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Abstract

Phylogeneticists are increasingly assembling genome-scale data sets that include hundreds of genes to resolve their focal
clades. Although these data sets commonly include a moderate to high amount of missing data, there remains no
consensus on their impact to species tree estimation. Here, using several simulated and empirical data sets, we assess the
effects of missing data on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and gene rate
heterogeneity. We demonstrate that concatenation (RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR),
and supertree (matrix representation with parsimony [MRP]) methods perform reliably, so long as missing data are
randomly distributed (by gene and/or by species) and that a sufficiently large number of genes are sampled. When data
sets are indecisive sensu Sanderson et al. (2010. Phylogenomics with incomplete taxon coverage: the limits to inference.
BMC Evol Biol. 10:155) and/or ILS is high, however, high amounts of missing data that are randomly distributed require
exhaustive levels of gene sampling, likely exceeding most empirical studies to date. Moreover, missing data become
especially problematic when they are nonrandomly distributed. We demonstrate that STAR produces inconsistent results
when the amount of nonrandom missing data is high, regardless of the degree of ILS and gene rate heterogeneity.
Similarly, concatenation methods using maximum likelihood can be misled by nonrandom missing data in the presence
of gene rate heterogeneity, which becomes further exacerbated when combined with high ILS. In contrast, ASTRAL, MP-
EST, and MRP are more robust under all of these scenarios. These results underscore the importance of understanding the
influence of missing data in the phylogenomics era.

Key words: coalescent methods, concatenation methods, gene rate heterogeneity, incomplete lineage sorting, missing
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Introduction
Over the past decade, the effects of missing data on phylo-
genetic analyses have been extensively explored using both
simulated and empirical data sets. Numerous studies have
indicated that phylogenetic reconstruction is not sensitive
to missing data, as long as the overall number of characters
is large (e.g., Philippe et al. 2004; Fulton and Strobeck 2006;
Wiens and Moen 2008; de la Torre-B�arcena et al. 2009;
Thomson and Shaffer 2010; Wiens and Morrill 2011; Jiang
et al. 2014). Similarly, it has been concluded that adding
taxa, even with vast amounts of missing data should generally
increase the accuracy of phylogenetic inference (e.g., Wiens
2003, 2005; Cho et al. 2011; Wiens and Tiu 2012). This con-
clusion is further exemplified by numerous efforts to build
so-called mega-phylogenies, which include hundreds or even
thousands of species using very sparse data matrices (e.g.,
Driskell et al. 2004; McMahon and Sanderson 2006;
Edwards and Smith 2010; Thomson and Shaffer 2010; Pyron
and Wiens 2011; Smith et al. 2011; Zanne et al. 2014). These
data sets are typically assembled by mining sequences from
resources such as GenBank (Benson et al. 2015) to build a
single, enormous concatenated matrix. Such matrices have
the advantage of including many species in a single analysis,
but suffer from a high amount of missing data (i.e., more than

90% in many cases). As a counterpoint to these findings,
other studies have demonstrated that phylogenetic recon-
struction may be compromised by missing data, especially
when they are nonrandomly distributed (e.g., Agnarsson
and May-Collado 2008; Hartmann and Vision 2008;
Lemmon et al. 2009; Kupczok et al. 2010; Simmons 2012a,
2012b, 2014; Kvist and Siddall 2013; Xia 2014). Additionally,
recent studies by Sanderson et al. (2010) and Steel and
Sanderson (2010) have demonstrated that data sets with in-
complete taxon coverage—whereby sequences from some
partitions are missing for some taxa—can be phylogenetically
indecisive. Indecisive data sets can result in a vast terrace of
phylogenetic trees that have different topologies but the
same optimality score (Sanderson et al. 2011).

