variants with small effects2,3. In 

Corresponding author Prof. Samuli Ripatti Institute for Molecular Medicine Finland, FIMM P.O. Box 20, 00014 University of 
Helsinki, Finland samuli.ripatti@fimm.fi.
Contributions 
IS, MH, RM, APS, AnuM, VasL, LM, TF, EI, OK, VP, CML, UT, AaP, MIM, APM, IP, and SR designed and performed 
experiments, analysed data and wrote the paper. BM, ST, JoK, MatP, JuK, HJW, EI, JPM, THP and LF performed follow-up 
experiments and analysed the data. GT, SH, JJH, AI, CL, MarB, TE, JSR, CPN, CW and SG analysed cohort specific data. HS, JE, 
NJD, JaK, LL, CG, AndM, PES, LG, CMvanD, JGE, AJ, VeS, DIB, CP, OTR, MRJ, and KS designed cohort specific experiments. 
MatB, AJMdeC, EJdeG, JD, HG, AH, ASH, CH, JJHD, EH, MK, LCK, TL, ValL, PKEM, EM, MMN, NLP, BWJHP, MarP, AnP, 
JR, JHS, VaS, MDT, NT, EMvanL, JSV, SMW, and GW performed cohort specific experiments and analysed cohort specific data. All 
authors contributed to the research and reviewed the manuscript.

Competing financial interests 
UT, GT, VaS and KS are employed by deCODE Genetics/Amgen inc.

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2016 February 18.

Published in final edited form as:

Nat Genet. 2015 June ; 47(6): 589–597. doi:10.1038/ng.3300.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



previous large scale GWA studies, 157 loci have been shown to associate with lipids2,3, but 

the strongest associations have almost exclusively been reported with common variants 

(minor allele frequency, MAF > 5 %) in European datasets due to the study designs.

In contrast, previously published variants known to cause Mendelian forms of dyslipidemic 

syndromes and, more broadly, variants with known functional impact on lipids (FL SNPs) 

typically have low MAF (≤ 5%). While there are almost 40 loci where both FL SNPs and 

common SNPs, implicated in GWA studies, reside, it is often not known if these 

associations are driven by the same underlying haplotypes and if the Mendelian variants 

explain the association in population samples.

We sought to evaluate the impact of common (MAF > 5%), low-frequency (0.5% < MAF ≤ 

5%) and rare (MAF ≤ 0.5%) genetic variants on circulating blood lipids in up to 62,166 

European samples by imputing variants into the GWA cohorts using the sequence-based 

1000 Genomes reference panel4 (Phase I interim release, June 2011). We aimed to answer 

the following questions: 1) what is the role of low-frequency and the burden of rare variants 

in the established lipid loci, 2) can a dense set of markers from 1000 Genomes-based 

imputation help to identify additional loci undetected in previous studies focused largely on 

common variants imputed up to less dense reference panels from the HapMap-project, 3) 

how do low-frequency and FL variants contribute to the overall trait variance compared to 

common variants.

RESULTS

Study Overview

To understand the contribution of low-frequency and rare genetic variation to circulating 

lipid concentrations, we undertook genome-wide imputation and association analysis in up 

to 62,166 individuals across 22 GWA cohorts of European ancestry. Within each cohort, we 

performed sex-stratified inverse-rank normalisation of high-density lipoprotein cholesterol 

(HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and total 

cholesterol (TC), after adjustment of each trait for age, age2, and study-specific covariates, 

including principal components to account for population structure. Case-control studies 

were further sub-divided according to original data selection disease status. Each cohort 

GWA genotype scaffold was imputed at up to ~37.4 million autosomal variants from the 

1000 Genomes Project multi-ethnic reference panel4 (Phase I interim release, June 2011). 

Across a subset of studies, ~98% and ~95% of variants present in the reference panel with 

1% < MAF ≤ 5% and 0.5% < MAF ≤ 1%, respectively, were well imputed, defined here by 

an IMPUTE5,6 info score of at least 0.4 (Supplementary Table 1). However, as expected, 

imputation of rare variants (MAF ≤ 0.5%) proved more difficult, although ~65% of the rare 

variants polymorphic in the reference dataset were well imputed across the same subset of 

studies.

Genome-wide screen for single variant associations

We first tested for association of over 9.6 million genotyped or successfully imputed SNPs, 

enabled by the 1000 Genomes imputation, with circulating HDL-C, LDL-C, TG and TC 
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levels. Overall, we detected 93 loci with genome-wide significant association 

(Supplementary Figure 1) to one or more lipid traits (p-value < 5×10−8), of which 10 loci 

have not been associated to lipids before (Table 1, Supplementary Figures 2A-J and 

Supplementary Figures 3A-J). Out of the 83 previously established lipid loci, 79 had a novel 

lead-SNP for at least one lipid trait in our analysis (Supplementary Table 2). In 34 out of the 

79 loci the linkage disequilibrium (LD) is r2 ≤ 40% (15 loci with r2 ≤ 5%) and in 56 loci the 

newly identified variant has not been present in HapMap2 imputation reference set used in 

previous studies. In 11 loci the novel lead-SNP had MAF ≤ 5% and an average effect size of 

