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Abstract
Response fatigue can cause measurement error and misclassification problems in survey research.
Questions asked later in a long survey are often prone to more measurement error or
misclassification. The response given is a function of both the true response and participant
response fatigue. We investigate the identifiability of survey order effects and their impact on
estimators of treatment effects. The focus is on fatigue that affects a given answer to a question
rather than fatigue that causes non-response and missing data. We consider linear, Gamma, and
logistic models of response that incorporate both the true underlying response and the effect of
question order. For continuous data, survey order effects have no impact on study power under a
Gamma model. However, under a linear model that allows for convergence of responses to a
common mean, the impact of fatigue on power will depend on how fatigue affects both the rate of
mean convergence and the variance of responses. For binary data and for less than a 50% chance
of a positive response, order effects cause study power to increase under a linear probability (risk
difference) model, but decrease under a logistic model. The results suggest that measures designed
to reduce survey order effects might have unintended consequences. We present a data example
that demonstrates the problem of survey order effects.

1 Introduction
Correcting for missing data and measurement error in survey research is an important goal
of many researchers. A number of methods have been proposed to account for bias due to
nonresponse (missing data), such as multiple imputation [1][2], missing data weights [3][4]
[5], and pattern mixture models [6]. Measurement error and misspecification error are other
forms of response problems which have been well described in the econometrics and
statistics literature.[7][8][9]

A potentially important source of measurement and misclassification error that is often
overlooked is participant response fatigue. This occurs when individuals respond to survey
questions but do not provide truthful or consistent responses in order to reduce the burden of
answering questions. Satisficing theory has been used to conceptualize the cognitive reasons
why question order can affect responses.[10] The theory predicts that some individuals will
give an acceptable answer, for example, the first or default answer, to minimize the burden
of responding to the survey.[11]
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There are other ways in which response fatigue can affect responses as well. As an example
in the health field, respondents might not respond affirmatively that they have a certain
chronic or acute health condition. Mathiowetz and Lair [12] suggest that respondents might
learn through the survey experience that they can avoid survey subquestions about a health
condition if they respond that they do not have the condition. In this way, study participants
might answer in such a way as to reduce the length of the survey for them personally,
particularly if they do not perceive the condition to be of high concern. Similarly, Hill and
Pylypchuk [13] speculate that failure to acknowledge health conditions due to survey
response fatigue could lead to overly optimistic estimates of a population’s health status.

Survey response fatigue can have a key role in affecting inferences from randomized clinical
trials. To illustrate this issue, we used data collected as part of the CONNECT™ study [14]
[15]. We hypothesized that survey response fatigue created baseline differences between
study arms due to differing survey lengths between the arms. The CONNECT™ study
included an internet-based survey as a component of a cancer patient intervention designed
to improve the communication between patients and their oncologists.

In this paper, we highlight the problems related to survey response fatigue using relatively
simple models. Here, we consider the impact of survey fatigue on the observed response (i.e.
answer) given to a question, rather than the impact of fatigue of non-response and missing
data. These findings can guide future methodological work in this area. This paper is
organized as follows.

In section 2, we detail the problematic baseline differences between survey arms in the
CONNECT™ study. In section 3, we present models of the effects of survey fatigue on
responses and discuss how fatigue might affect the variability of treatment effect estimators.
In section 4, we discuss the identifiability of such models, and in section 5 we present a
simulation study. We present evidence from CONNECT™ in section 6 that supports our
choice of models and then end with a discussion.

2 The CONNECT™ study
The CONNECT™ study was a three arm randomized trial of a computer assisted
intervention designed to improve patients’ communication skills. The primary outcomes of
the study were patient satisfaction with communication and decisional conflict. The control
group was directed to information available from the National Cancer Institute’s website
(number randomized [n]=272), while the intervention arms received either 1) computer-
based communication skills training (n=242) or 2) the same computer communication aid
supplemented by a summary report supplied to the physician (n=229) [14][15]. As part of
the CONNECT™ intervention, we measured monitoring and blunting scores (MBBS).[16]
[17][18] The monitoring score consists of eight questions measuring patients’ attention to
potentially threatening health information (higher scores indicate more attention), while the
blunting score consists of eight questions measuring patients’ avoidance of potentially
threatening health information (higher scores indicate more avoidance). Sample questions
are shown in an appendix.

