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The Impact of Misregistration on Change Detection 
John R. G. Townshend, Christopher 0. Justice, Charlotte Gurney, and James McManus 

Abstruct- The impact of misregistration of images on the 
detection of changes in land cover has been evaluated using 
spatially degraded Landsat MSS images. Attention is focused 
on simulated images of the normalized difference vegetation 
index (NDVI) at two of the spatial resolutions of the planned 
Moderate Resolution Imaging Spectrometer (MODIS), namely 
250 and 500 m. In the first of two sets of experiments single- 
date images from seven diverse areas were first misregistered 
against themselves and the statistical properties of the differences 
were analyzed using semivariograms. In general, we would expect 
that the finer the spatial frequencies present within an image the 
greater the consequences of misregistration. The results indicate 
that in the absence of any actual changes to the land surface, 
the consequences of misregistration were very marked even for 
subpixel misregistrations. Pairs of images from different time 
periods were then misregistered. The results showed, that for four 
of the seven areas, an error equivalent to greater than 50% of the 
actual differences in the NDVI as measured by the semivariance, 
was induced by a misregistration of only one pixel. To achieve 
an error of only lo%, registration accuracies of 0.2 pixels or 
less are required. All these four areas were densely covered by 
vegetation, whereas for the other three more sparsely vegetated 
areas with semiarid climates, a registration accuracy of between 
0.5 and 1.0 pixel were sufficient to achieve an error of 10% or 
less. These results indicate that high levels of registration must 
be achieved by operational monitoring systems if there is to be 
reliable monitoring of global change. 

I .  INTRODUCTION 

HE usefulness of remotely sensed data is dependent T on numerous qualities of sensor systems. Among those 
which have received particular attention in the past are the 
selection of spectral bands [3], [27], the radiometric sensitivity 
of the data [26], and the spatial resolving power of sensors 
[ l l ] ,  [23]. The usefulness of such data is also dependent on 
its subsequent processing and increasing attention is being 
paid to the development of information systems for programs 
such as the international Earth Observing System (EOS) [5], 
[l] and the International Geosphere Biosphere Program [12]. 
With the drive toward more reliable, quantitative estimation 
of the environment’s biophysical properties [6], the absolute 
and relative calibration of the data has become increasingly 
important [MI. These characteristics are growing in signif- 
icance because of current interest in the nature and impact 
of Global Climate change [lo], which demand long-term 
data sets in order that changes can be reliably observed 
and documented. Considerable efforts have been devoted 
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in the last few years to the specification of sensor and 
data processing systems to provide improved data for these 
objectives. One major effort relates to the Moderate Resolution 
Imaging Spectrometer (MODIS-N) [ 191, which consists of two 
sensors that are scheduled to be placed on the first U.S. EOS 
polar platforms. MODIS-N will be the principal EOS sensor 
for monitoring global changes in the land cover. As part of 
preparatory work for this sensor, a previous study evaluated the 
spatial resolution requirements for MODIS-N for monitoring 
global vegetation [13], [24]. As an outgrowth of this work 
and through involvement with the MODIS Science Team, it 
became apparent that insufficient attention was being paid to 
the geometric characteristics of the data and in particular to 
the accuracy of image registration. 

The registration of data sets to a common spatial framework 
is an essential precursor to the use of remotely sensed data for 
monitoring change. If accurate registration between images is 
not achieved, then spurious differences will be detected, arising 
merely because different locations are compared instead of 
differences in properties at the same location between one time 
and another. Standard texts on remote sensing generally stress 
the importance of this task and describe various methods for 
achieving it [4], [15], [16]. But, surprisingly few studies have 
investigated the consequences of misregistration and we have 
been able to discover only one quantitative study on this topic 
[21]. This work showed that classification accuracies achieved 
using simulated Thematic Mapper data were substantially 
reduced even if the band-to-band misregistration was only 0.3 
of a pixel. 

The accuracy of registration is usually quoted in terms of the 
root mean square (rms) error of the location of ground control 
points. Values of 0.5 to 1.0 pixels are normally regarded as 
being satisfactory and visually the results of overlaying two 
images with this level of misregistration appear acceptable. 
However the consequences of subpixel misregistration in 
quantitative terms on multitemporal data sets are unknown. 