0.18 (in standard deviation, s.d., units) compared to the average effect size of 0.05 for the 

previously established common lead-SNP estimated in a cohort independent of the discovery 

scan to avoid bias due to the winner’s curse (N = 5,119, Figures 1A-B). These include well-

known lipid gene LPA for LDL-C (rs186696265, MAF = 0.8%, effect size = 0.26, p-value = 

4.4×10−14, r2 = 0.1%). In addition we observed high effect lead-SNPs in PCSK9 for LDL-C 

(rs11591147, MAF = 1.9%, effect size = 0.53, p-value = 2.2×10−92 and r2 = 0.9%) and 

APOE for TC (rs7412, MAF = 7.1%, effect size = 0.41, p-value = 7.5×10−239 and r2 = 

1.6%) that were highlighted already in the Global Lipids Genetics Consortium fine-mapping 

analyses3.

Using a formal conditional analysis, in MAFB locus, the new low-frequency lead-SNP with 

large effect size (effect size > 0.2 and MAF ≤ 5%) explained the association of the 

previously identified lead-SNP in seven population cohorts (N = 12,834) though the linkage 

disequilibrium between the variants was less than r2=5% (Figures 1A-B). Additionally, 

there were 7 loci with two or more association lead-SNPs over 1Mb apart and with r2<5%, 

but in all cases the individual level formal conditional analyses showed that the associations 

were completely explained by the known lipid SNPs in the regions (ZCCHC11, TMEM48 

and PPAP2B associations explained by rs11591147 in PCSK9 locus, OR-cluster association 

by rs7395581 in LRP4-MADD locus, CCDC79 association by rs73591976 in LCAT-

RANBP10 locus, and PSG9 and IRF2BP1 associations by rs7412 in APOE locus).

In five of the 79 loci, the lead-SNP was a missense variant pointing to either a well-

established causal gene (ANGPTL4, APOE, PCSK9 and CILP2) or to a new candidate gene 

(ABCA6/8). The APOE lead-SNP for TC, rs7412 (Arg176Cys, MAF = 7.1%, r2 = 0.7%) has 

been shown to associate with recessive familial type III hyperlipoproteinemia7,8 and the 

PCSK9 lead-SNP for LDL, rs11591147 (Arg46Leu, MAF = 1.9%, r2 = 0.9%), with extreme 

LDL-C values9. In the ANGPTL4 locus, the lead-SNP in our GWA data is a predicted 

damaging missense variant, rs116843064 (Glu40Lys, MAF = 3.0%) with r2 = 1.8% with the 

previously associated common lead-SNP. The missense variant is associated with TG and 

HDL-C, and has previously been associated with extreme TG values10. The CILP2 lead-

SNP, rs58542926 (Glu167Lys in TM6SF2 gene, MAF = 7.8%, r2 = 98%), was associated to 

TC, myocardial infarction risk, and nonalcoholic fatty liver disease in two papers appearing 

while revising this manuscript11,12. Our new lead-SNP in ABCA6/8 locus, rs77542162 

(Cys1359Arg in ABCA6 gene, MAF = 2.0%, r2 = 0.6%) associates with LDL-C and TC (p-

value = 1.6×10−18 and p-value = 1.9×10−13, respectively).

In the genome-wide screening we identified 10 loci that have not previously been associated 

to lipids (near PROX1, CEP68, PRKAG3, ADAMTS3, MTHFD2L, GPR85, RMI2, 
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TM4SF5, GATA6 and ZNF274), with 4 having a low-frequency variant (MAF < 5%) as the 

lead-SNP (lowest MAF = 0.7% rs182616603 in MTHFD2L locus; Table 1). All except one 

of the lead-SNPs have not been surveyed in the previous GWA studies based on HapMap 2 

imputation. The one lead-SNP that has been present in the HapMap 2 imputation references 

is in the PROX1 5′UTR (rs340839 associated with TG, p-value = 4.4×10−12) and is 

correlated with a marker previously associated with fasting glucose and type 2 diabetes13 

(rs340874, r2 = 74.7%). The lead-SNP in the HDL associated PRKAG3 locus is located 

upstream to the gene, close to a transcription factor binding site. PRKAG3 is a regulatory 

subunit of the AMP-activated protein kinase (AMPK), which has previously been shown to 

regulate lipid homeostasis14.

The role of variants with known functional impact on lipids in the general population

In 8 loci (PCSK9, CELSR2-SORT1, GCKR, HLA-region, LPL, LIPC, CETP and APOE), we 

tested if the variants known to cause Mendelian forms of dyslipidemic syndromes and, more 

broadly, with known functional impact on lipids, also explained the associations of the 

common lipid SNPs. These FL SNPs were identified through the Online Mendelian 

Inheritance in Man database search (OMIM; www.omim.org) and confirmed through 

literature, and SNPs previously reported to affect gene transcription or translation in cellular 

and/or animal models were taken forward into conditional analyses in seven population 

cohorts (N = 12,834; Supplementary Figure 4, Supplementary Table 3 and Supplementary 

Table 3).

