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The Impact of Macroeconomic News on Quote
Adjustments, Noise, and Informational Volatility

Abstract

We study the impact of the arrival of macroeconomic news on the informational and

noise-driven components in high-frequency quote processes and their conditional vari-

ances. Bid and ask returns are decomposed into a common (”efficient return”) fac-

tor and two market-side-specific components capturing market microstructure effects.

The corresponding variance components reflect information-driven and noise-induced

volatilities. We find that all volatility components reveal distinct dynamics and are pos-

itively influenced by news. The proportion of noise-induced variances is highest before

announcements and significantly declines thereafter. Moreover, news-affected responses

in all volatility components are influenced by order flow imbalances.

Keywords : efficient return, macroeconomic announcements, microstructure noise, in-

formational volatility.

JEL Classification: C32, G14, E44
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1 Introduction

The arrival of news and the processing of (non-anticipated) information is a major driv-

ing force of asset price volatility. Though the availability of financial high-frequency

data allows researchers to study the impact of news on the price process at the micro

level, the ultimate effect on volatility is still unclear. In fact, the measurement of high-

frequency volatility is a non-trivial issue, as it is overshadowed by noise stemming from

market frictions – so-called market microstructure effects. Therefore, it is unclear how

much of a news-implied increase in asset price volatility is ultimately due to larger fluc-

tuations of the underlying ”efficient” return and how much is due to ”microstructure

noise” inducing a higher instability of bid and ask quotes. Disentangling both com-

ponents is necessary to estimate the ultimate effect of announcements on the efficient

asset return volatility and to produce a more complete picture of high-frequency price

discovery.

The objective of this paper is to address this fundamental question and to analyze

what proportion of volatility changes around the arrival of macroeconomic news is due

to ”informational” volatility (i.e., the volatility of the efficient price) and how much is

due to noise volatility (induced by quote fluctuations around the efficient price). We

develop a structural model decomposing bid and ask quote returns into three condi-

tionally heteroscedastic and news-dependent components: a common efficient return

component and two market-side-specific noise components capturing noise-driven de-

viations between observed and efficient returns.

Using this methodological framework, we analyze the following major research ques-

tions: (i) How strong is the impact of news on the information and noise components

of volatility, and how much does this effect depend on the magnitude and the precision

of surprises? (ii) How large is the relative share of noise in conditional quote return

volatilities, and how does it change around announcements? (iii) Can trading volume

and net order flow (partly) explain the impact of news on informational and noise

volatility?

We propose a state-space model decomposing bid and ask quote returns into a common

efficient return component and two market-side-specific factors capturing deviations

from efficient returns. The three unobserved return components are assumed to follow

a VAR(1) model with conditionally heteroscedastic errors. Conditional means and vari-
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ances are augmented by regressors capturing the impact of news announcements and

the state of the market. The model is estimated by quasi maximum likelihood using

the Kalman filter. To reduce the computational complexity due to the need of highly

parameterized conditional variances, we suggest a two-step estimation procedure. In

the first stage, the model is (consistently) estimated assuming homoscedastic errors.

In the second stage, we estimate the conditional variances using the updated Kalman

filter residuals. The conditional variances are specified as multiplicative error models in

the spirit of Engle (2002), with four components capturing the effect of the announce-

ments, volatility dynamics, deterministic time effects around news announcements, and

the state of the market.

The analysis of macroeconomic news’ effects on asset return volatility is a central

area of research in empirical finance. One of the early studies examining the effect of

macroeconomic news on volatility is that of Ederington and Lee (1993), who analyze

five-minute sample variances across announcement days and find that volatility is sig-

nificantly higher in the interval immediately following an announcement but rapidly

declines afterwards. Christie-David and Chaudhry (1999) show that volatility seems to

be more persistent if the underlying asset is more liquid. Hautsch and Hess (2002) and

Andersen, Bollerslev, Diebold, and Vega (2003) stress the importance of disentangling

the impact of news on both the first and the second conditional moments of the return

process. Both studies document a strong and persistent increase in the conditional

volatility following an announcement while controlling for shifts in prices.

However, in both theoretical and empirical literature, the effects of news on efficient

and noise-driven volatility components are widely unexplored. The literature on hetero-

geneous beliefs suggests that uncertainty about the equilibrium price level is created

by disagreement among traders about the precision of the news or about its inter-

pretation (e.g., Harris and Raviv, 1993, Kandel and Pearson, 1995, and Kandel and

Zilberfarb, 1999). According to this literature, greater disagreement among traders

leads to higher trading activity. As long as this induces a higher liquidity supply, we

expect that market microstructure frictions become less important causing a reduc-

tion of the relative importance of noise volatility. A related argument is provided by

the literature on speculative trading suggesting that volatility and trading volume re-

sults primarily from heterogeneous information among market participants (e.g., Kyle,

1985, or Foster and Viswanathan, 1996). According to Pasquariello and Vega (2007),
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more diverse information among traders allows them to trade more cautiously on their

own private information. If, however, a public signal is announced, it becomes more

difficult to exploit private (prior) information cautiously. Consequently, traders trade

more aggressively, market liquidity increases, and the noise volatility component should

decline.

Our econometric model contributes to the literature on modeling quote processes on

financial markets. In a seminal paper, Hasbrouck (1991) studies the price impact of

trades by proposing a VAR model for returns and signed trades. Hasbrouck (1993)

proposes decomposing security transaction prices into a random walk component and

stationary error components. Engle and Patton (2004) and Escribano and Pascual

(2006) extend the framework by Hasbrouck (1991) and propose a vector error correction

model for bid and ask quotes with the spread acting as the co-integrating vector.

Madhavan, Richardson, and Roomans (1997) introduce a structural model of price

formation by decomposing transaction price volatility into volatility arising from news

shocks (trade-unrelated information) and volatility arising from market frictions such

as price discreteness, asymmetric information, and real frictions. Pascual and Veredas

(2010) introduce a state-space model of price and volatility formation in the spirit of

Madhavan, Richardson, and Roomans (1997) by decomposing quotes into a common

stochastic trend – the efficient price – and transitory noisy components. Zhang, Russell,

and Tsay (2008) propose a similar decomposition inducing an asymmetric rounding

mechanism generating discrete bid and ask quotes from a latent continuous process.

Finally, our study also contributes to the literature on volatility estimation using high-

frequency data. An important issue in this literature is to address the impact of market

microstructure frictions occurring on high sampling frequencies (see Hansen and Lunde,

2006, or Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2006 among others). Indeed,

the estimates of our structural model for quote returns provide additional insights into

the dependence structure of market microstructure noise and the variances thereof.

Our empirical analysis employs monthly announcements on nonfarm payrolls and un-

employment rates issued by the U.S. labor market report. It is well documented that

these figures are among the most influential scheduled releases. To quantify the magni-

tude of non-anticipated information (so-called ”surprises”), we use consensus analyst

forecasts. The impacts of news on prices are quantified based on minute-by-minute

quotes of the German Bund futures traded on Eurex. Being closely related to long-term

5



interest rates, Bund futures react very sensitively to macroeconomic announcements.

Though the home market of these futures is in Germany, several studies clearly docu-

ment that U.S. labor market figures are the most important announcements (e.g., An-

dersen, Bollerslev, Diebold, and Vega, 2003, 2007 or Andersson, Overby, and Sebestyén,

2009). Furthermore, Eurex is an electronic system providing precise and detailed data

not only on trade prices but also on quotes, volumes, and market depth.

