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Abstract Effects of a spectrum of mesoscale gravity waves on homogeneous aerosol freezing in
midlatitude cirrus are studied by means of parcel model simulations that are driven by random vertical
wind speeds constrained by balloon measurements. Stochastic wave forcing with mean updraft speeds of
5-20 cm/s leads to substantial nucleated ice crystal number concentrations (ICNC) of 0.1-1 cm =3 in
situations with slow large-scale cooling, which by itself would generate fewer ice crystals. The stochastic
nature of wave-driven air parcel temperatures enhances ICNC even further, but the times required to reach
freezing conditions unsupported by large-scale cooling may vary widely. In the presence of wave forcing,
ice crystals with low ICNC (<1-10 L7!) are also generated by homogeneous freezing, albeit only rarely.
Comparisons with aircraft measurements suggest significant influences of heterogeneous ice-nucleating
particles and ice crystal sedimentation on ICNC, but quantifying their individual contributions remains
elusive.

Plain Language Summary Spontaneous freezing of airborne, water-containing particles below
—38 °C is a fundamental pathway to form ice crystals in high-altitude cirrus clouds. This ice formation
process has been well researched and was the first represented in weather forecast and climate models to
advance cirrus predictions. One key characteristic is its strong dependence of the number of ice crystals
formed on the cooling rate of air. Recent observations show that rapid cooling rates are generated by ubiq-
uitous gravity waves. Here, we explore the rich suite of phenomena taking place during cirrus formation
caused by a spectrum of gravity waves. We find that wave effects should be considered in future model sim-
ulations, when comparing model results with observations, and in parameterizations of cloud ice crystal
formation.

1. Introduction

Mesoscale air motion variability is crucial for the nucleation of ice crystals in cirrus (see Kércher, 2017a,
and references therein). We refer to cirrus as upper tropospheric ice clouds that form in situ, for exam-
ple, in frontal systems. Superpressure balloon (SPB) measurements at altitudes of 18-21 km directly link
mesoscale vertical wind speed and the associated temperature variability to gravity waves and quantified
spectral properties (Podglajen et al., 2016; Schoeberl et al., 2017). Since these airborne measurement plat-
forms are advected by the wind field, properties of fluctuations derived from them are highly useful for
Lagrangian cloud studies. Dinh et al. (2016) and Jensen et al. (2016) used SPB temperature time series to
drive detailed ice nucleation simulations, focussing on the tropical tropopause layer. Kienast-Sjogren et al.
(2015)—using a Lagrangian microphysical aerosol-cloud model—investigated cirrus over a midlatitude site
combining small-scale vertical wind speeds and temperature fluctuations inferred from radiosonde sound-
ings and a high-resolution weather prediction model. Haag and Kédrcher (2004) used results from a global
weather prediction model with superimposed fluctuations to study hemispheric properties of midlatitude
cirrus.

Mesoscale gravity waves are ubiquitous in the upper troposphere and lower stratosphere. SPB measure-
ments show that power spectra of their properties versus intrinsic wave frequency are typically broad and
continuous, consistent with a superposition of many waves. A spectrum of mesoscale gravity waves gener-
ates broad frequency distributions of ice crystal number concentrations (ICNC) via homogeneous freezing
of supercooled aqueous solution particles (Hoyle et al., 2005; Jensen & Pfister, 2004; Kércher & Strom, 2003).
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The random nature of wave perturbations motivates the use of probabilistic methods to describe them. Pro-
cess models have studied aspects of homogeneous freezing using randomized small-scale dynamical forcing
(Dinh et al., 2016; Hoyle et al., 2005; Murphy, 2014; Shi & Liu, 2016).

Faithful applications of cirrus parameterizations in cloud schemes of large-scale models require sound rep-
resentations of unresolved cooling rates (Lohmann & Kércher, 2002). While the attribution of ice nucleation
mechanisms in cirrus clouds in global climate models is challenging (Dietlicher et al., 2018; Gasparini et al.,
2018) and such models have already begun to parameterize the impact of unresolved gravity waves on cirrus
formation (Penner et al., 2018), it is important to explore this issue systematically on the process level as a
prerequisite to improving ice nucleation parameterizations (Barahona & Nenes, 2008; Kidrcher & Lohmann,
2002).