The FL SNPs explained the lead-SNP association (with p-value < 5×10−8 and conditional p-

value > 0.01 for the lead-SNP) in four of the 8 loci (CELSR2-SORT1, GCKR, APOE and 

LIPC; Table 2, Supplementary Figures 5A-G). In GCKR and APOE loci, the lead-SNPs of 

our GWA screen were FL SNPs (rs126032615; Pro446Leu and rs74127,8; Arg158Cys, for 

GCKR and APOE, respectively). In the GCKR locus, rs1260326 explained the population-

level association. Similarly, in APOE locus, the two FL SNPs rs7412 and rs42935816 

(Cys112Arg) defining the APOE isoforms ε2, ε3 and ε417 explained the association 

(Supplementary Figures 5D and 5E). The LIPC association was explained by rs180058818 

(−514C-T, MAF = 25.1%) and rs11329816419 (Thr383Met, MAF = 1.4%) for TC and TG 

(Supplementary Figures 5F and 5G) but not for HDL-C (Supplementary Figure 5H). All 

results for the conditional analyses are presented in Supplementary Tables 5A-D.

Search for novel functional candidate SNPs

We then searched for potential candidate causal SNPs in the lipid-associated (157 

established and 10 novel) loci with a similar predicted function to well-characterized FL 

SNPs. We identified possible functional variants in four loci without known functional 

variants at the time of analysis (MLXILP, LRP4-MADD, SOST-DUSP3 and CILP2), and 

tested whether the identified variants explained the significant association seen in the locus 

(Supplementary Table 6). The results of the conditional regression analyses for these four 

loci are presented in Table 3 and Supplementary Figures 6A-F. In the SOST-DUSP3 and 

CILP2 loci, the functional candidates explained the genome-wide associations of the lead-

SNPs in the region in the test set (in both loci, conditional p-value > 0.01). In the SOST-

DUSP3 locus (Figure 2A), a single low-frequency deleterious missense variant, rs72836561 
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(Arg82Cys, MAF = 2.7%, p-value = 1.36×10−8, effect size = 0.23) in the CD300LG gene, 

explained the whole regional association indicating CD300LG as a likely candidate gene for 

TG in the locus. The same variant has also recently been shown to associate with HDL-C 

and with fasting serum triacylglycerol in exome-wide association studies20,21.

In the CILP2 locus for LDL-C, TC and TG, two independent missense variants (r2 = 0) in 

the TM6SF2 gene, a deleterious missense variant rs187429064 (MAF = 3.6%, Leu156Pro; 

for TC effect size = −0.25 and p-value = 2.03×10−11) and a probably damaging missense 

variant rs58542926 (MAF = 6.3%, Glu167Lys; for TC effect size = −0.18 and p-value = 

6.47×10−12), explained the lead-SNP association for LDL-C, TC and TG (Table 3, 

Supplementary Figures 6D-F, and Figure 2B and Supplementary Figure 7 illustrates the 

result of the conditional analysis for TC).

Biological profiling of CD300LG and TM6SF2 genes in lipid metabolism

CD300LG (CD300 Molecule-Like Family Member G; also called nepmucin) is a type I cell 

surface glycoprotein that contains a single immunoglobulin (Ig) V-like domain22 and plays a 

role in lymphocyte binding and transmigration23. The predicted damaging mutation 

(Arg82Cys) in our TG/HDL-C -associated variant rs72836561 is located in the Ig domain of 

CD300LG, which binds to lymphocytes. CD300LG is expressed in the vascular endothelial 

cells of various tissues, and is located both at the plasma membrane and intracellular 

vesicles23,24. While CD300 family members have been demonstrated to bind lipids25, the 

function of CD300LG in lipid metabolism has not been studied. TM6SF2 (Transmembrane 6 

Superfamily Member 2)26, is a multi-pass membrane protein, in which the predicted 

deleterious missense mutation (rs1874290064; Leu156Pro) locates to the predicted 5th 

transmembrane domain, and the probably damaging missense mutation (rs58542926; 

Glu167Lys) in the exposed non-transmembrane domain. TM6SF2 gene has been shown to 

localize to endoplasmic reticulum (ER) compartment/ER-Golgi intermediate compartment 

(ERGIC) and influence TG secretion in liver cells27. Additionally, the Glu167Lys missense 

mutation was shown to alter serum lipid profiles in humans and the knockdown of TM6SF2 

in mice was shown to lead to increased liver triglyceride content and decreased very-low-

density lipoprotein (VLDL) secretion11,12.