Patients in the CONNECT™ control arm were not asked baseline questions related to
satisfaction or decisional conflict as study investigators were concerned that such questions
could affect patient-physician interaction and hence contaminate the control condition. As a
result, the survey administered to the intervention arms was longer than the survey
administered to the control arm. Patients reported median times spent completing the survey
of 15-30 minutes in the control arm and 31-45 minutes in the intervention arms. Since
questions related to monitoring and blunting were placed at the end of both versions of the
survey, those in the intervention arms had spent a longer time answering questions by the
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time they responded to the monitoring and blunting items than those in the control arm. The
monitoring and blunting assessments were asked in such a way that participants had to
check off all of the items that might apply to them. Hence, if a respondent did not respond, it
was not possible to distinguish nonresponse from a lack of applicability.

When baseline characteristics were compared between the two groups, it was found that the
monitoring and blunting scores were higher in the control arm than in the intervention arms
(3.9 mean monitor score (standard deviation [SD]=2.0) in the control arm vs. 3.2 (SD 1.7)
and 3.4 (SD 1.7) in the intervention arms; 2.6 mean (SD 1.6) blunter score in the control arm
vs. 2.2 (SD 1.3) and 2.3 (SD 1.4) in the intervention arms). Pairwise t-tests indicated that the
differences in means were statistically significant (p<0.02) between the control and
intervention arms, but were not statistically significant between the two intervention arms
(p>0.14).

The differences between the control and intervention arms were unlikely due to participants
failing to respond to all of the monitoring and blunting questions, as there were few people
with monitoring or blunting scores of zero in any arm (3.7% in the control arm and 3.4% in
the intervention arms had monitor scores of 0, for example). Further, despite the fact that
both scores are expected to move in opposite directions, meaning that individuals with high
monitoring scores should have low blunting scores, both were lower in the intervention arms
than the control arm. This suggests that individuals in the intervention arms had not simply
stopped answering questions. We posit that two scenarios could have accounted for such
baseline differences among the study arms: 1) patients in the intervention arms were primed
to answer questions differently by contextual effects of questions not asked in the control
arm, and 2) patients might have become less careful in reading and responding to the
monitoring and blunting questions.

The possibility that patients might have become less careful in responding caused us to
consider how the placement of questions could similarly affect the power to detect effects in
our future randomized trials. Much of the literature cited in this paper focuses on the effect
of survey response fatigue on estimator bias. While the effect of fatigue on bias is important,
the effect of fatigue on power might be of even greater importance in randomized clinical
trials. We have found in designing oncologic intervention trials, for example, that the
primary focus of clinical trials is often to determine which intervention is associated with the
best outcome. This leads to a binary decision regarding which is better. While the magnitude
of the effect is important, an experimental intervention that is better will generally become
the new standard of care regardless of how much better it is. This motivated us to investigate
the impact of survey response fatigue on study power, as the impact of fatigue on making
correct decision rules might be of greater importance to researchers than assuring that
estimators are unbiased.

3 Misclassification models to assess effects of survey fatigue
Deriving models for a participant’s response to a question helps clarify how survey fatigue
can affect estimators of treatment effects. For this section let Yto be the response that an
individual would have to a question under intervention assignment t if the question was
asked in ordered place o in a survey (for example, o = 4 indicates the question was the fourth
question). Let μt be the mean response when the question is asked as the first question. Let n
represent the number of participants within each arm of a study; we assume equally sized
arms. We present models of response fatigue when Yto is binary (affirmative or yes
answer=1, 0 otherwise) and when Yto is continuous. We include the subscripts t and o to
simplify notation so that we do not have to condition upon treatment assignment and
question order in expectations and probabilities. Thus, it is assumed that E[Y1o] and E[Y0o]
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refer to expected values of responses in two independent treatment arms (i.e., E[Yto] =
E[Yto|T = t, O = o] for treatment indicator T, and order variable O).

