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Abstract

Purpose Medical additive manufacturing requires stan-

dard tessellation language (STL) models. Such models are

commonly derived from computed tomography (CT) images

using thresholding. Threshold selection can be performed

manually or automatically. The aim of this study was to assess

the impact of manual and default threshold selection on the

reliability and accuracy of skull STL models using different

CT technologies.

Method One female and one male human cadaver head

were imaged using multi-detector row CT, dual-energy CT,

and two cone-beam CT scanners. Four medical engineers

manually thresholded the bony structures on all CT images.

The lowest and highest selected mean threshold values and

the default threshold value were used to generate skull STL

models. Geometric variations between all manually thresh-

olded STL models were calculated. Furthermore, in order to

calculate the accuracy of the manually and default thresh-

olded STL models, all STL models were superimposed on

an optical scan of the dry female and male skulls (“gold stan-

dard”).

Results The intra- and inter-observer variability of the

manual threshold selection was good (intra-class correla-

tion coefficients >0.9). All engineers selected grey values

closer to soft tissue to compensate for bone voids. Geomet-

ric variations between the manually thresholded STL models

were 0.13 mm (multi-detector row CT), 0.59 mm (dual-
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energy CT), and 0.55 mm (cone-beam CT). All STL models

demonstrated inaccuracies ranging from −0.8 to +1.1 mm

(multi-detector row CT), −0.7 to +2.0 mm (dual-energy CT),

and −2.3 to +4.8 mm (cone-beam CT).

Conclusions This study demonstrates that manual thresh-

old selection results in better STL models than default

thresholding. The use of dual-energy CT and cone-beam CT

technology in its present form does not deliver reliable or

accurate STL models for medical additive manufacturing.

New approaches are required that are based on pattern recog-

nition and machine learning algorithms.

Keywords Additive manufacturing · Three-dimensional

(3D)printing · Computed tomography (CT) · Medical

imaging · Segmentation · Thresholding

Introduction

Additive manufacturing (AM), also known as

three-dimensional (3D) printing, refers to a process where

a series of successive layers are laid down to create a 3D

construct. AM combined with advanced medical imaging

technologies such as computed tomography (CT) and mag-

netic resonance imaging (MRI) has resulted in a paradigm

shift in medicine from traditional serial production to patient-

specific constructs. This combination of technologies offers

new possibilities for the fabrication of implants, saw guides

and drill guides that are designed to meet the specific anatom-

ical needs of patients [1].

The three-step medical AM process begins with image

acquisition (Fig. 1, Step 1), which is commonly per-

formed using a multi-detector row computed tomography

(MDCT) scanner. However, dual-energy computed tomog-

raphy (DECT), which offers the possibility of acquiring CT
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Fig. 1 A schematic diagram of the three steps required to fabricate an AM medical construct

images using two different X-ray spectra, is becoming more

common in hospital environments [2]. Furthermore, cone-

beam computed tomography (CBCT) is being increasingly

used in dentistry and maxillofacial surgery due to its low

costs and reduced radiation dose when compared with MDCT

scanners [3].

Images acquired using CT technologies are commonly

saved as Digital Imaging and Communications in Medicine

(DICOM) files. These files contain voxels with grey val-

ues that are proportional to the attenuation coefficient in

the corresponding volume of the patient. In MDCT, these

grey values are scaled according to Hounsfield units (HU):

air (−1000 HU), water (0 HU), and compact bone (+1000

HU). In CBCT technology, the degree of X-ray attenuation is

scaled using grey values, hence voxel values [4]. CBCT grey

values are often arbitrary and do not correspond to MDCT

HU values [3,5,6]. Furthermore, a large variability in the grey

values has been reported between different CBCT scanners

[7,8].

At present, medical AM requires the conversion of

DICOM images into virtual 3D surface models that are com-

monly saved as standard tessellation language (STL) files

(Fig. 1, Step 2). STL models are commonly used to design

medical constructs using computer-aided design (CAD) soft-

ware. The DICOM-to-STL conversion process requires the

partitioning and hence the segmentation of voxels into dif-

ferent tissue types. The most common segmentation method

used to date is thresholding. During the thresholding process,

all voxels with a grey value that is equal or greater than a

selected threshold value t are included in a segmented vol-

ume [9] using a binary mask Mx,y (Eq. 1):

Mx,y =

{

0 Ix,y < t

1 Ix,y ≥ t
, (1)

where Ix,y denotes the grey value at coordinates x and y.