We further characterized the two genes by using the Gene-Network database28 (http://

genenetwork.nl/genenetwork, see online Methods for details) for tissue specific expression, 

pathway analysis, and prediction of mice knockout phenotype, based on Mouse Genome 

Informatics (MGI; http://www.informatics.jax.org)29. We found that CD300LG gene is co-

expressed with genes where knockout increases circulating very low-density lipoprotein 

(VLDL) particle levels in mice (prediction p-value = 1.4×10−9), in line with our phenotype 

of higher TG levels in humans carrying the deleterious missense variant of CD300LG. For 

TM6SF2, the MGI-based predictions, using co-expression of genes, show abnormal lipid 

levels (decreased LDL-C: prediction p-value = 8.6×10−19, decreased VLDL: prediction p-

value = 2.5×10−29 and decreased TC: prediction p-value = 6.3×10−24) amongst the most 

highly significant predictions, in line with the recent publications and our association results. 

All associated MGI-based knockout predictions (p-value < 1e-6) are shown in the 
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Supplementary Tables 7A-B and lists of genes with same and stronger MGI-based 

predictions can be found in the Supplementary Table 8.

Both genes were found to be amongst the most highly expressed genes in tissues important 

for lipid absorption and/or metabolism based on the analysis using the Gene Network 

database (Supplementary Tables 9A-B). CD300LG is highly expressed in muscles, plasma, 

and adipose tissue and TM6SF2 in liver, plasma, and intestines. Furthermore, based on the 

gene expression network analysis, TM6SF2 likely interacts with proteins involved in 

intestinal absorption (Supplementary Table 10), and it is most highly predicted to function 

as lipid transporter (p-value = 1.05×10−14, prediction is based on co-expressed genes, 

Supplementary Table 11).

Contribution of low-frequency variants to population lipid variation

We estimated the proportion of the variance of lipid traits explained by variants in the 157 

previously established and 10 novel loci in an additional cohort of 5,119 individuals from 

Finrisk cohort (FRCoreExome9702), not included in our discovery meta-analysis. The lead-

SNPs from all three GWA screens (Teslovich et al.2, Willer et al.3 and this study) together 

with the FL SNPs and new functional candidate SNPs were divided into two groups based 

on their allele frequency in the FRCoreExome9702 dataset. Common SNPs explained 8.2% 

(TG), 11.9% (HDL-C), 16.3% (LDL-C), and 16.2% (TC) of the variance in lipid levels 

(Figure 3). Together with the low-frequency variants we now explain 9.3%, 12.8%, 19.5% 

and 18.8% of the variance in TG, HDL-C, LDL-C and TC, respectively.

We also compared the contribution of our SNPs to the additive genetic variance estimated 

by a linear mixed model (LMM) applied to 10,472 individuals from six Finnish GWA 

cohorts (Online Methods) with those obtained from a large twin study30. The narrow sense 

heritability estimates from the twin study were 40%, 51%, 51% and 33% and the mixed 

linear model estimates derived from the Finnish subset were 26%, 29%, 27% and 19% (for 

HDL-C, LDL-C, TC and TG, respectively. See Online Methods for details). We estimate 

that the SNP set explain at least 28.1%, 32.0%, 38.2% and 36.7% (narrow sense heritability) 

and at most 48.9%, 49.2%, 67.2% and 69.6% (LMM heritability estimate) of the additive 

genetic variance of TG, HDL-C, LDL-C and TC, respectively.

Gene-based association analysis

To complement the single-variant tests for low-frequency variation we used GRANVIL31 to 

test for association of each lipid trait with accumulations of minor alleles (“mutational 

load”) at well imputed rare variants within genes in a subset of 30,463 individuals from 15 

cohorts (Online Methods, Supplementary Table 1).

We observed genome-wide significant evidence of association (p-value < 1.7×10−6, 

Bonferroni correction for 30,000 genes) of HDL-C with the mutational load of rare non-

synonymous variants in LIPC (p-value = 2.1×10−7, mean MAF = 0.26%, Supplementary 

Figure 8). To further investigate the relationship between gene-based and single SNP 

association signals at this locus, we performed conditional analysis, adjusting the effect of 

the mutational load for the lead-SNP in our study (rs261291). The association of HDL-C 
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with rare non-synonymous variants in LIPC remains relatively unchanged (conditional p-

value = 3.6×10−6), suggesting that the mutational load of the gene is independent of the 

GWA signal at this locus.

We identified two genes for which the mutational load of rare variants (irrespective of 

annotation) was associated with TG at genome-wide significance, both mapping to the APO-

cluster: ZNF259 (p-value = 1.5×10−11, mean MAF = 0.25%) and APOA5 (p-value = 

5.0×10−8, mean MAF = 0.24%). Conditional analyses, adjusting for the association lead-

SNP (rs964184) at the APO-cluster, reduced the strength of association of rare variants in 

both ZNF259 and APOA5 with TG, but could not fully explain the effect of the mutational 

load of these genes (Supplementary Table 12). As ZNF259 and APOA5 map within 2kb of 

each other, we further investigated the impact of LD on the association signal at the region 

with conditional analyses adjusting for the mutational load of each gene for that at the other 

(Online Methods). The strength of association of both genes was reduced, but not fully 

attenuated, after adjusting for the effect of the other (ZNF259 conditional p-value = 

1.4×10−5; APOA5 conditional p-value = 6.3×10−4), suggesting the effects of rare variants in 

these two genes to be only partially correlated with each other.