We assume in this section that all participants in a study, regardless of arm, are asked
questions in the same order. In section 4, we consider identifiability of response fatigue
effects when the order is varied among participants. Such identifiability would allow for the
correction of response fatigue effects.

These tend to be elementary models of survey response fatigue for ease of presentation. As a
reviewer noted, our models do not account for the heterogenous effects that could account
for misclassification, such as the number of words in a question, question complexity, or
respondent cognitive ability and motivation. Subsequent research could examine how
accounting for such effects would alter our findings.

3.1 Binary Yto

3.1.1 Linear Model—A simple model of the effect of survey fatigue would be,

(1)

In the model, η represents the expected effect of question order on the probability of
response. The linear probability model is useful for modeling risk differences as seen in the
epidemiologic literature.[19] Given our experience with CONNECT™ and the hypothesized
effects of survey fatigue reported in the literature [12][13], we would expect η ≤ 0 as some
people stop answering questions thoughtfully over time.

From this model, it is easy to see that

(2)

If we introduce the subscript i = {1, …, n} for each person within treatment arm t ∈ {0, 1},
an estimator for the linear effect would be,

Under maximum likelihood theory, we have the following approximate variance.

Of note is the fact that the variance of the estimator is related to the variance of the
responses. P(Y1o = 1) * P(Y1o = 0) for example is the variance for a single binary yes-no
response (Bernoulli distribution). Under the binomial distribution, probabilities closer to
50% lead to larger variances than probabilities closer to one or zero.

Impact on study power: To see how fatigue impacts the power to detect effects,
notationally define Z to be a standard normal variable (mean=0, variance=1) and zp
represent the quantile such that Phx(Z < zp) = p under hypothesis hx. Assume a null
hypothesis, h0, of P(Y1o = 1) − P(Y0o = 1) = 0 and an alternative hypothesis, h1, of P(Y1o =
1) − P(Y0o = 1) = δ. Let β represent the Type II error rate of a study. The approximate
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power, 1 − β , to detect an effect using a two sided Wald test with Type I error rate α
becomes Ph1(Z < z(1 − β)) = 1 − β in which

(3)

Under the linear model in equation (2), P(Yt(o+1) = 1) ≤ P(Yto = 1). Hence, as o increases
such that the probability of response falls below 50%,  will decrease. Since
the absolute difference, δ, does not change with o (as shown in equation 2), the reduction in
the variance as o increases will cause z(1−β) to become larger and hence the power to
increase. However, if the baseline probability of affirmative response is above 50%, then
reducing the probability of affirmative response closer to 50% would increase the variance
of the estimated δ and hence reduce power. Of course, as the probability of affirmative
response falls very close to zero, then δ cannot remain fixed.

3.1.2 Logistic Model—A linear model for binary variables is not necessarily appropriate,
especially if the probability of response is near zero or one. Instead, we might assume a
logistic model.

(4)

Here η is the effect of question order on the log odds of response. A traditional estimand for
the intervention effect is the odds ratio (OR = odds P(Y1o = 1)/ odds P(Y0o = 1)) which
when logged would become

(5)

Assume we estimate the log odds ratio using estimated probabilities, . Using
maximum likelihood theory combined with the δ-method, we can show that,

Under this formulation, the log odds ratio would remain fixed, but the approximate variance
would increase as the probabilities fell further below 50%. Again, this is related to changes
in the variability of the actual responses. Thus, we would eventually reduce the power to
detect effects, as can be shown analogously to the power discussion in section 3.1.1.