The immediate stimulus for this research arose from an 
analysis of images used in previous simulations of MODIS- 
N [13], [24]. The areas selected included many of the most 
important global land transformations currently taking place 
which will impact on the climate or which will be affected 
by climate change (Table I). In general, we would expect that 
the finer the spatial frequencies present within an image the 
greater the consequences of misregistration. Consequently, it is 
worth noting that the observed changes in land cover occupied 
relatively small parcels of land (see fig. 6 in [24]) and their 
total areal extent was usually small. Thus the requirement for 
good registration is likely to be stringent, whereas those for 
other vegetational changes such as phenologidal ones would 
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TABLE I 
CHARACTERISTICS OF STUDY AREAS AND DATES OF IMAGES (FURTHER DETAILS OF CHANGES I N  [24]). 

ITALICIZED PART OF LOCATION NAMES INDICATES SUMMARY NAME USED IN GRAPHS AND TEXT 

Location Dates of Images Main Types of Land Transformation 

Hobbs, New Mexico July 30, 1972 

August 27, 1984 

Agricultural encroachment on rangeland. Increasing 
pivot irrigation. 

Intensification of rangeland uses; changes in ephemeral 
stream network. 

Local substantial increases in green biomass and 
increases in drainage density. 

Conversion of range forest in large blocks to both 
pastoral and arable usage. 

Tucson, Arizona May 30, 1976 

May 29, 1978 

September 25, 1984 

September 28, 1985 

July 28, 1972 

July 26, 1981 

Gourma, Mali 

Mato Grosso, Brazil 

Rondonia, Brazil August 4, 1978 

August 2, 1978 

Conversion of rain forest to agricultural use, in narrow 
rectangular grid pattern. 

Richmond, Virginia April 29, 1976 

April 28, 1978 

jUly 3, 1973 

June 18, 1984 

Conversion of temperate mixed woodland to agricultural 
use. 

Logging fire damage and regrowth of mixed woodland. Superior National Forest, 
Minnesota 

probably be lower. The areas are not believed to be atypical; 
in particular, human-induced conversions of land cover tend 
to be characterized by high spatial frequencies, because of the 
relatively local scale of human activities. This consideration 
also suggests that the problems created by misregistration are 
likely to be greater in the sensing of land surfaces compared 
with the atmosphere or many ocean properties. 

Given these concerns, it was decided to simulate varying 
degrees of misregistration and to assess their impact on es- 
timates of the true differences between the images. One of 
the most important properties to be monitored by MODIS-N 
is the Normalized Difference Vegetation Index (NDVI) which 
is the spectral ratio of near infrared (NIR) and red spectral 
bands, namely (NIR-Red)/(NIR+Red). This ratio is sensitive to 
several vegetation characteristics, including green leaf density, 
leaf area index, and photosynthetic capacity for some vegeta- 
tion types [8], [20]. The simulation therefore concentrated on 
the consequences of progressive misregistration of images in 
the accuracy of estimates of changes in the NDVI. 

11. DATA SETS AND METHODS 

The data sets utilized were the ones used in the aforemen- 
tioned simulation study on the spatial resolution of MODIS-N 
for land studies [13] and comprehensive descriptions of their 
spatial properties can be found elsewhere [24], [25]. The 
images were coregistered using common ground control points 
and an rms error of the original MSS data of between 0.5 
and 1.0 pixel was achieved using a third-order polynomial 
equation. This corresponded to values of approximately 40 
to 80 m, given the 79 m pixel size of the MSS data. Since 
the same ground control points were used in deriving the 
transformation equation and for estimating the rms error the 
true value of the latter is likely to be somewhat larger. The 
data were then degraded using a specially designed filter in 
an attempt to approximate ,the performance of the MODIS- 

N sensor [13]. The resultant spatial resolutions were 250 and 
500 m, which are the spatial resolutions of the spectral bands, 
which have been selected for land applications on MODIS- 
N. Consequently the rms errors of registration at these two 
resolutions were equivalent to 0.16 and 0.32 pixels for the 
250 m data and 0.08 and 0.16 pixels for the 500 m data sets. 
Although the data sets were not registered perfectly, the errors 
of misregistration were apparently relatively small. Errors were 
estimated using the location of the original ground control 
points selected for registering the images one to another. 