DISCUSSION

Using 1000 Genomes imputed data with a dense SNP set, we were able to impute 9.6M 

common and low-frequency SNPs with good quality in 62,166 European samples. With 

GWA meta-analysis on these data, we identified 10 novel loci associated to blood lipids and 

new lead-SNPs in 79 previously known lipid loci. In 11 previously known loci, the new 

lead-SNP had a minor allele frequency ≤ 5% and, on average the newly identified low-

frequency variants showed 3.6 times larger effect size compared to the corresponding lead-

SNP in previous meta-analysis studies. Moreover, in four of the ten novel loci, the lead-

SNPs were low-frequency variants.

Our association results reveal that low-frequency variants have a much larger contribution to 

lipid variation in the general population than has previously been shown2,3. In several cases, 

the association that has previously been tagged by common variants is now led by variants 

with 0.5 – 5% allele frequency and larger effect sizes. The large effect sizes also show in the 

population lipid variance explained, where low-frequency variants add 3.2% to the LDL-C 

variance explained when adding on top of the common variants identified in previous 

reports or in our study, even though there are relatively few carriers of low-frequency 

variants in the general population.

While GWA studies have typically identified associations to lipid levels in cohorts with 

normal population variation, the known functional variants, some causing Mendelian forms 

of lipid syndromes and others changing the protein structure or disturbing the gene 

transcription, often been identified in patients and families with extreme lipid values. We 

found four regions where the population-level association was explained by known 

Mendelian and/or functional SNPs, suggesting that the effects of FL SNPs seem to 

generalize to European samples with normal lipid variation. Taken together, the successfully 
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imputed and tested functional SNPs together with the new functional candidate variants 

explained 2.2 – 6.7% of the lipid variation in the population level.

As the FL SNPs explained the population-level association in four of the studied eight loci 

through LD-structure, we reversed this connection to identify potential functional candidate 

genes through SNPs with similar functional profile to the FL SNPs in lipid loci with no 

previous strong functional candidates. Using this strategy we identified two loci where 

missense variants with predicted damaging or deleterious functions explained the lead-SNP 

associations from the GWA meta-analysis, thus, together with previous evidence, supporting 

the role of CD300LG (TGs) and TM6SF2 (TC, LDL-C, TGs) in lipid metabolism together 

with evidence from gene network analysis, gene expression correlations, predicted functions 

in mice, and expression patterns across organs each suggest potential links to lipid 

metabolism. TM6SF2 was recently listed among genes potentially affecting LDL-C uptake 

in a recent siRNA screen focused on cellular lipid phenotypes within previously published 

blood lipid-associated GWA-loci.32 Additionally, two reports showing strong evidence for 

one of the two TM6SF2 missense variants, Glu167Lys, on VLDL and TG metabolism were 

published during this study11,12. However, in our data, this mutation alone does not explain 

the whole regional association, but together with a second missense mutation, with lower 

MAF and larger effect, the association was explained. Overall, our results reinforce the 

importance of CD300LG and TM6SF2 for blood lipid levels in the general population.

In two established GWAS loci with common lead SNPs, our analyses revealed associations 

of the mutational load of rare variants with lipids. The association of HDL-C with rare 

variants in LIPC has been previously reported33, and we also demonstrate that this signal is 

independent of the common lead GWAS SNP at this locus. We identified association on TG 

for the accumulation of APOA5 rare variants as significant, but conditional analysis on the 

GWAs lead-SNP suggested that the single variant and gene-based associations are partially 

correlated. However, the GWA lead-SNP alone was not sufficient to fully explain the gene-

based signal. An excess of minor alleles in APOA5 has previously been associated with 

hypertriglyceridemia34, but we report here an impact of this gene on TG at a population 

level. Although imputation enables recovery of ~65% of rare variants that are present in the 

1000 Genomes haplotypes, many will not be represented in the reference panel. Re-

sequencing in large sample sizes will be required to fully elucidate the role of rare variation 

at these GWA loci on HDL-C and TG and to inform functional studies to determine the 

underlying mechanisms mediated through these genes for the regulation of lipids.

In addition to the 93 loci identified, there were seven loci showing two or more association 

signals that were more than 1Mb distance from each other and the linkage disequilibrium 

between the lead SNPs were small (r2 ≤ 0.05). However, in formal conditional analyses of 

these loci using individual level data the most strongly associated SNPs in the locus 

explained also the other associations, even over a physical distance of 1Mb or more, or low 

level of LD. As these observations were only revealed after careful conditional testing of 

individual level data, they also highlight how challenging it is to interpret the association 

patterns using only summary level results on single SNP analyses.
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There are some potential limitations to our genetic study. Although we used a dense 

sequence-based global imputation panel, it does not cover all low-frequency and rare 

variants in Europe. Similarly, although the imputation reference set included a large number 

of low-frequency SNPs and other variants with known functional impact on lipids, some 

were either missing from the panel or they were not polymorphic in our test sets of seven 

Finnish cohorts. Therefore we are likely missing some additional effects in our data. As 

more individuals are being sequenced and made available as imputation reference panels, 

more variants can also be imputed with high confidence and tested for associations.