3.2 Continuous Yto

3.2.1 Linear model—A possibility when a measure is continuous is that survey response
fatigue causes two groups to converge on a default value, such as 50 on a 0 to 100 scale, and
the variability of responses would hence change. A model of this could be,

(6)

Here, μ is the default value and μt represents the difference in the treatment specific mean
when the question is asked as the first question. I(·) is an indicator function which takes 1 if
the condition inside the parentheses is true, 0 otherwise. In the model, εto is a normally
distributed error term with mean 0 and variance ψ2. The variance of Yto hence becomes o2λ

ψ2.
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For η < 0, oη establishes the rate at which the treatment specific means converge to a
common mean. For η > 0, the means would diverge. A likely scenario in equation (6) is
that limo→∞E[Y1o] − E[Y0o] = 0 because η < 0. When λ > 0, then the variance of the
response increases with o, while it decreases when λ < 0. Order has no impact on variability
of response when λ = 0. In a case in which the signs of μ0 and μ1 are reversed, we might
need to include treatment specific fatigue effects (i.e. ηt instead of η).

The treatment effect of interest for o > 1 could be,

The approximate variance of the difference in sample means used to estimate E[Y1o] −
E[Y0o] would be 2o2λψ2/n. The impact of survey response fatigue on study power would
depend on the rate of change in the variance relative to the rate of change of the treatment
effect, δ = E[Y1o] − E[Y0o]. Under this formulation for o > 1, equation 3 would become

. If η < λ, then z(1−β) would decrease as o
increases, leading to a decrease in power. If η > λ, then z(1−β) would increase as o
increases, leading to an increase in power. Finally, if λ = η, then question order would have
no impact on power.

Based on the literature, it is likely that λ < 0 and hence the variance of Yto decreases. For
example, in a study of question order effects, Galesic and Bosnjak [20] found that the
variability of responses decreased for questions asked later in a survey. Such reduction is
also consistent with the main arguments of Krosnick [21], although he did posit the
possibility that variability could increase with o if subjects began to randomly answer
questions, implying λ > 0. Findings by Krosnick and Alwin [11] suggest that η < 0, since
respondents might be more likely to give one of the first options in a list of answers to a
question. Over time, subjects in both groups might increase the tendency to pick one of the
first options available, leading to convergence of the treatment specific means. As a
reviewer suggested, the model could also be modified to account for subject specific
convergence to default values. Such subject specific convergence to different individual
values regardless of treatment assignment would still be consistent with a convergence of
the difference in population treatment means to zero in a randomized trial.

To demonstrate how η and λ affect power in equation (6), we present how power changes
as η varies from −0.04 to 0, and λ varies from −0.05 to 0.05 in figure 1. We set n=250,
μ1 − μ0 = 0.25, ψ2 = 1, and the Type I error rate to 5% (two-sided). We also examined
power when o=1, 25, and 100. For ease of comparison, these are similar values to those used
in the simulations in Section 5. We see that the power in this case is very sensitive to small
changes in η and λ.

3.2.2 Gamma Model—Assuming a normally distributed error term might not be realistic
for many summary score variables. Often, the lower bound of summary measures is zero.
Hence, if people stop responding to questions, the score will become closer to zero and the
variance of the responses will decrease. In such a case, a more realistic model for the
response might be a generalized linear model assuming a log link and a Gamma family
distribution. Let γt and ν parameterize the Gamma distribution such that E[Yto] = exp(γt)
and var(Yto) = exp(γt)2/ν. A model of the effect of response fatigue would be,
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In this case, η represents the effect of question order on the log of the treatment specific
mean. The treatment effect becomes the relative increase or decrease under treatment versus
control. That is,

(7)

We can estimate the treatment effect by fitting the model log E[Yto] = γt, which does not

require us to explicitly model response fatigue, and using  as the estimator. Our
model has the following properties.

In this formulation, survey fatigue has no effect on the ability to detect effects since the
approximate variance of  is fixed. An important distinction between the linear and Gamma
models is that the treatment effect is modeled as additive in the former while multiplicative
in the latter. A multiplicative effect would be more realistic as scores in both groups fall to
zero when using instruments that cannot take negative values. Another consequence of the
Gamma model is that although the variance in  does not change due to survey response
fatigue, since we are examining relative differences between treatment groups, the variance
of the actual responses, Yto will decrease due to fatigue. This is a result of γt = μt + η(o − 1)
decreasing as o increases when η < 0, and hence var(Yto) = exp(γt)2/ν also decreasing.