Before enhancing complexity by considering effects of heterogeneous ice-nucleating particles (INPs), which
are poorly constrained by field observations at cirrus temperatures (<230-235K; Hoose & Mdhler, 2012;
Jensen et al., 2018), we focus on the more basic and much better understood homogeneous freezing process.
Field measurements leave little doubt that homogeneous freezing of supercooled aerosol particles is active
in cirrus and responsible for at least the generation of the rightmost tail (>0.5 cm~3) of probability distribu-
tions of ICNC. The main factor limiting INP effects is their low upper tropospheric number concentration
(<0.1 cm~3; DeMott et al., 2010), which makes them inefficient in suppressing homogeneous freezing in
the presence of sufficiently large vertical wind speeds (DeMott et al., 1997). Nonetheless, potent INPs are
capable of modulating or, if sufficiently abundant, dominating cirrus properties according to global model
simulations (Gettelman et al., 2012; Kuebbeler et al., 2014; Penner et al., 2018; Shi & Liu, 2016; Zhou &
Penner, 2014).

We explore systematically the homogeneous freezing process in midlatitude cirrus clouds due to gravity
wave-driven fluctuations of vertical wind speed consistent with Lagrangian SPB measurements. The pre-
scribed wave perturbations represent conditions away from strong local wave sources such as elevated
mountain ridges or deep convective clouds. We evaluate statistically microphysical parcel model simula-
tions forced with a large number of different random realizations of fluctuation time series. We compare our
results with data taken during an extensive airborne field campaign, allowing us to extend previous findings
on factors controlling midlatitude cirrus cloud formation (Jensen et al., 2013). We describe the stochastic
ice nucleation simulations in section 2, analyze the results of tens of thousands of them and compare them
to aircraft observations in section 3, and conclude our work in section 4.

2. Stochastic Simulations

The spectral parcel model primeICE solves a large set of equations governing the temporal evolution of heat,
water vapor, and supercooled/frozen water during ice nucleation and aqueous aerosol particle and ice crystal
growth due to uptake of water vapor (Kércher, 2017b). We consider ambient conditions above ice but below
water saturation, where ice crystals can form homogeneously by freezing of liquid solution droplets.

Air parcel temperature, T, is adiabatically perturbed by random vertical wind speed fluctuations, w'. These
fluctuations are superimposed onto a constant updraft speed, w, > 0, driving ice microphysics in the
absence of wave-driven variability. Its prescribed value may be thought of as representative for synoptic
conditions (w, < 10cm/s), orographic forcing (10-100 cm/s and sometimes exceeding 1 m/s), or pertur-
bations induced by convection (>1m/s). Values of w,, greater than 1-10m/s are found in the detrainment
zones of deep convective clouds, where homogeneous ice formation involves aerosol particles that have
been activated into cloud droplets prior to or along with freezing at temperatures 233-238 K. Presumably,
at these conditions, vertical wind speed fluctuations have different statistical properties (e.g., mean values,
variances, and power spectral densities) than those caused by gravity waves, so the findings reported here
are not directly applicable to such cases. Background wind speeds of (fractions of) millimeters per second
are found in the tropical tropopause layer, where T is lower (<200 K) than in midlatitudes studied here.

A decomposition of updraft speeds has also been employed by Spichtinger and Krédmer (2013), represent-
ing fluctuations by a monochromatic sinusodial wave. Investigating the impact of wave phase at which ice
nucleation sets in, Jensen et al. (2010) showed that a spectrum of waves with random phases leads to broad
ICNC distributions. Since the constant updraft w, introduced here refers to the large-scale vertical wind
speeds resolved in global models, only the range w, < 1-10c/s is relevant. For higher w,, values, the separa-
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tion between constant updraft and wave-driven vertical wind speed fluctuations, w, is somewhat artificial.
Outside of convection, waves are the only source of updraft speeds in excess of ~#10 cm/s and even smaller
values associated with synoptic and planetary waves.

The wave forcing employed here accounts for the observed, double exponential (Laplacian) shape of the
vertical wind speed statistic, Lw') = exp(—|w'|/u,,)/(2u,,). This distribution has zero mean, and y,, is
the mean value taken over the one-sided (updraft) statistic, relating to the standard deviation, o, via
Hy =2 f0°° wLw)dw' = o,/ \/5 The Laplacian approximately fits Lagrangian measurements (Podglajen
et al., 2016) and is used to generate fluctuation time series, w (), one for each nucleation simulation. The
vertical wind speed fluctuations are autocorrelated over a time {, = 2.8 min. Therefore, they are defined
only at discrete times (multiples of ¢,) and were approximated by stair steps for numerical integration. The
power spectrum of w' is flat (Figure 1 in Podglajen et al., 2016), meaning that all wave frequencies up to
the Brunt-Viisdld frequency—an upper limit constraining gravity wave propagation—are included in the
forcing with equal weight.