This dueling viewpoint on the effects of missing data
obviously necessitates further investigation, and is especially
timely owing to two main developments in the field of phy-
logenetics. The first are the technological advances in next-
generation sequencing (Mardis 2013), which have facilitated
the utilization of genome-scale data to resolve major
branches in the tree of life. This is perhaps best exemplified
by the recent effort to understand the evolutionary history of
modern birds using whole-genome data from 48 species
(Jarvis et al. 2014). The second is the shifting emphasis in
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phylogenetic studies from gene tree to species tree estimation
(Edwards 2009), which leads to the consideration of how best
to reconstruct the species tree from a cloud of gene tree
histories (Maddison 1997). Along these lines, traditional con-
catenation methods (William and Ballard 1996; de Queiroz
and Gatesy 2007) have been commonly employed for this
purpose, which implicitly assume that all genes have the same
or very similar evolutionary histories. The utility of concate-
nation methods is further advocated by several recent simu-
lation and empirical studies (e.g., Gatesy and Springer 2014;
Springer and Gatesy 2014; Tonini et al. 2015). In contrast,
coalescent-based methods permit gene trees to have different
evolutionary histories (Liu, Yu, Kubatko, et al. 2009). Some of
these methods, such as BEST (Liu 2008) and *BEAST (Heled
and Drummond 2010), simultaneously estimate the gene
trees and species tree. These co-estimation methods have
outstanding accuracy, but are computationally intensive
and do not presently scale up for genome-level analyses
(Leach�e and Rannala 2011; Bayzid and Warnow 2013;
Mirarab, Bayzid, and Warnow 2014). Thus, they are not the
focus of our study. Instead, we focus on gene-tree-based co-
alescent methods, which infer the species tree from a set of
estimated gene trees as implemented in MP-EST (Liu et al.
2010), STELLS (Wu 2012), and STEM (Kubatko et al. 2009). In
addition, some of the recently developed consensus methods,
such as ASTRAL (Mirarab, Reaz, Bayzid, et al. 2014; which
constructs species tree from quartets [Bryant and Steel
2001]), NJst (Liu and Yu 2011), STAR (Liu, Yu, Pearl, et al.
2009), and STEAC (Liu, Yu, Pearl, et al. 2009), estimate the
species tree using summary statistics from the estimated gene
trees. Although the latter consensus methods are not strictly
coalescent-based, they can accommodate gene tree discor-
dance due to incomplete lineage sorting (ILS), and have been
shown to be statistically consistent under the multispecies
coalescent model (Liu, Yu, Pearl, et al. 2009; Liu and Yu 2011;
Mirarab, Reaz, Bayzid, et al. 2014). For simplicity, we also refer
to these consensus methods as gene-tree-based coalescent
methods. Moreover, a recent review on the topic of coales-
cent methods indicates that they are likely to be more com-
putationally manageable than concatenation methods,
especially for data sets with many taxa and thousands of
genes (Liu, Xi, Wu, et al. 2015).

Until now, the evaluation and comparison of coales-
cent methods have been conducted primarily using sim-
ulated data under conditions where missing data are
absent (e.g., Leach�e and Rannala 2011; Mirarab, Bayzid,
and Warnow 2014; Mirarab, Reaz, Bayzid, et al. 2014; Liu,
Xi, and Davis 2015). However, this is seldom the case for
large-scale phylogenomic data, and the amount of missing
data varies greatly across data sets (in this article, we
specifically refer missing data to missing sequences in
genes or loci), for example, 6% missing data for the
2,320-gene mammal data set by Tsagkogeorga et al.
(2013), 28% for the 310-gene vascular plant data set by
Xi et al. (2014), 34% for the 852-gene land pant data set by
Wickett et al. (2014), 55% for the 150-gene animal data set
by Dunn et al. (2008), and 81% for the 1,487-gene animal
data set by Hejnol et al. (2009). The presence of missing

data in phylogenomic data is attributed to a variety of
factors that may be either methodological or biological.
For example, 1) insufficient sequencing coverage in next-
generation sequencing experiments; 2) degraded DNA or
RNA, which is especially prominent for taxa acquired from
historical materials (e.g., older museum specimens and
fossilized bones); 3) bias in the pattern of gene loss due
to variation in functional constraints across clades; and 4)
species with greatly elevated substitution rates, which
may result in highly variable gene sequences that can be
especially problematic for target enrichment methods
when universal primers or probes are used across a
broad swath of the tree of life. In some cases, these
issues may result in randomly distributed missing data
(e.g., low sequencing coverage); in others, however, miss-
ing data may be nonrandomly distributed across species
and/or genes (e.g., parasites are often associated with sig-
nificant genome reduction by gene loss [Wolfe et al. 1992;
Katinka et al. 2001; Sakharkar et al. 2004; de Koning and
Keeling 2006; McNeal et al. 2007; Molina et al. 2014]).