3.3 Extension to summary measures
While we have focused on individual questions in surveys, many psychosocial variables are
summary measures of a number of items, as was the case with the monitoring and blunting
scales in the CONNECT™ study. For example, let Ut consist of the sum of two continuous
questions asked in order oa and ob with respective default means of μ and α, and assume the
error terms are independent. Under our model in equation (6), for oa > 1 and

 and the variance of Ut would become . Our
summary measure would still have power and convergence of treatment specific means that
are dependent on the relative magnitudes of η and λ.

4 Identifiability
The η parameters in our models are not identifiable unless the order of questions varies
among participants. The following hypothetical example can demonstrate this. Let Xto
represent a baseline survey question. Let π represent the mean value for variable Xto; since
Xto is a baseline variable, the mean does not depend on treatment assignment. If the
questions were asked in the same order for each participant, we represent the full and
hypothetical observed data in table 1.

Assuming extensions of the linear probability models for two binary variables, we have:

(8)

(9)
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for t ∈ {0, 1}. Note that these models are not identifiable from the observed data in Table 1
Panel b since our data provides us with estimates of P(Xt1 = 1) and P(Yt2 = 1), but we would
need to estimate more than two parameters in equations (8) and (9): μt, π and η. The
number of parameters would grow if we more realistically allow for different ηs in models
(8) and (9).

We could make stronger assumptions that identify η. In the case of the CONNECT™ study,
for example, patients were randomized to three arms. Let T be an indicator of treatment
assignment (T = 1 if assigned to a specific intervention arm, T = 0 if assigned to the control
arm). By randomization, we know that T⊥{X1o, X0o′} for all o and o′. In words, this means
that T is independent (with ⊥ denoting independence) of the potential question responses.
Note that the observed response is X1o if T = 1 and X0o if T = 0. Hence, we can show that,

Since P(X1o = 1|T = 1,O = o) and P(X0o′ = 1|T = 0,O = o′) are identified in the observed
data for o ≠ o′, we can estimate η. In studies in which survey length does not differ between
study arms, we can randomly assign O as well as T such that we can identify η by using data
between study arms or within one study arm.

5 Simulations
We performed a simulation study to examine how survey fatigue affects the power to detect
effects. For each simulation, we generated data 5,000 times under the conditions described
below. For relevant link function g(·), we tested the null hypothesis that g(E[Y1o]) −
g(E[Y0o]) = δ = 0 versus the alternative hypothesis that δ ≠ 0. We then estimated the power
under various conditions by calculating the proportion of times that we rejected the null
hypothesis under a 5% Type I error rate (two-sided) when the alternative hypothesis was
true. We set the simulations such that the expected power would be in the vicinity of 80% to
90% for some of the assumptions. The parameterization of the models was varied within
each simulation to investigate the sensitivity of the findings to changes in the
parameterization. We used the rbinom(·), rnorm(·), and rgamma(·) functions in R (The R
Foundation for Statistical Computing, Vienna, Austria) to generate variables used in
simulations. In the simulations, we examined models under two assumptions about the η
parameters: the baseline assumptions listed below and after multiplying η by five. We also
estimated power when o ∈ {1, 25, 100}. The assumptions used to generate the data are as
follows.

5.1 Specification of Simulations
Linear Model: Binary Case—For the linear probability (risk difference) model, we
assumed that μ1 ∈ {40%, 60%, 90%} and that μ1 − μ0 = .1. We assumed that η = −.001.
We set the sample size per arm at 250.

Logistic Model—For the logistic model, we assumed that μ1 ∈ {−.5, .5, 1.5} and that μ1 −
μ0 = .5. We assumed that η = −.007. The parameterization set {P[Y0o = 1|o = 1], P[Y1o =
1|o = 1]} to {27%, 38%}, {50%, 62%}, and {73%, 82%}. We set the sample size per arm to
250.