The temperature fluctuations, T', that result from the wind forcing are obtained by advancing the stochastic
differential equation DT /Dt = —I'w', where D/Dt denotes the Lagrangian (material) time derivative and
I' ~ 0.01K/m is the dry adiabatic lapse rate. Individual w' values are sampled randomly from a Laplacian
with prescribed standard deviation o, or, in terms of adiabatic cooling rates (), o, = I'c,,. This approach
replicates the first-order autoregressive model to represent T (f) as proposed by Podglajen et al. (2016) based
on the underlying w' measurements. In primeICE, DT /Dt is added to adiabatic and diabatic temperature
tendencies, related to w, and latent heat exchange, respectively. Based on previous observational evidence,
we choose a cooling rate standard deviation o, = 5K/hr as a baseline value at cirrus levels. Cooling rate
fluctuations do not vary significantly with altitude within few kilometers around the tropopause (Podglajen
et al., 2016).

Figure 1 shows results from parcel model simulations, each initialized at T, = 221K (air pressure 300 hPa)
and ice saturation ratio S, = 1.3. These values are slightly above (~3 K for T;)) and below (~0.2 for S;) the
values at freezing and were chosen such that mesoscale temperature variations are capable of triggering
homogeneous freezing and within reasonable time scales (few hours). The initial total number density, mean
dry radius, and geometric standard deviation of lognormally distributed aerosol particles were 500 cm=3,
20nm, and 1.5, respectively. We do not vary aerosol parameters, because the dependence of n on them is
much weaker than on w (Kércher & Lohmann, 2002; Kay & Wood, 2008; Liu & Shi, 2018). Time steps used in
the simulations are variable, 6¢[s] = 1/(w, + [w']) [cm /s], resolving individual freezing events. In addition,

we imposed ¢, as an upper limit time step to capture each vertical wind speed fluctuation.

With n indicating the number concentration of nucleated ice crystals, the circles in Figure 1 represent all
{n,w,} data points resulting from an ensemble of 10, 000 simulations. Each simulation was started with a
random choice for w, and a different w'(t)-realization (given 6, = 5K/hr or g, ~ 10cm/s) and terminated
once the nucleated ice crystal number mixing ratio assumed a constant value after the first freezing event.
The quenching of supersaturation right after freezing makes subsequent nucleation events unlikely, except
in cases with very low n; therefore, the restriction of our analysis to first nucleation events is not problematic.
Statistics of first freezing times are presented in the supporting information.

The simulations capture the dependence of nucleated ICNC on the homogeneous freezing temperature, T,
which is, however, very weak. We note that across all the cases discussed here, T. ~ 218 K with very little
scatter (+0.25 K), corresponding to a narrow range of ice saturation ratios, S, ~ 1.5 + 0.02, characteristic for
homogeneous freezing events (Kédrcher & Jensen, 2017). Examining the full upper tropospheric temperature
range would reveal significant variations of T, and nucleated ICNC.

The data points in Figure 1 exhibit considerable scatter for w, < 10-20cm/s, about 15% lie below n =
1073 cm~3. These nonpersistent cooling events have been termed temperature limited by Dinh et al. (2016).
Most of these low-n events are generated when w' changes its sign before the freezing event is completed.
They happen to occur since the wave-driven vertical wind speed fluctuations contain high-frequency con-
tributions associated with time scales of 5-10 min, comparable to the duration of homogeneous freezing
events (minutes; Jensen et al., 2016). The fraction of nonpersistent cooling events would be lower without
restricting the analysis to first freezing times.
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Figure 1. Number concentration, n, of homogeneously nucleated ice crystals versus background updraft speed, w,
from ensemble simulations (circles). In each case, gravity wave-induced vertical wind speed fluctuations driving ice
microphysics in the parcel simulations were randomly sampled from a Laplacian distribution with a mean value of
updraft speed (standard deviation of cooling rate) fluctuations y,, = 10cm/s (.. 5K/hr) added to the constant wy,.
The arrow points to an excessively high concentration generated by an exceptionally large updraft fluctuation. The

curve was obtained from simulations without fluctuations.

The scatter of n in a given narrow w,-range decreases progressively with increasing w,,. The curve obtained
from simulations without fluctuations follows a power law dependence, as expected from cloud physical
theory (Kdrcher & Lohmann, 2002): n(w) = n, [(w, + w) /w;1%, where n, is the nucleated ICNC at a given
Tandw = w,. A good fit at T = 218K is obtained for n, = 0.185cm™3, w;, = 10cm/s, and @ = 3/2
(Figure 1). The data collapse onto this curve beyond w, = 1m/s, showing that w, governs ice formation
for w, > pu, (deterministic regime). By contrast, ice formation is entirely controlled by the fluctuations
forw, < p, (fluctuation-dominated regime). In the deterministic regime, nonpersistent cooling events no
longer occur; we do not discuss this regime any further with 4, = 5 — 20 cm/s, as we are concerned with
nonconvective (in situ) ice formation, where values w, < 10 cm/s prevail.