In conclusion, our study shows that low-frequency variants contribute significantly to 

population variance in lipid levels. The variants known to cause Mendelian forms of lipid 

syndromes and variants with known functional effects on lipid levels explain the common 

variant association in overlapping loci revealing a similar role of these variants in extreme 

patient series and in general populations. In addition, we found 10 new lipid loci for further 

investigations and for two previously known lipid loci we identified new candidate missense 

variants with predicted damaging function. When combining all the accumulated genetic 

evidence, we could explain up to 19.5% of the trait lipid variation. By considering the 

aggregate effects of rare variants within genes, we identified three transcripts associated 

with lipids in already established GWA loci that could not be fully explained by the 

common lead-SNPs reported in this study. Together, these observations show the important 

role of low-frequency functional SNPs in lipid level variation in the general population and 

present new therapeutic opportunities for treating dyslipidemias and preventing 

cardiovascular diseases. They also highlight that imputation is a cost-effective approach to 

assessing association with low-frequency and rare variants, without the need for costly re-

sequencing experiments.

ONLINE METHODS

Genotype quality control and imputation

Before imputation all cohorts (see Supplementary Note for cohort information) went through 

a quality control (QC) pipeline with the following criteria: samples with genotype call rate < 

95%, sex discrepancies, excess heterozygosity and cryptic relatedness were removed. 

Additionally, ethnic outliers and MDS outliers were excluded. SNPs with minor allele 

frequency (MAF) < 1%, call rate < 95% (or < 99% if the SNP has MAF < 5%), failure of the 

Hardy-Weinberg Equilibrium (HWE) exact test (precise threshold depending on study) and 

sex chromosome SNPs were removed. Genotyping platforms, study-specific QC criteria and 

other details are presented in Supplementary Table 13. The imputation of the datasets was 

performed using IMPUTE v2.05,6 (unless stated otherwise) with 1000 Genomes June 2011 

imputation reference panel with 2,188 haplotypes4 (www.1000genomes.org).

Phenotype measures

All four lipids, HDL-C, LDL-C, TC and TG were measured using basic enzymatic methods. 

Summary statistics of phenotypes in each cohort are presented in Supplementary Table 14. 

Individuals with lipid-lowering medication were excluded and measures deviating more than 

5 s.d. were set to missing. All four phenotypes were adjusted for age, age2 and the first three 
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genetic principal components. Principal components were derived from the GWA data using 

principal component analysis for the IBS sharing matrix for each study separately35. Both 

the removal of outliers and the adjustments were done for males and females separately in 

each of the studies for all four traits. The residuals resulting from the adjustments where 

then inverse normal transformed to the N(0,1) distribution. The GenMets and DGI cohorts 

were additionally stratified by the Metabolic syndrome and Type 2 Diabetes case status, 

respectively. Only men were available in GerMIFS I and II and ULSAM. As NTR has 

related samples, males and females were analysed together in order to account for the 

relatedness.

Single variant association- and Meta-analysis methods

A genome-wide association analysis was run in each of the cohorts separately (see 

Supplementary Table 13 for software details). The association results were quality 

controlled centrally to have as harmonized dataset as possible. In the procedure, the 

following SNPs were removed: SNPs with minor allele count < 3; SNPs with imputation 

quality Proper_INFO < 0.4; duplicates; genotyped SNPs with HWE p-value < 1×10−4. The 

meta-analysis was run using the GWAMA software tool36,37, which uses fixed-effects 

inverse-variance weighted meta-analysis. Genomic control was applied to each of the 

cohorts in the meta-analysis. SNPs with < 50% of the cohorts contributing or SNPs showing 

between-study heterogeneity of effect size (Cochran ’s Q test statistics, I2<50%) were 

discarded from the meta-analysis results. After these QC steps, the maximum number of 

SNPs in the analysis was 9,657,952.

SNP associations with p-value < 5×10−8 were considered genome-wide significant and lead-

SNPs were inquired to be at least 1Mb away from adjacent lead-SNPs. In areas with long-

spanning linkage-disequilibrium, formal conditional analysis was performed in a subset of 

12,834 Finnish samples to ensure the independence of the lead-SNPs.

Search for known functional lipid SNPs

We searched the Online Mendelian Inheritance of Man (OMIM; www.omim.org) database 

for information on 167 loci, which had been found to associate with one of the studied traits 

(HDL-C, LDL-C, TC and TG) in either the two previously published GWA studies2,3 or in 

our genome-wide screening. In each of these 167 loci, every gene in a 2Mb area around the 

published lead variant was looked up for in the OMIM database and the variants associated 

with lipid related syndromes or population extreme lipid values were collected. Out of the 

167 loci, 38 had OMIM-listed lipid SNP variants within the searched window. As our 

genotype data only includes SNP variants, deletions, insertions and other copy number 

variations could not be studied. Each of the OMIM-listed lipid SNPs was subsequently 

mapped to genome build 37 using dbSNP database for the rsID identification. Of the 38 loci, 

18 had at least one polymorphic OMIM SNP in the imputed Finnish test set of seven cohorts 

(Corogene controls, FTC, GenMets, HBCS, NFBC1966, YFS and PredictCVD, combined N 

= 12,834). To be sure about the functionality of these SNPs, additional literature search was 

performed to find evidence of the effect on gene transcription or translation. Out of the 18 

loci, 8 showed genome-wide significant association in the Finnish meta-analysis and had at 

least one variant with evidence for functional impact on lipid levels in cell or animal models.
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Formal conditional association analysis in loci containing known functional lipid SNPs

Formal conditional analyses were run using the Finnish test set of 7 cohorts (N = 12,834). 