The most important findings of our analysis are as follows: first, news announcements

have a highly positive impact on both efficient and noise volatility. Instantly after

the announcement, both volatility components reveal significant jumps followed by

a gradual decline. The relationship between efficient volatility and the magnitude of

surprises is concave. Conversely, for noise volatility, a convex relationship is found. This

supports the hypothesis that very large surprises are interpreted to be less reliable

and thus induce smaller (or even negative) marginal increases in prices and efficient

volatility and a relatively higher share of noise volatility. Second, noise and efficient

volatility show around news announcements different patterns resulting in a higher

proportion of noise before the release. This share significantly drops instantly after the

announcement and reaches a minimum approximately 30 minutes later. Third, the net

order flow has a significantly positive effect on both volatility components. This impact

becomes even stronger directly after news arrival. Fourth, the noise components reveal

distinct serial dependencies confirming results for stock markets shown by, e.g., Hansen

and Lunde (2006). Finally, our results show that apart from news-induced variations,

noise variances reflect distinct GARCH effects. The overall share of noise volatility

in total volatility is approximately 3%, reflecting comparably low spread variations in

Bund futures trading.

The remainder of the paper is structured as follows. In Section 2, we introduce the

econometric model. Section 3 presents the data and the construction of underlying

variables. Empirical results are presented and discussed in Section 4. Section 5 ana-

lyzes the impact of news on the proportion of the efficient variance in the total quote

variances. Section 6 concludes.
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2 A State-Space Model for Bid and Ask Returns

In this section, we introduce a new type of structural microstructure model for bid and

ask quote returns. Define at and bt as the log best ask and best bid quotes, respec-

tively, at time t = 1, . . . , T . Then, ra,t := at − at−1 and rb,t := bt − bt−1 denote the

corresponding ask and bid returns. We assume that rt := (ra,t, rb,t) is driven by the

sum of a common return component mt, market-side-specific components Sa,t and Sb,t

as well as k1 announcement-related regressors xr
t and k2 market liquidity variables zrt

capturing the state of the market. Accordingly, the bivariate process rt := (ra,t, rb,t)
′ is

described by

rt = H�t +B′xr
t +D′zrt , (1)

where

H :=

(

1 0 1
0 1 1

)

and �t := (Sa,t.Sb,t,mt). B := (�a,�b) is a k1 × 2 matrix of coefficients capturing the

effect of news on returns and D := (�a, �b) is a k2 × 2 matrix of coefficients associated

with the state of the market around announcements.

The common component mt is assumed to capture the underlying (unobservable) effi-

cient return driving both ask and bid returns. By contrast, Sa,t and Sb,t are associated

with time-variations in market-side-specific spread variations and capture deviations

between mt and rt. Following the terminology in the literature, we refer to Sa,t and Sb,t

as ask and bid noise returns, respectively.

The underlying framework is similar to the model by Pascual and Veredas (2010), who

decompose bid and ask prices in a common random walk component and idiosyncratic

noise factors. However, here we directly model returns. This approach is more natural

and sensible in the given context, as it removes the need to account for stochastic trends

in prices and allows focussing the analysis on event windows around the announcements.

The dynamics of the unobservable return components are assumed to be driven by a

vector autoregressive (VAR) process of order one, i.e.,

�t = �+ F�t−1 + "t, (2)
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where � = (0, 0, c) is a 3× 1 vector, and F is a 3× 3 matrix of the form

F =

⎛

⎝

�a 0 0
0 �b 0
0 0 �m

⎞

⎠ .

According to traditional structural microstructure models of price formation, efficient

returns should follow a white noise process implying �m and c to be zero. Conversely,

noise returns are assumed to have a zero mean and are expected to show mean-reverting

behavior resulting in negative coefficients �a and �b. The diagonal specification of F

rules out dynamic spill-overs between the latent components. Preliminary analyses

based on more flexible specifications of F show that this restriction is widely confirmed

by the data. As we observe that the off-diagonal elements are rather small and difficult

to identify, we see the diagonal specification as being sufficiently flexible while being

computationally tractable.

Note that we include the regressors xr
t and zrt directly in (1). This implies that the effect

of xr
t and zrt on ra,t and rb,t is present only in period t. Because the regressors contain

period-specific variables, this specification is most appropriate and eases the interpre-

tation of regressor effects. Alternatively, or additionally, we could include components

C′xr
t and E′zrt in (2), with C and D denoting corresponding parameter matrices. The

regressors would then be included in the autoregression and would enter the model in

terms of an infinite lag structure, making interpretation more difficult.1

The vector of innovations "t := ("a,t, "b,t, "m,t) is assumed to be conditionally normally

distributed, i.e.,

"t∣ ℱt−1 ∼ N (0,Σt), (3)

where ℱt denotes the information set up to t, 0 is a 3 × 1 vector of zeros and Σt :=

diag(ℎa,t, ℎb,t, ℎm,t).
2 The components ℎa,t, ℎb,t, ℎm,t are referred to as (conditional) ask

and bid noise variances as well as the efficient variance, respectively. Each variance

component is specified in terms of a multiplicative error specification (see, among

1Moreover, factor-specific effects of xr
t and z

r
t in (2) are only individually identifiable as long as

either �m ∕= 0 or �a ∕= 0 and �b ∕= 0. In the case of a joint identification of B and C as well as of D
and E it is even required that �m ∕= 0 and �a ∕= �m ∕= 0 and �b ∕= �m ∕= 0. Otherwise, because of the
linearity of (1), ra,t and rb,t are effectively driven by the same set of regressors twice.

2Following Pascual and Veredas (2010) we could allow Σt to be non-diagonal. However, because
time-varying covariances are not in the ultimate objective of the present study, we leave this extension
for future research.
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others, Engle, 2002, Engle and Rangel, 2008, or Hautsch, 2008):

ℎi,t = dyni,ttoni,tliqi,tnewsi,t, i = {a, b,m}, (4)

where

dyni,t := exp

[

!i + �i ln dyni,t−1 + �i

(

∣"i,t−1∣
√

dyni,t−1

−

√

2

�

)]

,

toni,t := exp

[

3
∑

j=1

 s
i,j sin(2�j�) +  c

i,j cos(2�j�)

]

,

liqi,t := exp ( ′

iz
v
t ) ,

newsi,t := exp (%′

ix
v
t ) .

The first component, dyni,t, captures dynamics in the variance processes according to

an EGARCH structure (Nelson, 1991). The second component, toni,t, captures deter-

ministic volatility patterns around the announcement dates. We refer them to ’time-of-

news’ (ton) effects and model them using a flexible Fourier form (Gallant, 1981) of order

three.3 Here � = t/T ∈ [0, 1] is the standardized time during the event window, where

T denotes the number of (one-minute) time intervals around the announcement. The

third component, liqi,t, contains regressors z
v
t capturing market activity and liquidity

with corresponding parameters i. Finally, newsi,t consists of news-specific regressors

xv
t with parameters %′

i.