The arrow highlights a very rare data point indicating ~400 ice crystals per cubic centimeter of air. In this
case, one single freezing event caused by an updraft speed fluctuation of 16.7 m/s (~10¢,,) depleted about
80% of the available aerosol particles. Fluctuation amplitudes of comparable magnitude are captured by the
non-Gaussian statistic, L(w'). The probability of occurrence of such a value is exp(—10 \/E) ~ 107°. This
means that in a sample of 10, 000 data points, there is a %1% chance of encountering such an event. Filling
the gap between the outlier and the majority of the other data points in Figure 1 requires a much larger
number of simulations.

3. Analysis of Nucleated ICNC

3.1. Expectation Values

We performed two additional sets of simulations halving and doubling the mean vertical wind forcing of
10 cm/s. We calculated in each case moving averages of n over 75 w, data points from the full {n,w,} data
sets. Figure 2 shows the resulting averaged ICNC, y,(w,) (expectation values). As expected from the above,
the nucleated concentrations converge showing decreasing scatter as w, enters the deterministic regime.
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Figure 2. Mean ice crystal number concentration, y,, versus w, from ensemble simulations for three cases

o, = 2.5,5,10K/hr (red, magenta, and blue), or 4, ~ 5,10,20cm/s (6., = 7.5,15, 30 cm/s, respectively. The black
curve is obtained from simulations without fluctuations, where ice forms at wy. For comparison, the colored smooth
curves mark the mean nucleated concentrations calculated analytically from the updraft speed statistic. The left panel
highlights the transition of simulated y,, to vanishing background cooling (w, — 0).

A surprising feature is the increase of y,, for low w, that is most pronounced for larger forcing. We would
expect the nucleated ICNC to approach a constant value for w, < u,,, if we just looked at the mean ICNC
calculated directly from the updraft speed fluctuation statistic without accounting for sink processes of the
ICNC. We call those values—shown as smooth colored curves in Figure 2—instantaneous ice numbers
(equation (S4)).

High cooling rates have a greater chance than low cooling rates to reach freezing thresholds, {T,, S, }, giving
them a large statistical weight despite their lower abundance in the updraft distribution. For example, at T
already close close to T, , while a small cooling rate might not suffice to reach T, a high cooling rate might
well trigger freezing. This effect (coined preferential freezing) is stronger the larger p,, and significantly
increases u, as w, diminishes. With increasing w, pushing the parcel faster close to freezing conditions,
low cooling rate fluctuations have an increasing chance to nucleate ice as well. The contribution of the
fluctuations to w is dwarfed by w, forw, > pu,,.

This said, we still expect u, to saturate in the limit w, — 0, at which point the air parcels undergo a pure
random temperature (supersaturation) walk unsupported by a constant baseline cooling. The left panel in
Figure 2 extends the simulations to lower w, and indeed shows the expected behavior as w, — 0. An imme-
diate implication is that freezing is also possible for slightly negative w, causing a background warming.
However, stronger subsidence will make cirrus formation increasingly unlikely due to the rapidly growing
separation between the diminishing ice supersaturation and the homogeneous freezing threshold.

Preferential freezing results from the stochastic nature of the temperature fluctuations. It is absent in esti-
mates of instantaneous values of nucleated ICNC (colored curves), or when the updraft statistic is equal to, or
approaches, a monodisperse distribution. Apart from this, preferential freezing does not depend on the exact
functional form of w’ statistic, as long as it has a finite second moment. Times at which freezing conditions
are met along a stochastic air parcel trajectory vary widely depending on the actual mesoscale temperature
evolution and hence on how far initial conditions {S,, T, } are away from {S,, T, } (Figure S3). These times
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Figure 3. Probability of occurrence of the number concentration, n, of homogeneously frozen ice crystals for the
color-coded cases shown in Figure 2. The simulation results (stair steps) with homogeneous freezing temperatures near
218 K include the effect of preferential freezing. We include the instantaneous statistics without preferential freezing
(dashed curves) for each simulation case. Both stochastic and deterministic distributions are compared to the statistic
(black curve) derived from aircraft measurements of midlatitude cirrus (Midlatitude Cirrus Properties Experiment
[MACPEX]). Total nucleated number concentrations of ice crystals with all sizes (typically > 1 ym), averaged over
lcm/s <wy < p,, in each simulation case (or calculated analytically from the instantaneous statistics) and from

MACPEX for ice crystal sizes > 15um taken in the temperature range 215-221K, are given in the left legend.

may take values comparable to, or longer than, the times over which w,, S, and T, change in the atmosphere.
If S, (T,) is low (high) enough, mesoscale temperature variations by themselves may not meet homogeneous
freezing conditions. Therefore, the high mean ICNC approached in the fluctuation-dominated regime may
not be realized to the same extent in the atmosphere.