Each of the cohorts was analysed separately with linear regression analysis implemented by 

SNPTest software (http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html). In 

each cohort, imputation quality threshold of Proper_INFO > 0.4 was applied. Each locus 

was analysed only for the trait(s) it had been previously reported to associate with in already 

published GWA studies. In the conditional analysis on a particular SNP(s), the phenotype 

was first adjusted with the SNP(s) and then a linear regression model was fitted for the 

remaining residuals. When we performed iterative conditional analyses in a locus, the signal 

was first conditioned on the most significant variant followed by conditioning on the top 

variant from the initial conditional analysis and so forth. Loci where the initial lead-SNP 

association in the conditional analyses was conditional p-value < 0.01 and no further 

significant associations (conditional p-value < 5×10−8) were found within the 2Mb window 

were considered to be explained.

The results from the seven Finnish cohorts were combined using GWAMA. Because the 

conditional analyses were run for the pre-selected 2Mb windows only, genomic inflation 

factor (λ) correction could not be applied. However, we did not see substantial inflation in 

the genome-wide association analysis of all four traits in the seven Finnish cohorts (λ range 

0.992 – 1.029 depending of the trait and cohort).

Search for functional candidate SNPs

In order to explore suggestive functional variants causing association signals, which do not 

have lipid related OMIM listed variants in the locus, we selected 9 loci: GALNT2, MLXILP, 

PPP1R3B, TRIB1, ADAMTS3, LRP4-MADD, SOST-DUSP3, CILP2 and HNF4A. These loci 

had been significantly associated with lipid traits in either previously published GWA 

studies2,3 or in our genome-wide screening as well as in the meta-analysis using 7 Finnish 

cohorts (N = 12,834). In each of these loci, 2Mb windows were searched for functional 

variants that had association p-value < 5×10−4. Candidate SNPs were annotated using the 

Ensembl database and functional effects were predicted using the Provean38, SIFT39 and 

PolyPhen40 databases. If a variant was annotated as a missense mutation with damaging 

prediction in at least one of the prediction databases, it was treated as a FL variant and 

formal conditional analysis was performed to investigate if it explains the association.

Gene-network analysis

We used 2,206 principal components that had been derived from 77,840 Affymetrix 

microarrays (54,736 human, 17,081 mouse and 6,023 rat). Since gene-set enrichment 

analysis showed that each of these components are enriched for at least one biological 

pathway we used these components to developed a gene function prediction algorithm. To 

do so we first determine whether each of the components are enriched for a given gene-set, 

by performing a T-test (contrasting genes, known to be part of this pathways with all other 

genes), and transform the T-statistics into Z-scores. Subsequently we can the eigenvector 

coefficients of the 2,206 components for individual genes of interest with the Z-score profile 

of this gene-set, to predict the gene’s involvement in a specific pathway (details provided in 

Fehrmann et al.28, see Cvejic et al.41 and Wood et al.29 for a short description). We used a 
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permutation strategy to determine significance of the predictions, controlling the false 

discovery rate at 5%. See http://genenetwork.nl/genenetwork for the predictions. Based on 

the Mouse Genome Informatics (MGI; http://www.informatics.jax.org) mouse knockout 

database, we predicted CD300LG to increase circulating VLDL cholesterol levels. For 

TM6SF2, the most significantly predicted biological process was intestinal absorption. Only 

highly significant predictions (permuted p-value < 1×10−6) were taken into account when 

profiling the two genes.

We text-mined the sample descriptions provided by the experimenters who uploaded the 

microarray data to GEO. This text mining allowed us to determine the tissue or cell type for 

the majority of the samples. We subsequently used Wilcoxon-Mann-Whitney tests in the 

human samples from the Affymetrix U133 Plus 2.0 platform to ascertain how highly each 

gene was expressed in samples of a certain tissue or cell type as compared to samples in 

other tissues and cell types. We found that CD300LG is highly expressed in adipose tissue, 

heart, muscle and plasma and that TM6SF2 is highly expressed in ileum and intestinal 

mucosa. See http://genenetwork.nl/genenetwork for the expression of genes in different 

tissues and cell types.