On the basis that the images were well registered, ex- 
periments were then performed to assess the consequences 
of progressive misregistration of the images. The latter was 
carried out by progressively sliding one image at 45” to the 
other and then calculating the resultant changes in the NDVI 
differences as the images were progressively misregistered. 
With the images in their original position with zero mis- 
registration, it is assumed that the differences between the 
NDVI are a result of real differences between the images, 
although these “real” changes could be a consequence not only 
of changes in land cover between the two dates but also of 
other differences such as atmospheric effects. As the images 
are sequentially misregistered, spurious differences will be 
introduced and added to the “real” changes in the NDVI. 

Before the analysis on the differences between pairs of 
images from different dates, each of the images was mis- 
registered against itself. The procedure can be envisaged by 
imagining that each image was copied and the duplicate 
image was slid across the original in the way described 
for the pairs from different dates; the resultant differences 
were then analyzed. The benefit of this procedure is that 
the images are, by definition, perfectly registered at the start, 
so that the impacts of any initial misregistration or of other 
spurious differences such as contrasts in sensor performance 
or atmospheric interference are eliminated. Consequently, the 
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relationship between the spatial structure of the images and 
the impact of misregistration can be more clearly examined. 

In order to estimate the effects of misregistration, the 
differences between the NDVI images were measured by the 
semivariance. In the case of misregistering one image against 
itself, each pixel X ( i , j )  is compared to a corresponding pixel 
X ( i  + d ; . j  + d j ) ,  where d; is the misregistration from line 
to line (vertical), and dj  is the misregistration from pixel to 
pixel (horizontal). 

The difference between the two values is squared, summed 
for each comparison, divided by the total number of compar- 
isons and then halved. This gives the semivariance (SV): 

N P  N L  
{ X ( i , j )  - X ( i  + di,2 + d j ) } 2  

j = 1  i = l  
2NP.NL 

S V  = 

where N P  = the number of pixels in a line and N L  = the 
number of lines in an image. 

The resultant plots of semivariance against misregistration 
have properties more akin to the plots of local variance against 
resolution [29] rather than variogram where the semivariance 
is plotted against lag. Nevertheless, use of the semivariance 
has the advantage that the properties of the semivariance plots 
are well understood from previous work [9]. For example, 
assuming that we are dealing with a stationary image, then in 
the experiments involving the sliding of one image over a copy 
of itself, the semivariance will progressively rise from a value 
of zero when there is no misregistration (di = 0 , d j  = 0) 
and will asymptotically approach the variahce (V) (not the 
semivariance) of the original image. 

N P  N L  

j = 1  i = l  
( X ( 2 . j )  - X } ’  

NP.NL 
V =  

where X is the mean. At this level of misregistration, the pixels 
being compared are essentially uncorrelated, so that any further 
increase in misregistration will have no effect. The number of 
pixels at which this occurs is called the range. 

The results can be normalized by plotting the semivariance 
values as a proportion of the variance of the image [17]. 

sv  
Normalized SV = --. 

V 
Values will then tend progressively toward 1.0. If the data 

are nonstationary (i.e., there is some sort of trend across the 
image), this assumption will not hold and values could exceed 
1.0 or never reach this value. Once results are normalized, 
differences between the curves due to the different image 
variances will have been removed and the form of the curve 
will be solely due to the spatial structure of the image. For 
images with a substantial amount of high frequency variation 
the range will be small, whereas if there are large, near uniform 
areas, the semivariance will rise slowly and should gradually 
reach the maximum value at a misregistration equivalent to 
the diameter of the uniform areas. 