3.2. Comparison With Observations

Normalized probability density functions, dP/dn, represent the fraction of n values that fall into a given
number density bin. The related distribution, n dP/dn, measures the probability of occurrence of given n
values. The area under the latter is equal to the total ICNC. In Figure 3, we compare simulation results
for ndP/dn and instantaneous statistics that do not account for preferential freezing (equation (S7)) with
data taken during the Midlatitude Cirrus Properties Experiment (MACPEX), an airborne field campaign
that focused on synoptically forced midlatitude cirrus clouds over the south central United States (Jensen
et al., 2013). The vertical wind speed measurements showed exponential updraft speed statistics with large
flight-to-flight variability of mean updraft speeds. Mean values in nonconvective situations were in the range
13-21 cm/s (on average 17 cm/s), corresponding to o, = 6.6 — 10.6 K/hr (on average 8.6 K/hr).

The simulated ICNC statistics were averaged across the fluctuation-dominated regime within 1 cm/s < w, <
H,; valuesw, < 1cm/s are unlikely to be significant for synoptically forced midlatitude cirrus. We note that
the range of w, over which the simulated distributions need to be averaged to allow for a fair comparison
with the measurements is not well constrained. The MACPEX data set contains no information on the age
of ice crystals past nucleation, preventing us from constraining the data to freshly nucleated ice crystals.

The peak regions of the simulated statistics shift to the right as the underlying cooling rates increase,
indicating an increase in total nucleated ICNC. The statistics contain relatively few nonpersistent cooling
events in their flat leftmost tails (n < 0.01 cm~3), which are therefore of minor importance for the mean

KARCHER ET AL.



~1
AGU

Geophysical Research Letters 10.1029/2019GL082437

nucleated ICNC. Otherwise, the overall shape of the simulated statistics is similar to the instantaneous
distributions, reinforcing the current understanding that wave-driven vertical wind speed variability and
homogeneous freezing are important contributors to ice formation in cirrus (Hoyle et al., 2005; Shi & Liu,
2016). Instantaneous and stochastic results differ more in terms of total ICNC with greater forcing.

The observed distribution is narrower than the simulated ones and has lower total ICNC. We expect dif-
ferences between these distributions, since the MACPEX data contain ICNCs sampled at various stages of
the cirrus cloud, while the parcel simulations only consider nucleated ice crystals. Moreover, the ICNC data
used to generate the MACPEX statistic only include ice crystals with sizes larger than 15 ym. Uncertainty
associated with the first size bin of the measurements precludes useful quantitative information about the
concentration of the smallest ice crystals. The sizes of simulated ice crystals, and hence their fall speeds, are
typically smaller than 15 ym after quenching the initially high supersaturation (Kircher & Lohmann, 2002).

Regarding differences in shape, we note that the left (low-n) wing of the observed distribution might be
affected by sample volume limitations of the measurements. Therefore, it is not possible to fully capture
nonpersistent cooling events to the degree they are present in the data set in the first place. Preferential
freezing, which increases total ICNC in the stochastic simulations relative to the instantaneous values, might
not occur in nature to the same extent as simulated. This is possible, since the simulations allow for a very
large number of trajectories each with virtually unrestricted time to allow nucleation to be triggered, while
in a real cirrus cloud time for freezing events to take place is affected by larger-scale wave activity changing
w, on short periods of time. The right wing of the observed distribution decays faster than the simulations
indicated. Itis possible that high-n events are underrepresented in the data set, since they happen to be rather
localized and more easily missed by the probing aircraft (Jensen et al., 2013). We note that the MACPEX
statistic contains very few ICNC data >10 cm™3, consistent with homogeneous freezing triggered by w' >
1.4m/s.