Modelling proportion of variance explained

To estimate the phenotypic variance explained by different types of SNPs we ran multiple 

linear regression models in R42 using the FRCoreExome9702 dataset (N = 5,119), an 

independent sample set from the Finrisk cohort. For the models all lead-SNPs (Teslovich et 

al.2, Willer et al.3 and our study) together with FL SNPs and new functional candidates were 

divided into two groups based on the MAF of the variants in the FRCoreExome9702 dataset. 

The tested SNP sets were:

1. Common (MAF > 5%) lead-SNPs and functional SNPs

2. Adding low-frequency (MAF ≤ 5%) lead-SNPs and functional SNPs to SNP-set 1.

3. FL SNPs and the three identified functional candidates.

These SNP-sets were used to explain the variation of the sex, age, age2 and population 

stratification adjusted trait residuals. In order to apply linear models, TG was log-

transformed before adjustments.

Linear mixed model estimate of the variance explained by common SNPs

We estimated how much phenotypic variance a panel of 319,445 directly genotyped SNPs 

with MAF > 1% in the autosomes explain using the linear mixed model approach 

implemented in GCTA43 (v.1.13). This estimate is a lower bound of the total additive 

genetic variance, because it only includes the contribution of the variants tagged by the 

panel of common SNPs that was used in the analysis. The analysis included samples from 

six Finnish cohorts (NFBC1966, Corogene controls, GenMets, YFS, HBCS and 

PredictCVD) for which we had access to the individual genotype data. All mixed model 

analyses excluded individuals in such a way that none of the remaining pairs of individuals 

had an estimated relatedness coefficient r > 0.05 and the same trait values were used as with 
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the individual SNP analyses. The sample sizes for the traits were 10,466 for HDL-C, 10,383 

for LDL-C, 10,472 for TC and 10,451 for TG.

Gene-based association analysis

Transcript boundaries were defined according to the UCSC human genome database. Within 

each study, GRANVIL31 was used to test for association of each trait with accumulations of 

minor alleles (“mutational load”) at successfully imputed rare variants (MAF ≤ 1% and info 

≥ 0.4, Supplementary Table 1) within genes in a linear regression framework: (i) irrespective 

of annotation; and (ii) restricted to non-synonymous changes. Fixed-effects meta-analysis 

was performed by combining directed Z-scores from the regression analysis across studies, 

weighted by sample size. The significance threshold was set to p-value < 1.7×10−6 

corresponding to a Bonferroni correction for 30,000 genes. Conditional analyses were 

performed to assess the evidence of association of traits the mutational load of a gene after 

accounting for the lead-SNP by including the genotype (under an additive model) of this 

variant as a covariate in the regression model. Conditional analyses were also performed to 

assess the independence of effects of rare variants in two genes by including the mutational 

load of one as a covariate in the regression model for the trait association with the other.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figures 1A-B. 
Change in p-value after analysis conditional on the new lead-SNP and comparison of new 

and previously reported lead-SNP effect sizes and allele frequencies per locus. In both 

figures, each of the arrows represent one locus and trait, where significant association was 

found in our screening and in one of the previously published large-scale screening 

studies2,3 and the colouring is based on the linkage disequilibrium (LD) between the old and 

new lead-SNP. The red ‘*’ represents for the new low-frequency lead-SNPs. In the Figure 

1A, on the Y-axis are the −log10 p-values, arrows starting from the p-value seen in the 
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unconditional analysis in Finnish subset (N = 12,834) and pointing to the p-value in analysis 

conditional on the new lead-SNP. In Figure 1B, each arrow starts from established lead-SNP 

effect and minor allele frequency (MAF) and points to the corresponding values for the new 

lead-SNP. The effects have been estimated in the FRCoreExome9702 sample set (N = 

5,119), independent of the discovery set. Only results for loci with r2<0.4 have been 

presented for clarity.
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Figures 2A-B. 
Regional association plots of the conditional analysis in loci where the new functional 

candidate SNPs explain the genome-wide association. Figure 2A illustrates the results in 

SOST-DUSP3 locus for TG and Figure 2B results in CILP2 locus for TC in Finnish subset 

(N = 12,834). In these figures, the first panel shows the −log10 p-value of each variant as a 

dot whose size reflects the effect size. The second panel shows the recombination rate in the 

area and the third panel shows the positions of genes. X-axis is the physical position in the 

genome. In grey are the association results from the unconditional analysis with green dots 
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representing the new functional candidate SNPs. Black dots are the results from the 

conditional analysis.
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Figure 3. 
Proportion of total trait variance explained by the lead-SNPs and functional SNPs. The 

proportion of the trait variance explained by different SNP-sets has been estimated in 

independent FRCoreExome9702 sample set (N = 5,119). All lead-SNPs from the three 

association screens (Teslovich et al.2, Willer et al.3 and our screen) together with the known 

functional lipid SNPs (FL SNPs) and new functional candidate SNPs were grouped based on 

their allele frequency in the FRCoreExome9702 dataset to common SNPs (allele frequency 

> 5%) and to low-frequency SNPs (allele frequency ≤ 5%). The variance explained by these 

two groups is presented with blue bars. The proportion of variance explained by the FL 

SNPs and functional candidates is presented with the red bar.
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