Equations (1), (2) and (3) form a linear state-space model that can be estimated with

the Kalman filter. An (efficient) one-step estimation of the model is numerically and

computationally expensive when the number of variance regressors (xv
t and zvt ) and the

number of Fourier terms are high. To reduce the computational complexity, we suggest

a two-step estimation procedure. Two-step estimations in volatility modeling are quite

common and are performed in Schwert (1989), Andersen, Bollerslev, Diebold, and Wu

(1995), Beine, Lahaye, Laurent, Neely, and Palm (2006) and Engle and Rangel (2008),

among others. Pascual and Veredas (2010) also suggest proceeding in two steps in a

state-space setting similar to ours.4 In the first step, we consistently estimate the model

3This is mostly supported by information criteria. To check the robustness, we also estimated other
orders for the Fourier series. The results, available under request, barely change.

4Alternatively, the model might be estimated using MCMC techniques as used in a similar context
by Zhang, Russell, and Tsay (2008). However, given our highly parameterized conditional variances
this would also be computationally very demanding.
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using a state-space system with constant variances. Normality allows us to estimate

the factors using the Kalman filter as well as the parameters using the corresponding

error prediction decomposition (see Harvey, 1992). Using pseudo-maximum likelihood

(PML) arguments in an exponential family setting, the estimates are consistent, though

not efficient, under distributional misspecification as long as the conditional means are

correctly specified (see Gouriéroux, Monfort, and Trognon, 1984). In the second step, we

estimate the variance-covariance matrix based on the updated Kalman filter residuals,

ei,t = E["∗i,t∣ℱt], i = {a, b,m}. Because Σt is assumed to be diagonal, the estimation of

Σt boils down to univariate EGARCH models.5

The model (1)-(3) can be written in reduced form as

ra,t =
c

1− �m

+ �′

ax
r
t + �′

az
r
t + "a,t + "m,t +

∞
∑

j=1

�j
a"a,t−j +

∞
∑

j=1

�j
m"m,t−j, (5)

rb,t =
c

1− �m

+ �′

bx
r
t + �′

bz
r
t + "b,t + "m,t +

∞
∑

j=1

�j
b"b,t−j +

∞
∑

j=1

�j
m"m,t−j, (6)

which is a Vector MA(∞) model with exogenous regressors and a common error term

induced by the efficient return. If efficient returns have a zero mean and are uncorre-

lated, the unique source of serial dependence in (5) and (6) are the noise terms. Thus

the equations simplify to

ra,t = �′

ax
r
t + �′

az
r
t + "a,t + "m,t +

∞
∑

j=1

�j
a"a,t−j,

rb,t = �′

bx
r
t + �′

bz
r
t + "b,t + "m,t +

∞
∑

j=1

�j
b"b,t−j.

Conditioning on past information, (contemporaneous) news arrival and the state of the

market, the conditional (co-)variances are given by

�2

i,t = V[ri,t∣ℱt−1,x
r
t , z

r
t ,x

v
t , z

v
t ] = ℎi,t + ℎm,t, i ∈ {a, b}

�ab,t = Cov[ra,t, rb,t∣ℱt−1,x
r
t , z

r
t ,x

v
t , z

v
t ] = ℎm,t.

Following Engle and Patton (2004), a parameterization of ra,t and rb,t also implies a

parameterization of changes in the log spread sprt := at − bt and the log mid-quote

5Theoretically, the second-step estimators should account for the estimation error involving ei,t.
However, due to the large number of observations, we do not expect that this uncertainty qualitatively
affects our results.
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mqt := 0.5(at + bt). Pre-multiplying (1) by the matrix (1 : −1, 0.5 : 0.5) yields the

reduced form

Δsprt = Sa,t − Sb,t + (�a − �b)
′xr

t + (�a − �b)
′zrt

Δmqt = c+ 0.5(Sa,t + Sb,t) +mt + 0.5(�a − �b)
′xr

t + 0.5(�a − �b)
′zrt ,

where Δ denotes the first-difference operator. Correspondingly, the conditional vari-

ances of Δsprt and Δmqt are given by

�2

Δspr,t = V[Δsprt∣ℱt−1,x
r
t , z

r
t ,x

v
t , z

v
t ] = ℎa,t + ℎb,t

�2

Δmq,t = V[Δmqt∣ℱt−1,x
r
t , z

r
t ,x

v
t , z

v
t ] = 0.5(ℎa,t + ℎb,t) + ℎm,t.

The conditional variance of spread changes thus equals the sum of the noise variances.

Consequently, if the noise variances are zero, the spread is constant, and quote returns

and efficient returns coincide corresponding to the mid-quote return. As a result, its

conditional variance simply equals ℎm,t.

3 Data

The model is estimated based on intraday data of the German Bund futures traded

on Eurex. We extract data from Eurex’s time and sales records including prices as

well as best bid and ask quotes. Because the data directly stem from a computerized

matching system, the information provided is very precise, including time-stamps up to

the second. Trade data are available since the inception of the Bund futures contract

in 1989, but we focus exclusively on data from 1995 onwards, when liquidity in the

Bund futures reached a significant level (see Franke and Hess, 2000). The sample ends

in December 2005, at a time when Bund futures had been the most liquid government

bond futures around the world, attracting even more trading volume than the CBOT

T-bond futures. For instance, in 1995, we observe on an announcement day of the

U.S. employment report roughly 4 trades per minute with an average trade size of 21

contracts. This figure steadily rises and reaches 17 trades per minute with an average

trade size of 77 contracts in 2005.

We extract one-minute log bid and log ask returns from the front month contract,

i.e., the most actively traded contract at a given day. We focus on an interval of ±80
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minutes around the announcement time of the U.S. employment report. This report

is typically released at 2:30pm Frankfurt time on the first Friday after the end of

the month.6 We use only those employment announcement days on which no other

U.S. macroeconomic report is released at the same time. Covering a sample period of

11 years from January 1995 to December 2005, we obtain 123 employment report days

after excluding a few days due to overlapping releases as well as one day due to an in-

advertently early release of the employment report (see Fleming and Remolona, 1999).

The resulting sample consists of a time series of minute-by-minute returns observed

over the concatenated series of ±80 minutes around the employment announcement,

yielding 25,600 observations.

In accordance with a wide range of previous studies of the employment report, we

restrict our attention to the nonfarm payrolls figure, which is shown to be the most

influential macroeconomic news announcement. Non-anticipated information in these

headline figures is measured on the basis of survey data on analysts’ forecasts, pro-

vided by Standard & Poors Global Markets (MMS) and its successor, Informa Global

Markets. Initially released non-revised figures were extracted from the original monthly

releases. Surprises are defined as the difference between initially announced figures and

the median of analyst forecasts. Following Hautsch and Hess (2007), we exploit the

fact that both figures are closely related and measure surprises in both figures in terms

of percentage changes, which facilitates a direct comparison of the price impact across

headline figures. That is, nonfarm payrolls surprises are defined as the deviation of

the announced number of new nonfarm payrolls from the median of analyst forecasts

divided by the total nonfarm payrolls in the previous month (times 100). The unem-

ployment rate figure is already given in percentage points (i.e., the month-to-month

difference in the overall unemployment rate). To capture the impact of news at specific

time points during the event window, we interact the surprise variables with dummy

variables indicating the periods around the announcement.