The medical image segmentation software packages avail-

able offer only a single, default threshold value for compact

bone, soft tissue, and cartilage. However, these default values

are often not optimized for all types of MDCT, DECT, and

CBCT images and do not take into account the variations

in grey values between different scanners [10]. Therefore,

in most cases, manual threshold selection is necessary to

acquire an optimal STL model. Threshold selection, how-

ever, still remains a subjective task [11], especially in the

head area due to the plethora of complex bony geometries

(Fig. 2). Furthermore, minor dislocations in the facial area

can have an impact on patient function and aesthetic appear-

ance.

At present, there is a paucity of the literature on threshold

selection in the head area for medical purposes. Therefore,

the aim of this study was to assess the impact of manual and

default threshold selection on the reliability and accuracy of

skull STL models acquired using different MDCT and CBCT

technologies.

Materials and methods

One female and one male human cadaver head were anony-

mously provided by the Department of Anatomy, VU Uni-

versity Medical Center Amsterdam, The Netherlands. The

two heads were embedded in a novel embalming liquid “Fix

for Life” [12] that produces near life-like cadavers. Ethical

approval for this study was provided by the Medical Ethi-

cal Committee of the VU University Medical Center (Ref.

2016.401).

The two “Fix for Life” cadaver heads were imaged using

the following CT technologies: GE Discovery CT750 HD

64-slice MDCT (GE Healthcare, Little Chalfont, Bucking-

hamshire, UK), NewTom 5G CBCT (NewTom, Verona,

Italy), and Vatech PaX Zenith 3D CBCT (Vatech, Fort Lee,
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Fig. 2 The effect of threshold selection on skull STL models

Fig. 3 Outline of the study

USA) (Fig. 3, Step 1). The GE Discovery CT750 MDCT

scanner was also operated using a dual-energy imaging mode

(DECT). All scanners and image acquisition parameters are

summarized in Table 1.

After CT image acquisition, all DICOM files were

imported into Osirix� MD software (Osirix Foundation,

Geneva, Switzerland). This software is FDA-cleared, CE-

labelled for primary diagnostics, and is commonly used in

medical AM. Osirix� MD software provides options for both

manual and default threshold selection.

Four medical engineers were subsequently requested to

manually select the optimal threshold value for bone in

order to create an accurate STL model of the female and

male skull, hence facial bony structures (Fig. 3, Step 2).

All four engineers were blinded for their own results and

those of others. The manual threshold selection procedure

was repeated after a six-week interval in order to deter-

mine the intra-observer variability and to calculate the mean

threshold value. In addition, the inter-observer variability

and intra-class correlation coefficients (ICC) were calculated

using SPSS� software (SPSS� version 22, Chicago, IL,

USA). ICC ranges between 0 and 1, with 0 corresponding

to no agreement and 1 corresponding to complete agreement

[13].
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In order to graphically represent the distribution of grey

values in the manually selected and default threshold values,

histograms were plotted for each of the four CT scanners

using MatLab� software (MatLab v.2012, MathWorks, Nat-

ick, Massachusetts, USA) (Fig. 4). Only the highest and

lowest mean selected threshold values presented on the eight

histograms were used to generate STL models (Fig. 3, Step

3). The generated STL models were subsequently geometri-

cally compared to each other using GOM Inspect� software

(GOM Inspect v8, GOM mbH, Braunschweig, Germany) in

order to calculate the variations between the highest and low-

est threshold STL models (Fig. 3, Step 4).

In a final step, all soft tissues were manually removed from

the cadaver heads using standard dissection equipment (i.e.,

scrapers and scalpels) by a highly experienced technician at

the Department of Anatomy. Manual removal was opted for

since this procedure ensured minimal dimensional changes

in the bony structures of the cadaver skulls [14]. The result-

ing dry female and male skulls were subsequently scanned

using a GOM ATOSTM III optical 3D scanner (GOM GmbH,

Braunschweig, Germany) with an accuracy of <0.05 mm to

acquire a “gold standard” STL model of the skulls (Fig. 3).