When we compare images obtained at different times, 
each pixel in the first image X ( i , j )  is compared with the 

corresponding pixel in the second image Y ( i  + d,. j + d 3 ) .  
The semivariance (SV) is then: 

N P  N L  
{ ( X ( i . j )  - Y ( i  + d , , j  + dJ)>* 

j = 1  i = l  
2NP.NL 

sv = 

When d, = 0 and d, = 0, the images are perfectly registered 
and the semivariance will then be half the mean square 
difference between the two images. On the semivariogram this 
value is represented by the y-axis intercept, also known as the 
“nugget” [9], which represents the actual differences between 
the images. If there were no differences between the two 
images then with zero misregistration then the nugget would be 
zero. Normalization of the semivariance when misregistering 
two different images is discussed below. 

The pairs of images were misregistered by 0.2, 0.5, 0.8, 1.0, 
2, 3, 5 ,  and 10 pixels simultaneously in the 2 and y directions 
corresponding to corresponding to 71, 177, 283, 354, 707, 
1061, 1768, and 3536 meters for the 250-m pixels and 141, 
354, 566, 707, 1414, 2121, 3536, and 7071 meters for the 
500-m pixels. Emphasis was placed on values close to one 
pixel, since it is this region that least was understood about 
the effects of misregistration. Registration of images to map 
bases or to other images by fractions of pixels is routinely 
carried out and the rms error, which is achievable for satellite 
sensing systems, is commonly less than one pixel (e.g., [28], 
[2]). Achieving such accuracies cannot be conducted by simply 
sliding images or parts of images across each other by integer 
amounts. Instead some sort of resampling of one of the images 
is needed, usually by a procedure like cubic convolution, 
which provides an estimate of the pixel value at the new 
pixel locations. Numerical estimates of the consequences of 
misregistrations for the smallest values may be somewhat 
inaccurate since the amount of misregistration is comparable to 
the inherent registration accuracy of the data sets from different 
dates (see Section 11). 

111. MISREGISTRATION OF IMAGES AGAINST THEMSELVES 

A. Trends of Unnormalized Semivariances 

Fig. 1 shows the results obtained when all 14 images are 
misregistered against each other using the 500-m pixels. As 
anticipated, the plots for all images have an overall convex 
form and the plots with the larger overall semivariances display 
a steep rise at relatively small increases in misregistration. 
Substantial differences between the individual pairs of images 
occur, most notably for the two pairs of images of Superior 
and Richmond. No simple trends can be observed in relation to 
obvious vegetation type. All three sparsely vegetated semiarid 
areas, namely Mali, Hobbs, and Tucson, have relatively low 
semivariances, but the trends for the tropical rain forest images 
of Rondonia are similar. 

B. Trends of Normalized Semivariances 

If interest lies only in changes in the absolute value of the 
NDVI, then there is no need to normalize the trends. But 
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Fig. 1. Increase in semivariance with progressive misregistration, when 
single date images, with a pixel size of 500 m, are misregistered against 
themselves. 
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Fig. 2. Increases in normalized semivariance with progressive misregistra- 
tion, when single date images, with a pixel size of 500 m, are misregistered 
against themselves (see Fig. 1 for caption). 

the absolute changes may be relatively unimportant compared 
with relative changes. For example, in the second Mali image 
very considerable variations in vegetation cover are found as a 
result of localized rainfall [14], but these regionally important 
variations are only represented by relatively small variations 
in the absolute value of the NDVI. 

The variations in the multidate images were normalized 
by dividing the semivariances by the variance of the images 
(Section II), since these represent the maximum values as- 
suming the images are stationary. Hence the maximum values 
should be 1.0, but as Fig. 2 shows none of the curves have 
normalized semivariances much above 0.6. This suggests that 
much greater misregistration than the maximum considered 
value of 14 pixels of diagonal movement would be required 
before the maximum semivariance values could be reached. 
Alternatively, the maximum theoretical value of 1 .O might not 
be achievable because the images are nonstationary . Visual 
examination of the images (Fig. 6 in [24]) supports this 
supposition for at least three of the areas. 