The effects of missing data on phylogenetic inference
are beginning to be addressed more explicitly using large-
scale simulated or empirical data (e.g., Hartmann and
Vision 2008; Hovm €oller et al. 2013; Kvist and Siddall
2013; Roure et al. 2013; Jiang et al. 2014). A recent study
by Hovm €oller et al. (2013) in particular examined the ef-
fects of missing data on coalescent analyses (*BEAST and
STEM). In their simulations, missing data were randomly
distributed among species or concentrated in certain spe-
cies. The latter case might result from species sampled
using degraded DNA as we outline above. The authors
concluded that the amount of missing data (up to 50%)
had a negligible effect on coalescent analyses of data sets
with 25–100 genes. These results are reassuring and follow
a long history of well-cited studies arguing that missing
data are generally not problematic for phylogenetic infer-
ence. Here, we take this opportunity to further explore the
effects of missing data on species tree estimation using
both simulated and previously published empirical data.
Specifically, our study focuses on a comparison of concat-
enation, gene-tree-based coalescent, and supertree meth-
ods, and seeks to explore 1) how missing data affect
species tree estimation under varying degrees of ILS and
gene rate heterogeneity, and 2) the circumstances under
which missing data may mislead species tree estimation.

Results and Discussion
Our analyses demonstrate that missing data can indeed in-
fluence species tree estimation, but this influence depends on
a variety of factors. As a roadmap to our results and discussion
below, we summarize results from 17- and 5-taxon simulation
analyses in figure 1. In general, all methods we investigated
here—concatenation (RAxML), gene-tree-based coalescent
(ASTRAL, MP-EST, and STAR), and supertree (matrix repre-
sentation with parsimony [MRP]) methods—perform reli-
ably, as long as missing data are randomly distributed (by
gene and/or by species) and that a sufficiently large
number of genes are sampled. When data sets are indecisive
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sensu Sanderson et al. (2010) and/or ILS is high, however, high
amounts of missing data that are randomly distributed re-
quire exhaustive levels of gene sampling, likely exceeding most
empirical studies to date. Moreover, missing data become
especially problematic when they are nonrandomly distrib-
uted. STAR, in particular, produces inconsistent results when
the amount of nonrandom missing data is high, regardless of
the degree of ILS and gene rate heterogeneity. Similarly, con-
catenation methods using maximum likelihood (ML) can be
misled by nonrandom missing data in the presence of gene
rate heterogeneity, which becomes further exacerbated when
combined with high ILS. We discuss these results in detail
below, and juxtapose our findings with corroborating evi-
dence from empirical data sets.

The Impact of Missing Data on Species Tree
Estimation in the Presence of ILS

For each of the data sets simulated on species trees T1–T6
(fig. 2), we examined the impact of missing data on species
tree estimation using three patterns (fig. 3), that is, missing
data that were randomly distributed across genes and species
(R), missing data that were concentrated in a subset of

randomly chosen genes (G), or concentrated in a subset of
randomly chosen species (S). Importantly, the overall per-
centages of missing data were comparable across these
three patterns (i.e., 35%, 53%, and 70%). For each of these
data sets, we used the metric of phylogenetic decisiveness
sensu Sanderson et al. (2010) to characterize the pattern of
incomplete taxon coverage induced by missing data. Here, we
referred to a data set as decisive if the true species tree was
uniquely defined by subtrees determined by each separate
gene. These subtrees were induced from the true species tree
(i.e., species trees T1–T6) by pruning away any taxa that had
missing data for each gene. For the pattern G, there were
always some genes including sequences from all 17 species.
Thus, these data sets were decisive as defined by Sanderson
et al. (2010), that is, the pattern of incomplete taxon coverage
uniquely defined the true species tree. This applied even
when the amount of missing data was high (i.e., G70%). For
the pattern R, incomplete taxon coverage led to indecisive
data sets in regard to the true species tree only when the
amount of missing data was high (i.e., R70%) and the number
of genes was �200 (fig. 4a). Thus, when missing data were
randomly distributed across genes and species, increasing the
number of genes eventually led to decisive data sets, which
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FIG. 1. Summary of the impact of missing data on species tree estimation under varying degrees of ILS and gene rate heterogeneity. The performance of
concatenation (RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (MRP) methods was evaluated using data sets
simulated on 17- and 5-taxon species trees. Various amounts of missing data were generated using five different patterns. Colored cells indicate the
performance of species tree estimation methods under a particular situation. Here, blue, yellow, orange, and red represent that the method performs
well, fair, poor, and inconsistently, respectively. For 17-taxon simulations, we present the mean RF distance, in which case, a smaller value equals
increased phylogenetic accuracy. Here, the performance of a particular method is assigned as fair and poor if the mean RF distance between the true
species tree and those estimated from 200-gene data sets is larger than 0.2 and 0.4, respectively. In contrast, for 5-taxon simulations, we present the
proportion of simulations in which a particular method recovers the true species tree. Here, a bigger value equals increased phylogenetic accuracy, and
the performance is assigned as fair and poor if the proportion is less than 0.8 and 0.6, respectively (50- and 200-gene data sets for low and high ILS,
respectively).
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was consistent with Sanderson et al. (2010). In contrast, the
incomplete taxon coverage was especially problematic for the
pattern S with regard to data decisiveness. When the amount
of missing data was high (i.e., S70%), 23–34% of our simulated