These “gold standard” STL models were subsequently super-

imposed on the STL models generated using the highest

and lowest manually selected and default threshold values

in order to calculate the accuracy of each thresholded STL

model (Fig. 3, Step 5).

Results

The intra- and inter-observer reliability results of all manu-

ally selected threshold values are presented in Table 2. All

selected threshold values ranged from 113 to 303 HU for the

MDCT and DECT technologies and from 537 to 1281 gv

for the CBCT technologies (Fig. 4a–h). As shown in the his-

tograms, all the selected threshold values differed from the

default threshold value provided by Osirix MD� software

(500 HU). Furthermore, the geometric variations between

the highest and lowest thresholded STL models were larger

in the STL models derived from DECT and CBCT when

compared with the MDCT-derived STL models (Fig. 5).

When compared to the “gold standard”, all manually and

automatically thresholded STL models demonstrated inaccu-

racies ranging from −0.8 to +1.1 mm, −0.7 to +2.0 mm, and

−2.3 to +4.8 mm for all STL models derived from MDCT,

DECT, and CBCT, respectively (Fig. 6a–k). The male skull

presented comparable accuracies to those observed on the

female skull. The MDCT- and DECT-derived STL mod-

els acquired using the default threshold value demonstrated

the highest loss of bone HU values (Fig. 6c, f). The New-

Tom CBCT-derived STL model acquired using the default

threshold value (500 HU) provided by Osirix MD soft-
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Fig. 4 a–h The mean threshold values (HU) selected by four medical engineers and the pre-defined default threshold value (500 HU) are presented

in histograms a–h. The y-axis of the histograms (frequencies) is set to a logarithmic scale

Fig. 5 Geometric variations in

mm between the highest and

lowest thresholded STL models

acquired using four different CT

scanners (see also Fig. 4).
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Fig. 6 (a–k) Accuracy of all STL models of the female skull acquired

using the lowest (left) and highest (middle) mean threshold value

selected by the four engineers and the default threshold value of 500

HU (right). The arrows indicate missing data (c, f) or excessive noise

(i) in the default threshold STL models

ware resulted in an increase in artefacts and noise (Fig. 6i).

The Vatech CBCT DICOM images did not allow the cre-

ation of an STL model using the 500-HU default threshold

value since the grey values were not scaled to HU values

(Fig. 4d, h).

Discussion

To date, thresholding is the most commonly used segmen-

tation method in medical AM. However, accurate bone

segmentation often requires manual threshold selection,
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Table 2 Intra- and inter-observer variability of manual threshold selection by four medical engineers on CT images of a female and a male cadaver

head

Intra-observer variability Inter-observer variability between the engineers

Intra-class correlation coefficient (ICC) ICC ICC ICC

Engineer 2 Engineer 3 Engineer 4

Cadaver head Female/male Female/male Female/male Female/male

Engineer 1 0.999/0.997 Engineer 1 0.994/0.988 0.980/0.987 0.970/0.954

Engineer 2 0.995/0.995 Engineer 2 0.978/0.998 0.961/0.931

Engineer 3 0.992/0.999 Engineer 3 0.914/0.917

Engineer 4 0.969/0.989 Engineer 4

Fig. 7 MDCT-derived low-threshold STL model of the female cadaver

skull (grey) with disjointed “soft-tissue” structures (red)

which still remains a subjective task. Moreover, recent studies

suggest that the majority of inaccuracies that occur during the

medical AM process are introduced during the image acqui-

sition and image processing phases, rather than during the

manufacturing, i.e., the 3D printing process itself [15–17].

Such inaccuracies can markedly influence the resulting STL

model (see Fig. 6) and subsequently lead to ill-fitting AM

implants [18]. Therefore, the aim of the present study was to

assess the impact of manual and automatic default threshold

selection on the reliability and accuracy of skull STL models.