More importantly, given the rather vigorous mean cooling rate prevailing during MACPEX (¢, = 8.6 K/hr),
the total ice crystal number is low (0.09 cm~3). The instantaneous statistic that disregards enhancements
in ICNC due to preferential freezing yields the same total ICNC as MACPEX only when evaluated at
o, = 2.5K/hr. If we compute the total ICNC directly from instantaneous expectation values, we obtain
U, = 0.09-0.7cm~3 from equation (S8) (see also Figure 2) for the range of mean updraft speeds prevailing
during MACPEX. Even this estimate is one to eight times higher than the measurements indicate.

We offer two explanations to account for the discrepancy in total nucleated ICNC, which is not entirely
unexpected. On the one hand, ice crystal sedimentation may reduce total ICNC significantly in midlatitude
cirrus, in which a relatively large amount of water vapor available for growth produces ice crystals with large
fall speeds. Quantification of this effect requires at least a one-dimensional model treatment. On the other
hand, we know that ice crystals present before homogeneous freezing commences either cause lower homo-
geneously nucleated ICNC or suppress homogeneous freezing altogether. This happens because preexisting
ice crystals act as a sink for water vapor, exerting an effect on nucleated ICNC that may be accounted for by
introducing a fictitious downdraft (Kércher et al., 2006). This downdraft basically offsets part of the mean
updraft speed of the fluctuations applied in our simulations.

Preexisting ice in a nucleating air parcel could be generated in a past ice formation event, possibly by
active INP. DeMott et al. (1997) estimated with parcel model simulations a maximum impact of INP on
cirrus formation for updraft speeds <20 cm/s, suggesting the potential importance of INP in wave-driven
scenarios. During MACPEX, the lower troposphere was polluted, and deep convection was frequently occur-
ring. It is therefore reasonable to assume that INP were available at cirrus levels, consistent with a study
that showed that some aerosol types were enhanced in ice residuals compared to ambient (interstitial)
aerosols (Cziczo et al., 2013). However, this study did not quantify the balance between heterogeneous and
homogeneous nucleation in midlatitude cirrus. Without specific knowledge of number concentrations and
physico-chemical properties of INP, we cannot conclusively assess the role of heterogeneous ice nucleation
in affecting the relationship between total nucleated ICNC and mean updraft speed fluctuation.

4. Conclusions and Outlook

In an attempt to contribute to a fundamental understanding of processes governing the formation of ice
clouds, we study effects of a spectrum of ever-present mesoscale gravity waves on homogeneous aerosol
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freezing in midlatitude cirrus. The dynamical forcing due to vertical wind speeds (causing adiabatic
temperature fluctuations) is parameterized based on direct Lagrangian measurements constraining a com-
prehensive microphysical parcel model. The random forcing does not represent the effect of strong updrafts
induced by localized high-frequency (orographic or convective) gravity wave sources. Results of stochas-
tic simulations of cirrus formation differ in important ways from traditional deterministic results used in
data-model comparison exercises and for parameterization development.

We find that high updraft speed fluctuations increase total nucleated ICNC to much larger values than those
calculated deterministically based solely on the probability of occurrence of the fluctuations. This prefer-
ential freezing effect is a consequence of the stochastic nature of wave-driven temperature fluctuations. It
occurs in low mean wind conditions and whenever a nonnegligible number of high updraft speeds popu-
lates the wing of the wave forcing statistic; it may be suppressed in the presence of efficient INP. Given the
rather long times required for stochastic trajectories to trigger freezing even in air that is already ice super-
saturated, future studies should investigate in which situations large-scale cooling, local relative humidity,
and INP conditions are most relevant for atmospheric applications.

In the current stochastic model, asymptotic temperature fluctuation variance across an ensemble of fluc-
tuation time series increases linearly over time. In better agreement with observations, inclusion of a
low-frequency damping to the temperature fluctuations would lead to a stationary variance, reminiscent
of Brownian motion (Landau & Lifshitz, 1987). While the effect of such damping is unimportant for the
present study; its effect on first freezing times for less ice supersaturated initial conditions and weak or absent
large-scale forcing should be studied in future work.

We confirm that rapid sign reversal of vertical wind speeds during freezing events causes only few
(<1-10L71) ice crystals to form. We show that these nonpersistent cooling events are rare occurring less
than 15% of the time in the conditions of this study; they affect the total nucleated ICNC only to a small
degree in the midlatitude conditions studied here. For specific applications, it might be useful to explore
how this fraction changes in other meteorological situations.

We simulate probability distributions of nucleated ICNC and compare them with those calculated analyti-
cally from the distribution of the updraft speed forcing. The overall similarity of the shapes of simulated and
analytical statistics suggests that wave-driven dynamical forcing and homogeneous freezing play important
roles in in situ cirrus formation, inasmuch as ICNC values >10cm™3 have been measured in cirrus. Such
high concentrations, although detected only rarely, are difficult to explain otherwise.