Egleston et al. Page 8

Stat Med. Author manuscript; available in PMC 2013 January 23.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Linear Model: Normal Case—For the linear model with normally distributed data, we
assumed that, μ = 0, λ = −.025, ψ2 = 1, μ1 ∈ {−5, 0, 10} and that μ1 − μ0 = .25. We
assumed that η = −.025. We set the sample size per arm to 250.

Gamma Model—For the Gamma model, we assumed that μ1 ∈ {3, 4, 4.5} and that μ1 −
μ0 = .25. We assumed that η = −.025. We set ν equal to 1.5. The parameterization set
{E[Y0o = 1|o = 1], E[Y1o = 1|o = 1]} to {15.6, 20.1}, {42.5, 54.6}, and {70.1, 90.0}. We set
the sample size per arm to 200.

5.2 Simulation results
In table 2, we show the estimated power from the simulations. In table 2a, we present the
results for the linear model of binary data. As expected, if survey fatigue causes probabilities
of affirmative answers, P(Yto = 1), to get closer to 0, power goes up. However, as survey
fatigue reduces probabilities from above 50% to closer to 50%, the power goes down. When
η is multiplied by five and μ1 = 40%, then model probabilities are negative at o = 100.
This shows the limitation of the linear binary model for small probabilities. When μ1 = 60%
the power is consistently 62% or 63% except in the extreme case. This is due to {P(Y1o = 1),
P(Y0o = 1)} being close to {60%, 50%} or {50%, 40%}, which are similar distances from
50%.

In table 2b, we present results from the logistic model. As expected, if survey response
fatigue causes probabilities of affirmative answers to get closer to 0, power goes down.
However, as survey fatigue reduces probabilities from above 50% to closer to 50%, the
power goes up. Under 5 × η, the power falls substantially as the probabilities approach 0.
When μ1 = −.5, o = 100, and η multiplied by five, both the probabilities of affirmative
answers and power fall to low levels: P(Y1o|o = 100) = 1.8% and P(Y0o|o = 100) = 1.1%,
and power=2%.

In table 2c, we present the results of the linear model in which both the means and variances
converge as o increases since both λ and η are less than zero. In the baseline case, η =
λ, so there is no change in power as o increases. However, since 5 × η < λ, power
decreases as o increases.

In table 2d, we present results for the Gamma model. Fatigue has no impact on overall
power in the Gamma model. This is due to the relative difference between means remaining
stable even as the absolute difference decreases.

6 Applicability of models to CONNECT™
Since the questions in CONNECT™ were asked in the same order within survey arms, we
could not test the applicability of the models above directly using the CONNECT™ data.
However, we could investigate the models indirectly by examining how the relative
(intervention divided by control) means and variances of different subsets of questions
changed between the control and intervention arms. To do this, we examined 10 similarly
scored questions related to the SF-12 (5 point ordinal scores [22]) which were asked at the
same location in both the control and intervention arms, and hence we would not expect
differences between the groups in the expected means or variances of responses. We next
examined relative differences in the Revised Impact of Events Scale (RIES [23] ordinal
responses of 0,1,3,5 possible) questions which were asked 16 questions later in the
intervention arm than the control arm. Finally, we examined the monitoring and blunting
scores (MBBS) which were asked 48 questions later in the intervention arm than the control
arm (binary scores).
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In Figures 2 and 3, we plot the relative means and variances and present the slopes and 95%
confidence intervals (CIs) from simple linear regressions of the ratios. These slopes have
different interpretations from the slope parameters in Section 3 models. We see that relative
means and variances of SF-12 scores did not vary much between intervention and control
groups, as we would expect since questions were asked in the same order between groups. In
the figures, ratios of 1 indicate no differences in means or variances between control and
intervention groups, ratios above 1 indicate larger values under intervention, and ratios
below 1 indicate smaller values under intervention. Although the 95% confidence interval
for the slope of SF-12 relative means did not cross zero, the magnitude of the slope was
small. For the RIES scales, the ratios of the means and variances showed slight downward
slopes whose upper bounds on the 95% confidence intervals were close to zero. This is
consistent with the responses to the RIES questions converging to a common response as in
the linear model, equation 6.