In the present study, all threshold values selected by the

four engineers demonstrated a good intra-observer reliability

(ICC > 0.9). Furthermore, the inter-observer reliability was

also good (ICC > 0.9), as shown in Table 2. Interestingly, all

engineers that were blinded during the experiment selected

threshold values for bone that were very close to the grey val-

ues of soft tissues (Fig. 4). This resulted in small disjointed

structures in the STL model (marked red in Fig. 7) that repre-

sent the transition from bone into soft tissue grey values. Such

disjointed “soft-tissue” structures can be manually removed

during STL post-processing [19]. All engineers purposely

selected the “soft tissue” threshold values during bone seg-

mentation in order to incorporate the maximum number of

bone-specific grey values. These grey values are allocated to

voxels that represent different tissues during the CT image

reconstruction process. However, during this process, voxels

on the bone-to-soft tissue boundaries that are partially filled

with soft tissue are commonly assigned a lower grey value

than bone. This phenomenon is coined the partial volume

effect (PVE) [20]. As a consequence of the PVE, voxels may

be erroneously allocated to “soft tissue” instead of “bone”,

resulting in data loss and hence bone voids in the STL model

(Fig. 6). Therefore, engineers should be aware of this phe-

nomenon since data loss can lead to large inaccuracies in

individualized printed medical constructs [18,20].

Another major finding in this study was the difference

between the MDCT and CBCT DICOM files that were

used to construct STL models (Fig. 4). One explanation for

this phenomenon is the inherent difference between these

technologies. CBCT technology is typically more heavily

affected by image noise and distortions due to the “cone-

beam” geometry of the X-ray beam [21,22]. In CBCT,

the simultaneously irradiated area is typically larger than

in MDCT technology. This causes increased scatter levels

and results in cupping, reduced contrast, and other scatter-

induced artefacts in the reconstructed image. In addition,

CBCT images are more subject to cone-beam artefacts due

to the large cone-beam angle and the imaging geometry com-

prising a single focal plane. The cone-beam artefacts result

from violating Tuy’s sufficiency condition [23] that requires

that each plane intersecting a region of interest must intersect

the focal trajectory, i.e., the path defining the radiation source

position during the imaging. The embodiments of cone-beam

artefacts are dependent on the reconstruction algorithm and
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the imaging geometry. Typical cone-beam artefacts include

the elongation of structures in the axial direction and negative

undershoots at sharp edges in the transaxial planes [24]. In

CBCT, the focal trajectory consists of a single planar circle or

arc that results in a violation of Tuy’s sufficiency condition in

all regions outside the focal plane. The resulting cone-beam

artefacts are more pronounced the further away the region of

interest is from the focal plane. In MDCT, the volume that

satisfies Tuy’s sufficiency condition is notably larger due to

the helical nature of the focal trajectory.

The presence of artefacts makes the segmentation and

hence the thresholding of bone-specific grey values in CBCT

images more cumbersome [25]. This subsequently leads to

a larger variation in manually selected threshold values for

CBCT images (Fig. 4) and to the larger geometric variations

of up to 0.55 mm in CBCT-derived STL models observed

in this study (Fig. 5). DECT-derived STL models demon-

strated geometric variations of up to 0.59 mm (Fig. 5). As a

consequence of these geometric variations in STL models,

the use of DECT and CBCT technology in its present form

does not deliver reproducible STL models for medical AM.

Therefore, the authors of this study suggest that only MDCT

technology should be used for AM applications because of

the lower variability (0.13 mm, see Fig. 5) and higher accu-

racy (Fig. 6) of the technology.

The present study demonstrates that the “human factor”,

i.e., the medical engineer, influences the outcome of the seg-

mentation process. Moreover, no single bone threshold value

is applicable for all facial bones. The authors of this study

therefore recommend the use of individual threshold val-

ues for each anatomical buttress. Recently, attempts have

been made to develop novel segmentation algorithms using

multi-thresholding [26], adaptive thresholding [11], and

semi-automatic region growing [27]. However, these algo-

rithms are still in an early stage of development [28] and do

not take the inherent differences between MDCT and CBCT

technologies into account. Future research should therefore

focus on developing novel medical image segmentation soft-

ware that is suitable for different CT imaging modalities.

Furthermore, new approaches should be developed using pat-

tern recognition and machine learning algorithms.

Conclusion

This study shows that manual threshold selection results in

better skull STL models than default thresholding since all

the medical engineers in our study selected grey values closer

to soft tissue to compensate for bone voids. Our study also

showed that MDCT-derived STL models offer the lowest

variability and highest accuracy, whilst the use of DECT and

CBCT technology in its present form does not deliver reli-

able STL models for medical AM. New approaches based

on pattern recognition and machine learning algorithms are

required.
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