More importantly, differences between measured and simulated ICNC statistics are consistent with the
potential importance of ice crystal sedimentation and INP in cirrus as observed during an aircraft campaign
over the continental United States. We have designed the model setup such that differences between the
results and these observations were expected rather than to explain the measurements. Given mean updraft
speeds of 17 cm/s during the measurements, relatively low mean ICNC (90 L™!) with sizes >15 ym have
been reported in the temperature range 215-221 K, but many more are predicted (including ice crystals with
smaller sizes). Lack of information about INP number concentrations and their properties preclude robust
quantification of their impact. Moreover, the relative roles of INP and sedimentation as potential causes for
low total nucleated ICNC despite strong wave forcing are difficult to disentangle given the limited data set
and the restrictions of a parcel model framework.

Our methodology sets the scene for more comprehensive cirrus simulations with at least vertical spatial
resolution including ice crystal sedimentation, heterogeneous ice nucleation, and gravity wave forcing.
Consideration of these processes enables more realistic estimations of how INP modify cirrus formation
processes and more realistic data-model comparisons of nucleated ICNC. Besides measuring meteorolog-
ical and INP-relevant data, future cirrus measurements should characterize cloud particle variables along
with the small-scale vertical wind fields in which cirrus form. On the modeling side, an ambitious goal is
the development of a full three-dimensional model that includes effects of shear, mixing, and radiative flux
changes and at the same time resolves the high-frequency gravity waves and includes their impacts on cirrus
formation and evolution.

Our findings have important implications for the representation of cirrus in global models. Most ice nucle-
ation parameterizations are based on an idealized treatment of updraft speeds. When including the effects
of waves, geographical, seasonal, and topographic variability in updraft speeds should be accounted for.

KARCHER ET AL.



~1
AGU

100

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2019GL082437

Acknowledgments
Data used in this study is available at
https://espoarchive.nasa.gov/.

Moreover, wave-generated enhancements of ICNC in the fluctuation-dominated regime should be prop-
erly parameterized. Inclusion of stochastic effects warrants careful consideration by considering differences
between first freezing times and time steps used in large-scale models. We also encourage the coupling
of cirrus parameterizations with a treatment of the subsequent sedimentation effect on nucleated ICNC.
This will be particularly important if these parameterizations describe competing effects between INP and
supercooled liquid aerosol particles during ice formation.
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Instantaneous statistic and expectation value of nucleatkice crystal number concen-
tration

We derive the instantaneous ice number statistic direotisnfthat of updraft speed fluctua-
tions. We begin by calculating analytically the mean (expeécnumber concentration, ICNC,
of homogeneously nucleated ice crystals resulting fronjesting air parcels to a large num-

ber of vertical wind speed trajectories.

According to observations, the normalized probability signfunction (PDF) of updraft speed

fluctuationsw’ > 0, is given by

P 1
= — w S1
dw’ ﬂwe ’ (S1)

with the mean valuey,,. The probability of finding updraft speed fluctuations extieg w,

is given by [~ (dP/dw)dw’ = expE-Ww, /ui)-

According to cloud physical theory, the nucleated ICNi(y), exhibits a power law depen-
dence on the total vertical wind speed,= wy + W (Wp > 0 is a constant mean updraft
speed):
W (03
n(w) = nl(—) , W=Wwo+W; (S2)
W1

The set of value$n;, w;} is temperature-dependent.

The instantaneous expectation valuenpthe nucleated ICNC calculated directly from the dis-

tribution of updraft speed fluctuations, follows from:

« dpP
Mn = j; n(W() + W)de . (83)

Corresponding author: Bernd Karcheernd . kaercher@dlr.de



Integrating Eq. (S3) yields:

ftn = N(WO)Fu(X),  Fu(X) = %F(a 1%, x=-o (S4)

Hw
The dimensionless parametgr,connects fluctuation-dominater & 1) and deterministic
regimes k > 1). Recalling thatr = 3/2 and using the recurrence relation for the incom-
plete Gamma functior(a+1, X) = al'(a, X)+x¥e™%, twice along withI'(1/2, X) = v/ erfc(v/X)

and the complementary error function, eyfcé 1 - (2/ v/r) EX’ etdt, we get:

Fapo(d) = 1+ — + 3\/7?{exerfc(\/>_()}. (S5)

2x 432

It is easy to show that, has the asymptotic valueEs/2(x > 1) — 1 and therefore,, —

n(Wo); moreover,Fz(x < 1) — 3+/7/(4x¥?) and thereforgu, — (3 vr/4) n(uw).