For the MBBS questions that had mean responses of below 50% in the control group, the
average value of the binary answers fell in the intervention group and the variance of the
answers also fell, as would be predicted under a linear probability (risk difference) model.
The averages did not fall as much for the MBBS scores in which the baseline probability of
responding affirmatively was above 50%, but the variance increased, again consistent with
the linear probability model. For the MBBS figures, the 95% confidence interval is close to
zero only for the slope of the relative variance line for questions with larger probabilities of
answering affirmatively.

While it is possible that the patterns could be driven by contextual differences due to
different questions asked between the two surveys, the fact that we see trends within the
subsets of questions that are predicted by our models suggests that survey response fatigue
was present. If the context of the questions was driving the results, we would not necessarily
expect to see the downward slopes within subsets of contiguous questions since priming by
previous questions should affect all of the responses similarly, on average. While the 95%
confidence intervals were not well bounded away from zero, the small number of questions
within each group limited the power to make definitive conclusions.

7 Discussion
Our theoretical considerations of the effects of survey response suggest that survey response
fatigue can both increase and decrease study power depending on the model used. For
continuous data, survey response fatigue would have no impact on study power under a
Gamma model in which the data are assumed to be bounded by 0, which is applicable to
many psychosocial summary measures with lower bounds. However, under our linear model
which converges to a common value regardless of treatment arm, the impact of response
fatigue on power is dependent on the degree to which fatigue affects the variance of
responses relative to the rate of mean convergence. If the response variance decreases more
rapidly than the convergence in means, then response fatigue could increase power.
However, if the convergence in means is fast relative to changes in response variance, then
response fatigue could decrease power under the convergent linear model. For binary data,
survey response fatigue would cause power to increase under a linear probability model, but
eventually decrease under a logistic model. Linear probability models can be used to model
absolute risk differences, while logistic models are more useful for modeling relative
differences between groups.[24]

As discussed in Section 6, some of the models we investigated were consistent with
differences in mean and variance patterns between the control and intervention arms in the
CONNECT™ study. The linear probability (risk difference) and both continuous models
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were also consistent with the findings of Galesic and Bosnjak [20] in that the models allow
for a reduction in the variability of responses for questions asked later in a survey.

A number of researchers have conducted studies investigating the impact of question and
response order on survey response rates. Malhotra [25], for example, found that the order of
response options within questions on a webpage could affect responses, particularly among
those with less education who answered a survey more quickly. Benton and Daly [26]
similarly found an education effect in the effect of question order on response. Such
demographic effects would suggest that the order effect parameters described above, such as
the η and λ terms, could be subgroup specific.

In this paper, we have considered how survey response fatigue affects power rather than
why response fatigue can cause question order effects. The importance of knowing how
fatigue will affect the decision making aspect of a randomized clinical trial (e.g. determining
which of two treatments is superior) can be as important as knowing why there might be an
impact. Our findings that survey response fatigue does not always reduce the power to detect
effects suggests that costly interventions to overcome such fatigue might not be necessary.
When collecting binary data, addressing survey response fatigue would be most necessary
when relative measures of association, such as the odds ratios, are of interest. When absolute
differences are of interest with respect to binary outcomes, measures to correct for response
fatigue might be counterproductive.

We have focused on the effect of response fatigue and question order on study power. We
have not focused on other issues that could affect the relationship of question order with
response. For example, we did not consider cases in which individuals’ responses might be
influenced by other questions in a survey. Responses to questions about self-rated health
might be influenced by whether the questions are asked before or after objective health
questions.[27] Such priming effects on response would presumably have other effects on
study power. Also, the complexity of a survey could exacerbate survey response fatigue. In
our models, this could impact the magnitude of the η parameters; greater complexity would
be associated with larger η parameters. Further, it is likely that there is a non-linear
relationship between question order and response fatigue. This would argue for order
dependent effects which could be incorporated into the models above by entering o via a
polynomial or spline transformation with additional model parameters.