To quantify the release-specific precision of a monthly employment release, Hautsch

and Hess (2007) suggest quantifying the so-called ’price-response coefficient’ �m :=

�A,m/(�A,m + �F,m). This coefficient is derived in a standard Bayesian learning model

and is based on the precision (i.e., the inverse of the variance) of the estimation error

6Due to different dates of daylight savings time switches in Europe and the U.S., the employment
report is released on a few occasions at 1:30pm or 3:30pm Frankfurt time.
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of a monthly announcement, �A,m, and the precision of (analysts’) forecasts of a fig-

ure, �F,m with m indexing the monthly time series. A natural estimator for �F is the

cross-sectional standard deviation of analysts’ forecasts for a particular month.7 How-

ever, as typically no release-specific precision measure for macroeconomic announce-

ments is available, Hautsch and Hess propose exploiting information on revisions of

previous-month nonfarm payroll figures. Interpreting the magnitude of a revision as

a natural indicator for the (im)precision of the previous month’s figure, a one-month-

ahead forecast of squared revisions serves as an estimate of the (im)precision of the

currently announced headline figure. Hautsch and Hess show that there is significant

predictability in the squared revisions of nonfarm payroll figures, which can be captured

by means of ARMA-GARCH models fitted to the time series of revisions. Following

this approach, �A,m is estimated as the inverse of the conditional revision variance,

�̂A,m = V̂[RNF,m∣RNF,m−1, RNF,m−2, . . .]
−1 with RNF,m denoting the nonfarm payroll

revision in m. To reduce the impact of estimation errors, we distinguish only between

”precise” announcements whenever �̂ is equal to or above its sample median and ”im-

precise” announcements otherwise.

An alternative way to quantify the precision of news is suggested by Subramanyam

(1996) and put forward by Hautsch, Hess, and Müller (2008). In an extended Bayesian

learning model it can be shown that the size of surprises is positively correlated with

the uncertainty of news. Intuitively, large surprises are interpreted to be ”too large to

be true” and thus indicate a low precision of news. To capture such effects, we define

a surprise to be large whenever it exceeds the 70%-quantile.

Finally, we include two sets of additional regressors. First, we control for the effects of

surprises in unemployment rates that are announced simultaneously. Second, to cap-

ture overall market liquidity, the vectors xr
t and xv

t in (1) and (4) include the net

order flow and trading volume computed over one-minute intervals. The net order flow

is defined as the absolute value of the difference between buyer- and seller-initiated

trading volume over one-minute intervals divided by the average daily trading volume.

Hence, net order flow takes on large positive values if the volume of market buy or-

ders outweighs the corresponding sell orders relative to the ’normal’ trading volume

on this day. Correspondingly, the cumulated one-minute trading volume is a natural

7See, e.g., Green (2004), Andersen, Bollerslev, Diebold, and Vega (2003), or Pasquariello and Vega
(2007).
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proxy for the overall liquidity demand. To capture the effect that the impact of news

on the underlying return processes changes over time, we allow for interactions with

corresponding time dummy variables. A list of the variables is given in Table 1.

4 Estimation Results

4.1 Conditional Mean Effects

Table 2 provides the estimation results based on six different specifications, starting

with a simple baseline specification (A) capturing news effects in reduced form that is

subsequently augmented by variables accounting for asymmetries, the news’ precision

as well as market liquidity. We summarize the following findings: First, we find highly

significant negative estimates for �a and �b indicating reversal effects in the noise

components of the ask and bid log returns. Hence, an upward movement of Sa,t and

Sb,t tends to be followed by a downward movement, reflecting a bouncing effect in

the noise bid and ask return components. This effect essentially reflects dynamics in

spread changes. As shown, for example, by Hautsch and Huang (2009), a widening of

the spread induced by a transaction removing a part of the pending order volume and

thus shifting the best quotes induces an increase in the liquidity supply as well as a

dynamically re-balancing of the spread. Converse effects are observed after the arrival

of aggressive limit orders narrowing the spread. Given the estimates of �a and �b, the

coefficients of the resulting MA polynomials in (5) and (6) converge to zero relatively

quickly. After few lags, they are negligible, implying that the reduced-form model can

be approximated by a VMA of order two or three. This is consistent with the literature

that has found returns to behave like a MA process (see, e.g., Aı̈t-Sahalia and Mykland,

2005). For the efficient return itself, we find a weakly negative (but clearly significant)

serial dependence reflecting slight evidence for mean-reversion effects in efficient prices.

Second, we observe strong and instantaneous effects of announcement surprises. Neg-

ative (positive) reactions on positive (negative) surprises in nonfarm payrolls (unem-

ployment rates) is well in accordance with economic theory. These results are consistent

with previous findings based on returns of U.S. T-bond futures and show that U.S. labor

market announcements do have a significant impact on Eurex Bund futures trading.8

8See, e.g., Fleming and Remolona (1999b), Andersen, Bollerslev, Diebold, and Vega (2003, 2007),
or Andersson, Overby, and Sebestyén (2009).
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It turns out that the price adjustment to nonfarm payroll surprises is completed within

the first one-minute interval after the announcement (2:30-2:31pm). Note that the cor-

responding coefficients take on almost identical values for both bid and ask quotes.

No significant effects are identifiable after the second minute. This indicates that the

market processes new information very quickly. Moreover, slight evidence for signifi-

cant price reactions are also observed in the interval preceding the announcement, i.e.,

2:29-2:30pm. This is probably due to announcements that are published slightly before

2:30pm. The existence of leakage effects is quite unlikely, as the news is published under

very strict lock-up conditions.

Third, we obtain strong evidence for asymmetric price reactions due to large vs. small

surprises. In line with the notion of Bayesian learning the significantly negative coef-

ficent associated with nf1,L indicates that (too) large surprises are indeed interpreted

as being ”too large to be true”. However, the revision-based precision measure turns

out to be insignificant. This is in contrast to the findings by Hautsch, Hess, and Müller

(2008) based on U.S. T-bond futures. Hence, Bund futures traders – in contrast to

traders on the T-bond ’home market’ – seem to account for the size of surprises as

a proxy for reliability but disregard additional information such as revisions of past

figures.

Fourth, we find a remarkably strong influence of imbalances in the order flow. It turns

out that standardized net order flow (noft) drives both bid and ask quote revisions

during the whole 160-minute event window. The interactions with time dummies show

that the impact of order flow imbalances peaks in the first minute after the announce-

ment and is about two times as high as usual. Still, over the following four minutes,

the impact is increased by about three quarters and over the next ten minutes is in-

creased by about one quarter. This suggests that net order flow may help traders to

better interpret the news, particularly, by learning about other traders’ interpretation

of information.

Finally, testing the individual specifications against each other by employing likelihood-

ratio tests (see Panel I of Table 3) indicates that the most general specification (F)

is not rejected against the more parsimonious models (A) to (E). This suggests that

indeed all model components jointly have explanatory power.
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4.2 Conditional Variance Effects

Table 4 gives the estimation results of individual EGARCH models based on the up-

dated Kalman filter residuals stemming from the first-step estimates of specification F

shown in Table 2. Again, we estimated different specifications, starting with a simple

baseline specification (A) and successively including the individual variance compo-

nents. Ultimately, specification (F) is most flexible, containing all underlying compo-

nents. All specifications account for deterministic volatility patterns through the event

window according to the specification of toni,t in (4). Accordingly, Figures 1 and 2

show the median patterns of the estimated volatilities and their components during

the event periods across all announcements based on the specifications (D) and (F).