data sets were indecisive in regard to the true species tree
even when the number of genes increased to 2,000 (fig. 4b).
Under these circumstances, the pattern of incomplete taxon
coverage likely results in a vast terrace of phylogenetic trees

(a)

(b)

G35% G53% G70%

R35% R53% R70%

(c)

S35% S53% S70%

sp
ec

ie
s

genes

FIG. 3. Examples of three patterns (R, G, and S) used to simulate missing data. For each data set, 35%, 53%, or 70% of the total gene sequences were
removed. Present and absent gene sequences are shown in black and white, respectively. (a) For the pattern R, missing data are randomly distributed
across ingroup species for all genes. (b) For the pattern G, missing data are randomly distributed across ingroup species but concentrated in a subset of
randomly chosen genes. (c) For the pattern S, missing data are randomly distributed across all genes but concentrated in a subset of randomly chosen
species.
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FIG. 2. DNA simulations using 17-taxon species trees to investigate the impact of missing data in the presence of ILS. DNA sequences were simulated on
ultrametric species trees T1–T6 under the multispecies coalescent model (Rannala and Yang 2003). The heights of these species trees are 0.05 (branch
lengths are in mutation units). To achieve similar tree heights, the internal branch lengths of the symmetrical (T1–T3) and pectinate (T4–T6) species
trees were set to be 0.01 and 0.003125, respectively. The population size parameter � is defined as 4mNe, where Ne is the effective population size and m is
the average mutation rate per site per generation.
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that have different topologies but the same optimality score
(Sanderson et al. 2011). These results indicate that high
amounts of missing data are more likely to create indecisive
data sets, especially when missing data are concentrated in a
subset of randomly chosen species.

Simulation analyses of our 17-taxon species trees T1–T6
demonstrated that when � was low (i.e., 0.001 and 0.0003125
for species trees T1 and T4, respectively), all simulated gene
trees (when rooted with species Q) were congruent with the
species tree topology. When � increased (i.e., 0.01 and
0.003125 for species trees T2 and T5, respectively), on average
26% of the simulated gene trees were congruent with the
species tree topology. When � was high (i.e., 0.1 and
0.03125 for species trees T3 and T6), the topologies of simu-
lated gene trees were highly variable, and none of these gene
trees matched the species tree topology.

When the degree of ILS was low (i.e., species trees T1, T2,
T4, and T5), missing data had a minimal effect on the accu-
racy of species tree estimation, as long as the data sets were
decisive. Under these circumstances, the mean Robinson–
Foulds (RF) distances between the true species tree and
those estimated by the concatenation method (RAxML;

very similar results were observed in partitioned RAxML anal-
yses [supplementary fig. S1, Supplementary Material online]),
two gene-tree-based coalescent methods (ASTRAL and
MP-EST; but not STAR, see below), and the supertree
method (MRP) were less than 0.013 as the number of
genes increased to 100 (fig. 5). However, the accuracy of spe-
cies tree estimation appeared to be adversely affected by
missing data when data sets were indecisive, which was espe-
cially notable for gene-tree-based coalescent and supertree
methods. For example, for the pattern G70%, the mean RF
distance between the species tree T5 and those estimated by
ASTRAL was small (0.024) as the number of genes increased
to 50 (fig. 5). In contrast, when data sets possessed the same
amount of missing data (i.e., 70% for the 50-gene data sets),
the mean RF distance between the species tree T5 and those
estimated by ASTRAL increased to 0.262 and 0.549 for pat-
terns R70% and S70%, respectively (fig. 5). Under these cir-
cumstances, the concatenation method showed higher
accuracy with a mean RF distance of 0.042 and 0.224 for
patterns R70% and S70%, respectively (fig. 5). These results
indicate that under a low degree of ILS, the concatenation
method is more robust to missing data, even when the data