Our binary and Gamma models often assumed that we were always able to obtain unbiased
effect estimates. This is a reasonable assumption under the Gamma and logistic models as
we are interested in relative rather than absolute differences between the two groups. This
might be less realistic for modeling risk differences using a linear probability model as the
probability of response is bounded by zero from below. Hence, a 10% absolute difference
(for example, 40% rates of “yes” responses in one arm versus 50% in another arm) cannot
be maintained as the probability of answering yes falls below 10% in both arms. Our
findings concerning the effects of survey fatigue may not therefore be generalizable to
extreme cases of response fatigue.

Issues concerning response fatigue and question order effects in general have not received
much attention in the statistics literature. This is in contrast to other common problems
found with survey research. For example, an ISI Web of Knowledge topic search on missing
data found over 2,000 papers in the statistics and probability literature addressing this issue.
Many of the most cited papers develop methods for handling data that is completely missing
(for example, Rubin [28]). However, few if any methods have been developed to correct for
response fatigue in which data is observed, but answers are biased towards a presumed
default value.
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While response fatigue might not always impact the bias of treatment effect estimators, it
could still bias estimators such as within treatment arm means. For example, a two armed
trial finding the proportion stating that their quality of life is good to a binary quality of life
question (1=good quality, 0 otherwise) might have baseline proportions of 50% in the
control arm and 60% in the treatment arm. If survey response fatigue reduced the proportion
responding “good” to 20% and 30%, the treatment effect remains unchanged
(60%-50%=30%-20%=10%). However, the difference of proportions within treatment arms
(e.g. 50% versus 20% in the control arm) is clinically meaningful. Thus, the goal of a study
will dictate the degree to which measures should be undertaken to reduce survey response
fatigue.

Survey response fatigue could also impact longitudinal data if questions are asked in
different orders at different time points. In a longitudinal dataset, a change in the responses
to a survey question over time could be linked to true temporal changes or to changes
resulting from survey fatigue. It is hence important for researchers to also consider how
survey question order over time can impact inferences.

In conclusion, we have have found that the relationship between survey response fatigue and
study power is not always intuitive. The measures that researchers take to reduce survey
response fatigue should be commensurate with the goals of the study.
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9 Appendix
Sample questions used to create the monitoring and blunting scores.

1. Vividly imagine that you are going to the dentist and have to get some dental work
done. Which of the following would you do? Check all of the statements that might
apply to you.

1a) I would ask the dentist exactly what work was going to be done.

1b) I would take a tranquilizer or have a drink before going.

1c) I would try to think about pleasant memories.

1d) I would want the dentist to tell me when I would feel pain.

1e) I would try to sleep.

1f) I would watch all the dentist’s movements and listen for the sound of
the drill.

1g) I would watch the flow of water from my mouth to see if it contained
blood.

1h) I would do mental puzzles in my mind.
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Figure 1.
Approximate power to detect effects for various values of η and λ in the linear model
presented in equation (6). Here, n=250, μ1 − μ0 = 0.25, ψ2 = 1, and the Type I error rate is
set to 5% (two-sided).
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Figure 2.
Relative means, intervention divided by control, among subsets of CONNECT™ questions.
The slope and 95% confidence intervals are given for each line.
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Figure 3.
Relative variances, intervention divided by control, among subsets of CONNECT™
questions. The slope and 95% confidence intervals are given for each line.
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Table 1

Typical pattern of observed data in surveys in which question order is not randomly assigned to participants

a: Full Data b: Observed Data

Question Order=1 Order=2 Order=1 Order=2

Xto X t1 X t2 X t1 Missing

Yto Y t1 Y t2 Missing Y t2
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