For the sake of brevity, we refrain from reporting the estimates of the component toni,t

in the tables, instead depicting them graphically in Panel (d) of Figures 1 and 2. Recall

that toni,t is an average deterministic volatility pattern that is (multiplicatively) scaled

upwards or downwards by the other components. Consequently, the mean values of the

components newsi,t, toni,t and liqi,t are by construction equal to one and cannot be

interpreted on an absolute scale.

We can identify the following major findings. First, large surprises in news have an in-

stantaneous and strongly positive impact on both efficient and noise volatility. Overall,

surprises in nonfarm payrolls induce significantly stronger and more distinct reactions

in volatility than does news regarding unemployment rates (see Panels A and B). As

captured by the interactions of absolute surprises with corresponding time dummies,

we observe the strongest effects in volatility in the minute following the arrival of

the announcement. In subsequent minutes, these effects generally become smaller, less

distinct and less significant.9

Second, in the case of large (nonfarm payroll) surprises (i.e., those greater than the

75%-quantile), the efficient volatility is marginally negatively affected, whereas the

noise volatility is marginally positively affected (Panels (C) and (D)). We therefore

observe a concave relationship between efficient volatility and the magnitude and thus

the reliability of surprises. Conversely, for noise volatilities, this relationship is convex.

That is, a lower reliability of news as indicated by large surprises is reflected in noise-

driven volatility rather than in efficient volatility. The former effects are obviously not

9We also tested for asymmetries with respect to the sign of the news but did not find any significant
results.
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distinctly attributable to single one-minute intervals but are rather spread over the

complete five-minute interval following the news arrival. As in the mean function, we

do not observe significant impacts of the revision-driven precision variable.

Third, efficient and noise volatility react in different ways around news announcements.

While efficient volatility reveals a distinct jump at the announcement that decays rela-

tively quickly thereafter, noise volatility is particularly high shortly before and after the

announcement (see Panels (a) of Figures 1 and 2). This is induced by more pronounced

baseline patterns of the noise volatilities around the announcement (see Figures 1 (d)

and 2 (d)) compared to that of the efficient volatility. Additionally, it is enforced by

news-driven post-announcement reversals, as depicted by Panels (c) in Figures 1 and 2.

In the case of large surprises, noise volatility is significantly and instantaneously pushed

up at the time of news arrival, significantly drops in subsequent trading minutes and

reverts after approximately 10 minutes. We associate this pattern with an overshooting

of noise-driven volatility at the time of news arrival and a corresponding re-balancing

thereafter. These effects are particularly driven by news in nonfarm payrolls and to a

lesser extent by unemployment rate figures.

Fourth, all volatilities reveal distinct dynamics. The parameters of the dynamic com-

ponents dyni,t are significant and take values in the range of what is usually found

in the volatility literature. Obviously, efficient volatility is more affected by informa-

tional shocks and shows a higher impact of innovations and a lower persistence than

do noise volatilities. Figures 1 (b) and 2 (b) depict the median values of the estimated

EGARCH components, dyni,t. It turns out that the dynamic components strongly in-

crease instantaneously after the announcement. This indicates that news effects not

only are captured by the components toni,t and newsi,t but also cause high innova-

tions in the EGARCH process inducing persistent upward shifts of the component

dyni,t. These effects obviously enforce the impact of news on overall ask and bid return

volatility.

Fifth, the estimates in Table 2 reveal that the unconditional ask volatility is significantly

higher than the bid volatility, providing first hints for asymmetries in market-side-

specific quoting activities. Interestingly, this is corroborated by corresponding asym-

metries in news effects. As shown by Panels (a) and (b) of Figures 1 and 2 and reported

in Table 4, the ask noise volatility reacts significantly more strongly to news. This result

is robust to all specifications and preliminary data analysis. Moreover, given that we
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analyze a period covering 11 years, it is quite unlikely that this effect is driven by sys-

tematic upward or downward trends in the market. Hence, though this finding requires

even more robustification, we can conclude that the ask side seems to be systematically

more sensitive to news-driven information shocks than the bid side.

Sixth, net order flow has a significantly positive impact on both efficient and noise

volatility. This is expected, as order flow imbalances induce variations in spreads and

therefore increase noise-driven volatilities. Moreover, one-sided trading reflects the ex-

istence of information and positively affects efficient volatility. Conversely, trading vol-

ume only affects informational volatility and does not affect the noise-driven compo-

nents. This is naturally explained by the strong link between volatility and trading

volume, which is not only found on a daily level but also on an intraday level (see, e.g.,

Hautsch, 2008). Panel (e) in Figure 2 shows the median pattern of the liquidity compo-

nents liqi,t around the announcement. We observe that liqm,t is strongly shifted upwards

at the time of news arrivals. Hence, efficient volatility is increased not only due to news

arrivals but also due to a rising net order flow and trading volume. This additional

effect is also reflected in a higher median peak of the efficient volatility component

ℎm,t (Panel (a)) compared to the effects shown in Figure 1. After the announcement,

the liquidity-induced component liqm,t remains at a high level and decays only slowly.

Conversely, the median pattern of liqa,t and liqb,t decay prior to the announcement,

shift upward at the event period and fluctuate around this level in subsequent peri-

ods. Interestingly, the liquidity-induced noise components reach a minimum directly

before the news arrival. Hence, in this period, market activity declines and the market

is seemingly awaiting information.

Finally, likelihood-ratio tests (Panel II of Table 3) suggest that the most general spec-

ification (F) including both precision and liquidity effects dominate the more reduced

models (A) to (E). This indicates the importance of accounting for market liquidity

and asymmetric volatility effects when responses in volatility to news announcements

are analyzed. This is particularly true for efficient volatility.

5 Variance Ratios and Marginal Effects

To provide insights whether news announcements have an impact on the relative pro-

portion of the conditional efficient variance in the total conditional ask and bid return
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variance, we define so-called Information Variance Ratios IV Ra
t and IV R

b
t , respectively,

given by

IV Ra
t :=

ℎm,t

ℎa,t + ℎm,t

, (7)

IV Rb
t :=

ℎm,t

ℎb,t + ℎm,t

. (8)

As their ratios approach one, the observed bid and ask returns are close to the (un-

observed) efficient return, and the share of noise in returns thus decreases. If, in the

limit, the bid-ask spread is constant, ℎa,t = ℎb,t = 0, we have IV Ra
t = IV Rb

t = 1.

Accordingly, the proportion of noise in (conditional) variances of spreads and mid-

quotes are given by

IV Rspr,i
t :=

ℎi,t
ℎa,t + ℎb,t

, i ∈ {a, b}, (9)

IV Rmq
t :=

ℎm,t

0.5(ℎa,t + ℎb,t) + ℎm,t

. (10)

Obviously, IV Rspr,b
t + IV Rspr,a

t = 1. If, for instance, IV Rspr,a
t > IV Rspr,b

t , more than

50% of the variability in spread changes stems from the ask side.