The order of the images on the graph is very different from 
those obtained without normalization (cf. Fig. 1). For example, 
the image of Mali for 1984 has moved from the lowest 
position on the graph to the highest. In those images where 
the total variances of the images are very small, the effects of 
misregistration can introduce a proportionately large amount 

0 2000 4000 6000 8000 

Misregistration (m) 

Fig. 3. Increases in semivariance with misregistration, when pairs of NDVI 
images from two different dates, with a pixel size of 500 m, are misregistered 
(see Fig. 1 for caption). 

of additional variance. The convex form of the plots again 
indicates the strong effects for small levels of misregistration. 

Iv. MISREGISTRATION OF CHANGE IMAGES 

A. Trends of Unnormalized Semivariances 
Misregistering images from two different times is a more 

realistic simulation of the influence of registration accuracy 
on change detection. Fig. 3 shows the resultant curves for 
the seven different areas. The height at which the curves 
intercept the y-axis, when the misregistration is zero (also 
known as the nugget) is indicative of the actual changes 
between the two images. It is notable that the range of nugget 
values is small, compared with the range of semivariances 
when misregistration exceeds even 2000 m (or four pixels). It 
is notable that the rank order of the curves is very similar 
to that observed for the images from the individual dates. 
This is not unexpected, when one considers that for most 
areas changes between images at the same calendar date are 
relatively minor. Thus in Fig. 3 the effects of real changes are 
progressively confused with errors introduced by comparing 
different locations on the ground, which was exactly the effect 
observed when misregistering images against themselves. 

Careful observation of Fig. 3, indicates that for some areas, 
there is no immediate increase in the semivariance at the 
smallest misregistrations, and for the Hobbs area there is a 
small decline. This presumably arises because the pairs of 
images were less perfectly registered than indicated by the rms 
errors of the ground control points (see Section II), and moving 
them across each other initially leads to a small improvement 
in registration for subpixel shifts. The failure of the rms error 
reliably to indicate the accuracy of registration may be a result 
of using the same ground control points which were used 
in deriving the transformation equations in the registration 
process. These do not form an independent sample of locations 
for estimating registration accuracy and appear to have given 
a somewhat misleading indication of the true accuracy. 
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Fig. 4. Percentage increases in semivariance with misregistration, when pairs 
of NDVI images from two different dates, with a pixel size of 500 m, are 
misregistered (see Fig. 1 for caption). This and the next three figures indicate 
the impact of misregistration in detecting spurious changes relative to real 
changes in the NDVI between the two dates. 

B. Proportional Changes Due to Misregistration 

The form of the curves, shown in Fig. 3, indicates the 
combined effects of real changes in the NDVI, and those due 
to a lack of spatial registration between the two images. In 
change detection, it is importnt to ensure that real differences 
are not being masked by spurious effects, such as those 
introduced by misregistration. To assess the importance of 
the error introduced by misregistration compared with qctual 
changes, the percentage increase in semivariance (SVm) at a 
misregistration m compared with the semivariance (SV0) at 
zero misregistration was calculated as follows: 

The resultant plot for the 500-m pixels is shown in Fig. 4. 
Even for a few pixels misregistration the percentage increase 
on semivariance exceeds 100% for four of the areas. 

To better examine the trends, the relationships from Fig. 4 
are replotted in Fig. 5 taking the logarithm of the percentage 
increases in semivariance. Those curves whose values dropped 
slightly with increasing misregistration, as discussed at the 
end of the previous subsection have only had values plotted 
for misregistrations whose semivariances are greater than that 
at “zero” misregistration, since negative values cannot be 
plotted on logarithmically scaled axes. Fig. 5 demonstrates 
dramatically the impact of misregistration. Note that the 50% 
line falls at or below the curves of four of the areas for 
a misregistration of only 1 pixel. In other words, spurious 
differences greater than 50% of the true differences between 
the images have been induced by a misregistration of only one 
pixel. To achieve an error, less than 10% of the true differences 
between the different dates would require a misregistration of 
only 100 m or 0.2 of a pixel for these areas. Interestingly, 
these four areas are all from densely vegetated areas, whereas 
the other three areas are sparsely vegetated ones with semiarid 
climates. In Fig. 6 the average values for the densely vegetated 
and sparsely vegetated areas have been plotted. For the latter 
areas a misregistration of 1.0 pixel would lead to errors of 
less than 10% of the true differences, substantially less than 