In the deterministic regimeny > uy), the fluctuations have little to ndfect onuy,. In the
fluctuation-dominated regimev§ < uw), (i) un takes a constant value ag is fixed; (i) Nn(uw)
is significantly larger tham(wo) due to the power law dependentex w*?; and (iii) this
value is further enhanced by the factor(@/4) ~ 1.33 due to the exponential shape of the

w-statistic. In Fig. S1, we show the relationshifi?F3/(x).

We calculate the instantaneous PDF of nucleated ice numimPsdn, by evaluating

dP  dP/dw
dn ~ dn/dw

(S6)

applying Egs. (SH(S2) in the fluctuation-dominated regime (setting= 0). The solution

reads
_7 1 n

zdP— Ze = Z=
dz =7 YTt )

and is depicted in Fig. S2. We may also compute the instaoteEnmean nucleated ICNC as

(S7)

the area under this distribution:

Hn = N(uw) jow x*e7Xdx = T(a + 1,0) n(uw) = T(5/2) n(uw) , (S8)

consistent with Eq. (S4) in the limit — 0. We note that the shape factd(5/2) = 3+/r/4,

converts to unity when Eq. (S1) is replaced by a delta distidi.
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Figure S1. Scaled nucleated ice crystal number concentration caémikzs an expectation value from an ex-
ponential distribution of updraft speed fluctuations asrefion of the scaled mean updraft speegwo/i.
In the limit x—0, the curve indicates the value of the shape parameteratbarng the updraft statistic,

I'(5/2)~1.33.
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Figure S2. Probability density function of nucleated ice crystal n@nboncentrationgdP/dz, calculated
from an exponential distribution of updraft speed fluctoiagiin the fluctuation-dominated regime and shown
as a function of the similarity variable=n/n(u,,). Lowering (increasingy,, shifts the statistic to the left

(right) without dfecting its shape or maximum.



Statistic of first homogeneous freezing times
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Figure S3. Probability distributions of first homogeneous freezimges in air parcels with an initial tem-
perature about 3 K warmer than actual freezing temperat@Qasstant updraft speedy, and initial ice
saturation ratioSy, are varied as indicated in the legend along with the meaaziing timest; , derived from

the simulation data based pR=10 cms?.

Along each air parcel trajectory that is subject to randompterature fluctuations as described
in section 2 in the main text, a certain tintg, elapses until homogeneous freezing conditions
are reached for the first time. These conditions are forradlat terms of narrow ranges of

the freezing temperatur@, = 218+ 0.25K, and the associated ice saturation refiQ,=
1.5+0.02. Clearly,t; depends on the initial values of these variablBg= 221 K andSy =

1.3; t; also depends on the vertical wind speeds that are decompuseal constant value,

W, and fluctuating component®, with a mean valugn,,=10cms?.

We extracted the times of first nucleation events from themtde simulations, and present
their probability distributions in Fig. S3. Each distribrt is based on, 000 air parcel trajec-
tories. Forwp = 1cms? (black curve), the mean first freezing timetis, = 3 h and the
distribution is highly skewed containing very few indivialidata points well above 10h (not
shown). The distribution wing is controlled by the rare egen the vertical wind speed statis-

tic. The broad peak region is centered around 1 h.

The fact that fluctuations are key in triggering freezinghe tasewy = 1cms? is evident

from the time required to increag&from Sy to S, in an air parcel cooling along the dry adi-



abate:r ~ 4 h, exceedind;m by 1 h. Increasingvy tenfold shortens; o, to 0.45h, because
thenw, alone already accounts for the time to reach freezing comditr(wp) = 0.4 h ~ ty .
In this case, which is closer to the deterministic regime, fthctuations only slightly mod-

ify this time. The associated statistic (red curve) is tfaealmost symmetric.

Slightly loweringSp by 0.1 increases$; m by almost 50%, showing the strong sensitivity of
freezing times on the initial relative humidity in the airrpel in the fluctuation-dominated regime.
The peak region of the associated, flatter statistic (blueejushifts accordingly to the right

by more than 30 min. However, this result will change if thectal temperature fluctuations

are subject to damping not included in the model. Low fregyetamping is required to ob-

tain a stationary asymptotic temperature fluctuation vagaacross an ensemble of fluctua-

tion time series in cases where the large-scale conditim&eld constant. Therefore, it be-
comes increasingly unlikely to reach freezing threshahdddamped-driven simulations as ini-

tial conditions are chosen farther away from the actualziregthresholds and the likelihood

of late first freezing events occurring is reduced.
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