Figures 3 and 4 show the median values of IV Ra
t , IV R

mq
t , IV Rb

t , IV R
spr,a
t and IV Rspr,b

t

around all announcements based on specifications (D) and (F). Several conclusions can

be drawn: on average the information variance ratios IV Ra
t , IV R

b
t , and IV Rmq

t are

very high, mostly above 95%. Hence, noise volatility is surprisingly small – but not

constant. Nevertheless, the ratios are not constant during the event period but reflect

a distinct pattern around the announcement. Information variance ratios start decreas-

ing approximately 40 minutes prior to the announcement, reaching a minimum roughly

10 minutes before news arrival. This indicates that market liquidity tends to ”dry out”

prior to the announcement, inducing a significantly higher proportion of noise-induced

quote fluctuations. Instantaneously after the announcement, the relative share of infor-

mational volatility sharply increases. This is obviously induced by a jump in efficient

return volatility, which is dominating during this period. However, during the first min-

utes after the announcement, uncertainty in the interpretation of news induces again

an increase in quoting activity and consequently a drop in information shares. After

approximately 10 minutes, market uncertainty seems to be widely resolved, yielding ris-
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ing information variance ratios, which reach their maximum approximately 30 minutes

after the announcement.

Furthermore, we find distinct differences between IV Ra
t and IV Rb

t . The share of noise

in quote volatilities is systematically higher on the ask side than on the bid side.

This difference is most distinct in the period prior to the announcement and becomes

significantly smaller after market uncertainty is widely resolved. This asymmetry is

particularly striking in IV Rspr,a
t and IV Rspr,b

t . As shown by Figures 3 (b) and 4 (b),

the proportion of ask noise volatility in the total spread volatility is approximately

75%. This ratio is widely constant during the announcement window, indicating that

news barely has an effect on IV Rspr,a
t and IV Rspr,b

t .

To analyze the effects of news on the resulting volatilities of bid and ask quotes, the

midquote and the spread, we compute the corresponding marginal effects. In general,

marginal changes in �2
a,t and �

2

b,t induced by changes in the news-related variables %i,

i ∈ {a, b,m} are given by

∂�2
a,t

∂%a
= 2

(

%aℎ
2

a,t + %mℎ
2

m,t

)

,

∂�2

b,t

∂%b
= 2

(

%aℎ
2

b,t + %mℎ
2

m,t

)

,

where %a := (%a,%m) and %b := (%b,%m). Correspondingly, we have for the marginal

impacts on �2
mq,t and �

2
spr,t,

∂�2
mq,t

∂%mq
= %aℎ

2

a,t + %bℎ
2

b,t + 2%mℎ
2

m,t,

∂�2
spr,t

∂%spr
= 2

(

%aℎ
2

a,t + %bℎ
2

b,t

)

,

where %mq := (%a,%b,%m) and %spr := (%a,%b).

Then, for instance, the marginal effects at the minute of the announcement of a surprise

in nonfarm payrolls (for simplicity denoted by nf ∗

1,t) in �
2
a,t and �

2
a,t are given by

∂�2
a,t

∂nf ∗

1,t

= 2(%a,1ℎ
2

a,t + %m,1ℎ
2

m,t),

∂�2

b,t

∂nf ∗

1,t

= 2(%b,1ℎ
2

b,t + %m,1ℎ
2

m,t),

20



where %a,1, %b,1 and %m,1 are the associated coefficients of nf ∗

1,t in ℎa,t, ℎb,t and ℎm,t,

respectively.

Consequently, the marginal impact of a large surprise in nonfarm payrolls on �2
a,t and

�2

b,t at the minute after the announcement is given by

∂�2
a,t

∂nf ∗

1,t

+
∂�2

a,t

∂nf ∗

1,L,t

= 2
(

(%a,1 + %a,1,L)ℎ
2

a,t + (%m,1 + %m,1,L)ℎ
2

m,t

)

,

∂�2

b,t

∂nf ∗

1,t

+
∂�2

b,t

∂nf ∗

1,L,t

= 2
(

(%b,1 + %b,1,L)ℎ
2

b,t + (%m,1 + %m,1,L)ℎ
2

m,t

)

,

where %a,1,L, %b,1,L and %m,1,L are the corresponding coefficients associated with nf ∗

1,L,t

in ℎa,t, ℎb,t and ℎm,t, respectively.

Table 5 gives the median marginal effects on bid and ask return variances (top panel)

and on the midquote and spread variances (bottom panel). The median marginal ef-

fects of surprises are virtually the same for bid and ask volatilities. This symmetry

reflects the dominating role of the efficient volatility, which overcompensates the ask-

bid asymmetries found in noise variances. Moreover, the marginal effects confirm the

major relationships discussed above. The largest effects are induced by surprises in

nonfarm payrolls where the marginal effects of unemployment rate surprises are ap-

proximately 80% lower. Furthermore, we also observe slight reversals for �2
a,t and �

2

b,t in

the minutes after the announcement. Moreover, the marginal effects clearly reflect the

nonlinear relationship between nonfarm payroll surprises and �2
a,t and �

2

b,t. For instance,

based on model (F), the increase in �2
a,t due to a large surprise in nonfarm payrolls is

0.335, while it is 1.356 if the surprise is small. This reflects the effect of a large surprise

which is interpreted as an indicator for unreliable news in the spirit of Hautsch, Hess,

and Müller (2008). Similar conclusions can be drawn for �2
mq,t. As shown above, �2

spr,t

is virtually unaffected by surprises in nonfarm payrolls and unemployment rates.

6 Conclusions

In this paper, we have proposed a structural model of return formation that allows us

to identify the underlying efficient return and market-side-specific noise components.

The latter induce deviations between the observed bid and ask log returns and the

common efficient return component and capture erratic and possibly liquidity-driven
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fluctuations of the best bid and ask quotes around the efficient price. The conditional

variance of the efficient return is interpreted as ”informational variance”, capturing

fluctuations in the efficient return around its conditional expectation. The latter is

economically associated with differences in market participants’ opinions regarding the

”true” efficient return. Accordingly, the conditional variances of the bid and ask noise

components reflect the extent to which the observable quote returns are liquidity-

driven quote revisions. Computing the ratio between the conditional noise variance

components and the resulting conditional return variance yields an easily interpretable

measure of the relative noise proportion.

We allow the latent return components to follow a VAR(1) structure with errors driven

by EGARCH models. Both the conditional mean and variance components are aug-

mented by regressors capturing the characteristics of arriving news. The model is ap-

plied to study the impact of monthly announcements of U.S. headline figures for non-

farm payrolls and unemployment rates on one-minute ask and bid quote returns in

the German Bund futures traded on Eurex. By focusing exclusively on announcement

days, we analyze the impact of surprises (computed as the difference between the an-

nounced figure and the corresponding publicly announced consensus analyst forecast)

in the individual figures on the conditional means of quote returns as well as on the

informational and noise volatility components. Confirming previous results, we find

that quotes adjust to their new levels very quickly, where the size of the price jump

significantly depends on the magnitude of the surprise component in announcements.

Moreover, we can summarize the following main findings: first, we observe a strong

and significant increase in both efficient and noise volatilities when new information

arrives in the market. Besides an (average) baseline volatility pattern revealing rela-

tively symmetric peaks around the announcements, large surprises – particularly those

in nonfarm payroll figures – induce severe jumps in all volatility components during the

minute after news arrival. This is followed by a gradual decline lasting approximately

30 minutes thereafter. Second, noise volatility reacts relatively more strongly to news

than does efficient volatility. The relative proportion of noise volatility in conditional

return variances is highest before and at the announcement. While the average noise ra-

tio prior to news arrivals is approximately 5%, this proportion peaks slightly before the

announcement, revealing evidence of an overshooting of noise-driven volatility, which

is re-balanced and reaches its minimum of approximately 1% half an hour later. This
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indicates that volatility patterns after news announcements are clearly dominated by

informational volatility, reflecting that traders tend to disagree about the ”true” reac-

tion of the efficient price. Third, we observe a concave (convex) relationship between

efficient (noise-driven) volatility and the magnitude of surprises indicating that large

surprises are interpreted to be ”too large to be reliable”. Fourth, net order flow has a

significantly positive impact on both efficient and noise-driven volatility and amplifies

news-driven effects. Fifth, we observe an ask volatility that is systematically higher

than the bid volatility. This is also reflected in the relative noise shares in the ask

volatility and spread volatility.