---U---- 

01 semi-variance due to 

0 2000 4000 6000 8000 
Misregistration (m) 

Fig. 5. Semilogarithmic plot of Fig. 4, showing the percentage increases in 
the semivariance with misregistration, relative to the semivariance with no 
misregistration, when pairs of NDVI images for two different dates, with a 
pixel size of 500 m, are misregistered (see Fig. 1 for caption). 
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Fig. 6. Average percentage increases in semivariance with misregistration 
for sparsely and densely vegetated areas relative to the semivariance with no 
miregistration, when pairs of NDVI images from two different dates, with a 
pixel size of 500 m, are misregistered. 

average value of over 50% for the more densely vegetated 
areas. 

Percentage changes in semivariance were also derived for 
a spatial resolution of 250 m. The latter is the resolution 
of the red and near infrared bands that will be initially 
sensed by MODIS-N, the other bands for land applications all 
being sensed at 500 m [19]. The results indicate that slightly 
coarser misregistrations would be acceptable as measured by 
the number of pixels (Fig. 7). Nevertheless, on average, a 
misregistration of only one pixel results in more than a 40% 
increase in semivariance for the densely vegetated areas. 

V. CONCLUDING COMMENTS 

Results from simulations indicate the need to achieve high 
values of registration accuracy, otherwise substantial error 
terms will be induced when comparisons between images 
are made for the purposes of detecting land cover changes. 
Although only images of the NDVI for resolutions of 250 
m and 500 m have been considered, the evidence from the 
simulations strongly suggests that misregistration can have a 
marked effect on the ability of remotely sensed data to detect 
changes in land cover. Even subpixel misregistrations can have 
a major impact, and the most marked proportional changes will 
tend to occur at the finest misregistrations. 
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Fig. 7. Average percentage increases in semivariance with misregistration 
for sparsely and densely vegetated areas relative to the semivariance with no 
misregistration, when pairs of NDVI images from two different dates, with a 
pixel size of 250 m, are misregistered. 

For four of the areas, a misregistration equivalent to only 
one pixel induces errors between 50 and 100% of the true 
changes in NDVI due to land cover change when the pixel 
size is 500 m. The potential of the imagery to detect this 
type of change has therefore been substantially reduced, if not 
virtually eliminated. To keep errors down to 10% requires a 
misregistration accuracy of approx 

imately a fifth of a pixel or less for these four areas. For 
the other three areas a misregistration of between 0.5 and 1.0 
pixel would result in errors of 10% or less. If small geographic 
areas are being considered, improved accuracy may in part be 
achieved by additional manual ground control pointing. But for 
global monitoring instruments such as MODIS-N, interactive 
manual approaches are impractical for registration. Instead, 
these results imply the need for highly accurate knowledge 
of ground location, which can be achieved in part through 
information on satellite navigation. Such knowledge will need 
to be much better than that of platforms such as N O M ,  
SPOT, or Landsat. Alternatively, errors could be reduced by 
subsequent processing using image-matching methods [22], 

One further additional comment should be made concerning 
the results. We have assumed that all the local errors that are 
introduced by misregistration are significant. But, if one is 
making gross regional estimates of change, then it could be 
argued that spurious positive and negative changes in detected 
values caused by misregistration will tend to counterbalance 
each other and the mean value may not be substantially 
affected. However, the variability around the mean will in- 
crease substantially with misregistration. Thus, increases in 
misregistration will lead to progressively greater overestimates 
of both positive and negative changes in the NDVI or any 
other measured spectral property. 

Without accurate registration of images the resultant errors 
are likely to counter markedly the ability of MODIS-N to 
detect many changes in land cover properties achieved through 
improvements in instrument properties such as radiometric 
resolution, spectral bandwidth, and spatial resolution [ 191. The 
results strongly suggest the need to consider the specification 
of registration accuracy in the design of any remote sensing 
system, if reliable detection of land cover change is a major 
objective. 

[71. 
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