Overall, we find that the relative share of the noise variance is around 3%, which is

relatively low and indicates the high liquidity as well as the low degree of market friction

in BUND futures trading. Nevertheless, our model and analysis provide insights into the

impact of (non-anticipated) information on the noise component. The corresponding

changes of the relative noise proportion dependent on the timing of announcements and

the characteristics of news shed some light on the informational efficiency of the market,

how market participants interpret information and how this is translated into prices.

Applying the proposed framework to other announcements and markets represents a

clear agenda for future research.
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Appendix

Table 1: Variables and Notation

nf Nonfarm payroll surprise.
un Unemployment rate surprise.
nof Net order flow: absolute difference of buyer and

seller initiated trading volume during a given
1-min. interval, divided by the average
daily trading volume, in absolute value.

trdvol Trading volume over the 1-min. interval.
Dt∈(t1,t2] Dummy, equal to 1 if t ∈ (t1, t2].
Dlarge Dummy, equal to 1 if nf > than the 75% quantile.
�ℎ Dummy, equal to 1 if nf is of high precision.

nf0 = nf ×Dt∈(2:29,2:30]

nf1 = nf ×Dt∈(2:30,2:31]

nf1,P = nf ×Dt∈(2:30,2:31] × �ℎ

nf1,L = nf ×Dt∈(2:30,2:31] ×Dlarge

nf2 = nf ×Dt∈(2:31,2:32]

nf2,P = nf ×Dt∈(2:31,2:32] × �ℎ

nf2,L = nf ×Dt∈(2:31,2:32] ×Dlarge

un0 = un×Dt∈(2:29,2:30]

un1 = un×Dt∈(2:30,2:31]

un2 = un×Dt∈(2:31,2:32]

nof1 = noft ×Dt∈(2:30,2:31]

nof2−5 = noft ×Dt∈(2:32,2:35]

nof6−15 = noft ×Dt∈(2:35,2:45]
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Table 2: QML estimation results for model (1)-(3) with constant variances for different
model specifications of the conditional mean functions

(A) (B) (C) (D) (E) (F)

� c 0.0014 0.0014 0.0014 -0.0003 -0.0003 -0.0003
F �a -0.4648 *** -0.4647 *** -0.4645 *** -0.4649 *** -0.4643 *** -0.4644 ***

�b -0.4416 *** -0.4415 *** -0.4424 *** -0.4409 *** -0.4406 *** -0.4404 ***
�m -0.0155 -0.0161 -0.0166 -0.0451 * -0.0506 * -0.0512 **

�a nf0 -1.9536 *** -1.9521 *** -1.9624 *** -1.8969 ** -1.8999 ** -1.9031 **
nf1 -12.3680 *** -11.4530 *** -20.1909 *** -19.4572 *** -18.1894 *** -18.1877 ***
nf2 0.2992 0.2964 0.2949 0.1254 0.0602 0.0605
un0 -0.6261 ** -0.6260 ** -0.6251 ** -0.6105 ** -0.6121 ** -0.6132 **
un1 2.2288 *** 2.2468 *** 2.4683 *** 2.1355 *** 1.5364 ** 1.5364 **
un2 1.2455 *** 1.2462 *** 1.2442 *** 1.2066 1.1905 *** 1.1908 ***
nf1,P -1.3031 -1.0157 -0.4321 0.7235 0.7224
nf1,L 10.9683 *** 10.6594 *** 10.0890 *** 10.0883 ***

�a noft 0.0645 *** 0.0603 *** 0.0579 ***
nof1 0.1211 *** 0.1235 ***
nof2−5 0.0315 *** 0.0339 ***
nof6−15 0.0152 ***

�b nf0 -1.8786 *** -1.8770 *** -1.8873 *** -1.8208 *** -1.8242 *** -1.8274 ***
nf1 -12.2456 *** -11.4661 *** -20.0852 *** -19.3480 *** -18.0022 *** -18.0004 ***
nf2 0.3811 0.3784 0.3770 0.2064 0.1390 0.1392
un0 -0.3387 -0.3385 -0.3377 -0.3228 -0.3245 -0.3256
un1 2.1377 *** 2.1530 *** 2.3715 *** 2.0365 *** 1.3997 ** 1.3997 **
un2 1.0702 *** 1.0710 *** 1.0690 *** 1.0313 *** 1.0148 *** 1.0151 ***
nf1,P -1.1103 -0.8267 -0.2383 0.9912 0.9901
nf1,L 10.8192 *** 10.5090 *** 9.9037 *** 9.9030 ***

�b noft 0.0650 *** 0.0605 *** 0.0582 ***
nof1 0.1287 *** 0.1310 ***
nof2−5 0.0325 *** 0.0348 ***
nof6−15 0.0151 ***

Σ exp(!m) -3.1356 *** -3.1359 *** -3.1561 *** -3.3491 *** -3.3665 *** -3.3679 ***
exp(!a) -6.1825 *** -6.1841 *** -6.1973 *** -6.1758 *** -6.1584 *** -6.1583 ***
exp(!b) -6.6980 *** -6.6957 *** -6.6741 *** -6.7101 *** -6.7425 *** -6.7427 ***

(A): No inclusion of precision asymmetries; (B) to (C): inclusion of precision effects; (D)
and (F): inclusion of precision and liquidity effects. Sample: 1/1993-12/2005, resulting in
159 (non-overlapping) employment observations. 160-min. windows around announcements
(-80 min. to +80 min.). Standard errors are computed based on QML estimates. ***, **
and * indicates significance at the 1%, 5%, and 10% level, respectively.
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Table 3: Likelihood ratio tests of the individual specifications
against each other

Panel I

(B) (C) (D) (E) (F)
(A) 10.4 *** 511 *** 5342 *** 5805 *** 5841 ***
(B) 501 *** 5332 *** 5795 *** 5831 ***
(C) 4831 *** 5294 *** 5330 ***
(D) 463 *** 499 ***
(E) 35.8 ***

Panel II

(B.ask) (C.ask) (D.ask) (E.ask) (F.ask)
(A.ask) 158 *** 80 *** 210 *** 312 *** 490 ***
(B.ask) - 52 *** - 332 ***
(C.ask) 290 *** 392 *** 570 ***
(D.ask) - 280 ***
(E.ask) 178 ***

(B.bid) (C.bid) (D.bid) (E.bid) (F.bid)
(A.bid) 198 *** 0 268 *** 12 ** 666 ***
(B.bid) - 70 *** - 468 ***
(C.bid) 268 *** 12 *** 666 ***
(D.bid) - 398 ***
(E.bid) 654 ***

(B.eff) (C.eff) (D.eff) (E.eff) (F.eff)
(A.eff) 18 *** 118 *** 144 *** 2306 *** 2350 ***
(B.eff) - 126 *** - 2332 ***
(C.eff) 26 *** 2188 *** 2232 ***
(D.eff) - 2206 ***
(E.eff) 44 ***

Panel I: Test of models (A) through (F) given in Table 2.
Panel II: Test of models (A) through (F) given in Table 4.
***, ** and * indicates significance at the 1%, 5%, and 10% level,
respectively.
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Table 4: Estimation results for EGARCH models for (4) based on updated Kalman filter
residuals stemming from the estimates in Table 2

(A) (B) (C)
(A.ask) (A.bid) (A.eff) (B.ask) (B.bid) (B.eff) (C.ask) (C.bid) (C.eff)

dyni,t ! -0.057*** -0.332*** -0.524*** -0.384** -0.363*** -0.503*** -0.331** -0.332*** -0.519***
� 0.995*** 0.9552*** 0.873*** 0.939*** 0.951*** 0.868*** 0.947*** 0.955*** 0.872***
� 0.060*** 0.2085*** 0.321*** 0.248*** 0.230*** 0.335*** 0.214*** 0.208*** 0.325*

newsi,t∣nf1∣ 16.370*** 17.885*** 38.107*** 16.355** 17.283** 37.743*** -9.084 12.448 58.098***
∣nf2∣ -3.724* -1.212 -2.396
∣un1∣ -0.136 -2.336 10.217*** -2.020 -2.501 9.961*** 2.238 -1.610 9.032***
∣un2∣ -6.093*** -6.217*** -0.652
∣nf1,P ∣ 5.743 2.505 1.528
∣nf2,P ∣
∣nf1,L∣ 21.948*** 3.616 -43.082**
∣nf2,L∣

liqi,t trdvol

nof

(D) (E) (F)
(D.ask) (D.bid) (D.eff) (E.ask) (E.bid) (E.eff) (F.ask) (F.bid) (F.eff)

dyni,t ! -0.386** -0.375*** -0.550*** -0.062* -0.075*** -0.512*** -0.428** -0.421*** -0.568***
� 0.938*** 0.949*** 0.866*** 0.997*** 0.990*** 0.890*** 0.935*** 0.946*** 0.878***
� 0.250*** 0.237*** 0.341*** 0.057*** 0.065*** 0.228*** 0.245*** 0.230*** 0.253***

newsi,t∣nf1∣ -9.246 11.970 57.568*** -5.630 -11.370* 54.716*** -8.500 13.738 54.031***
∣nf2∣ -8.816 -10.272 -7.759 -10.050 -11.360 -8.212*
∣un1∣ 2.014 -1.814 8.716*** 1.692 -0.123 8.644*** 1.460 -2.620 8.004***
∣un2∣ -5.577*** -5.115*** 0.243 -5.542*** -5.045*** -0.366
∣nf1,P ∣ 4.158 1.675 1.502 8.317 17.262*** 9.811 3.054 0.144 9.877
∣nf2,P ∣ -3.313 -4.998* -0.182 -3.663 -6.112 -1.152
∣nf1,L∣ 22.853*** 4.132 -42.715*** 14.087** 0.583 -41.26*** 20.915** 1.104 -40.671***
∣nf2,L∣ 8.260 13.249** 5.707 9.505 14.970** 6.334

liqi,t trdvol -60.866 -128.11** 261.59***-83.180 -86.447 264.52***
nof 0.176** 0.247*** 0.198*** 0.166** 0.194** 0.197***

Columns (X.ask), (X.bid) and (X.eff) refer to the volatility equations for ℎa,t, ℎb,t, and ℎm,t, respectively.

(A) and (B): inclusion of news 1 min. and 2-5 min. after the announcements; (C) and (D): inclusion of

news and precision effects 1 min. and 2-5 min. after the announcements; (E) and (F): inclusion of news,

precision effects and market variables (trading volume and net order flow) 1 min. and 2-5 min. after the

announcements. Sample: 1/1993-12/2005, resulting in 159 (non-overlapping) employment observations.

160-min. windows around announcements (-80 min. to +80 min.) resulting in 25.440 one-minute return

observations. Standard errors are computed based on QML estimates. ***, ** and * indicates significance

at the 1%, 5%, and 10% level, respectively.
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Table 5: Median marginal effects of news announcements on the conditional variances of
quotes, midquotes and spreads for the different model specifications (A to F)

(A.ask) (A.bid) (B.ask) (B.bid) (C.ask) (C.bid) (D.ask) (D.bid) (E.ask) (E.bid) (F.ask) (F.bid)
nf∗

1 1.132 1.132 1.122 1.122 1.720 1.720 1.705 1.705 1.364 1.364 1.356 1.356
nf∗

2 -0.071 -0.071 -0.230 -0.229 -0.206 -0.206
un∗

1 0.303 0.303 0.296 0.296 0.267 0.267 0.258 0.258 0.215 0.215 0.201 0.201
un∗

2 -0.019 -0.019 0.007 0.007 -0.009 -0.009
nf∗

1,P 0.045 0.045 0.044 0.044 0.244 0.244 0.248 0.248

nf∗
2,P -0.005 -0.005 -0.028 -0.028

nf∗
1,L -1.275 -1.275 -1.265 -1.265 -1.029 -1.029 -1.021 -1.021

nf∗
2,L 0.169 0.169 0.159 0.159

(A.mq) (A.spr) (B.md) (B.spr) (C.mq) (C.spr) (D.mq) (D.spr) (E.mq) (E.spr) (F.mq) (F.spr)
nf∗

1 1.132 0.000 1.122 0.000 1.720 0.000 1.705 0.000 1.364 0.000 1.356 0.000
nf∗

2 -0.071 0.000 -0.229 0.000 -0.206 0.000
un∗

1 0.303 0.000 0.296 0.000 0.267 0.000 0.258 0.000 0.215 0.000 0.201 0.000
un∗

2 -0.019 0.000 0.007 0.000 -0.009 0.000
nf∗

1,P 0.045 0.000 0.044 0.000 0.244 0.000 0.248 0.000

nf∗
2,P -0.005 0.000 -0.028 0.000

nf∗
1,L -1.275 0.000 -1.265 0.000 -1.029 0.000 -1.021 0.000

nf∗
2,L 0.169 0.000 0.159 0.000

The top panel shows the median marginal effects of the news variables in x
v
t on the conditional variances of

the observed quotes, �2
a,t and �2

b,t based on specifications A to F (see legend of Table 4). The bottom panel

shows the median marginal effects of the news variables in x
v
t on the conditional variances of the observed

midquote and spread, �2
mq,t and �2

spr,t based on model specifications A to F.
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Figure 1: Estimated median patterns of volatility components around the announce-
ments
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Note: For ℎi,t, dyni,t and newsi,t the left axes gives the scale of ask and bid noise components whereas
the right axes gives the scale of the efficient volatility. All plots are based on model (D) in Table 4.
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Figure 2: Estimated median patterns of volatility components around the announce-
ments
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Note: For ℎi,t, dyni,t and newsi,t the left axes gives the scale of ask and bid noise components whereas
the right axes gives the scale of the efficient volatility. All plots are based on model (F) in Table 4.30



Figure 3: Estimated median patterns of information variance ratios around announce-
ments based on specification (D)
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Figure 4: Estimated median patterns of information variance ratios around announce-
ments based on specification (F)
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