No. of genes

0

20

40

60

80

100

50 10
0

20
0

50
0

10
00

20
00

0

20

40

60

80

100

50 10
0

20
0

50
0

10
00

20
00

0

20

40

60

80

100

50 10
0

20
0

50
0

10
00

20
00

0

20

40

60

80

100

50 10
0

20
0

50
0

10
00

20
00

No. of genes

pe
rc

en
ta

ge
pe

rc
en

ta
ge

No. of genes No. of genes

R35%
R53%
R70%

S35%
S53%
S70%

T1, T2, and T3 T4, T5, and T6

T1, T2, and T3 T4, T5, and T6(a)

(b)

FIG. 4. Percentages of simulated 17-taxon data sets that were phylogenetically decisive sensu Sanderson et al. (2010). DNA sequences were simulated on
symmetrical (T1–T3) and pectinate (T4–T6) species trees (fig. 2), and missing data were then generated on each of the 50-, 100-, 200-, 500-, 1,000-, and
2,000-gene data sets. All data sets with missing data concentrated in a subset of randomly chosen genes (G) were decisive and thus not presented here.
(a) Missing data are randomly distributed across ingroup species and all genes (R). (b) Missing data are randomly distributed across all genes but
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FIG. 5. The mean RF distances between the true species trees T1–T6 and those estimated from data sets with various amounts of missing data. DNA
sequences were simulated on species trees T1–T6 (fig. 2), and missing data were then generated on each of the data sets using one of the three patterns,
R, G, and S as described in the main text and in figure 3. Species trees were estimated from 50-, 100-, 200-, 500-, 1,000-, and 2,000-gene data sets using
concatenation (unpartitioned RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (MRP) methods.
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set is indecisive. However, the performance of gene-tree-
based coalescent and supertree methods can be greatly im-
proved by sampling more genes. For example, as the number
of genes increased to 2,000, the mean RF distance between
the species tree T5 and those estimated by ASTRAL decreased

to 0.021 for the pattern S70% (fig. 5). These results corrobo-
rate findings from previous studies in which adding incom-
pletely sampled genes generally increases the accuracy of
phylogenomic analyses, especially when the amount of miss-
ing data is high (Hovm€oller et al. 2013; Jiang et al. 2014).
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In addition, our simulations show that compared with
other gene-tree-based coalescent methods (ASTRAL and
MP-EST), missing data had a more adverse effect on STAR
when data sets were indecisive. For example, for the pattern

S70%, the mean RF distances between the species tree T1 and
those estimated by ASTRAL and MP-EST were 0.189 and
0.229, respectively, as the number of genes increased to 200
(fig. 5). In contrast, the mean RF distance between the species
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tree T1 and those estimated by STAR was 0.965 (fig. 5). As the
accuracy of gene tree estimation was very high for the pattern
S70%, that is, on average more than 99% of the estimated
gene trees matched the gene trees simulated on the species
tree T1, the negative effects of missing data on STAR observed
here could not be attributed to gene tree estimation error.
Furthermore, even when data sets were decisive, the perfor-
mance of STAR was greatly compromised by missing data if
the true species tree was pectinate (i.e., species trees T4 and
T5). For example, for the pattern G70%, the mean RF distance
between the pectinate species tree T4 and those estimated by
STAR was 0.341 as the number of genes increased to 50
(fig. 5). In contrast, STAR consistently recovered the symmet-
rical species tree T1 even for the pattern G70% (i.e., the mean
RF distance = 0; fig. 5).

What may explain this discrepancy between STAR and
other gene-tree-based coalescent methods? By default,
STAR first produces a distance matrix by counting the
ranks between all pairs of taxa for each of the rooted gene
trees, and then constructs the species tree from this distance
matrix using neighbor-joining (NJ) (Saitou and Nei 1987).
As the ranks depend on the number of taxa in individual
gene trees, gene trees possessing a large number of missing
taxa likely bias the estimation of ranks (Zhong et al. 2014). In
addition, the accuracy of NJ declines dramatically when the
amount of missing data is high (Wiens 2003; Hartmann and
Vision 2008), which appears to be exacerbated if data sets
are indecisive. In contrast, ASTRAL finds the species tree
that maximizes the total number of quartet trees induced
by gene trees, and MP-EST utilizes rooted triples in gene
trees to estimate the species tree. These two methods
appear to be less sensitive to missing data likely because
the distributions of triples and quartet trees are invariant
to missing taxa in the gene trees. Furthermore, for species
trees with the same number of taxa, the pectinate topology
(e.g., species tree T4) possesses many more nested ranks
than the symmetrical one (e.g., species tree T1). Thus, the

performance of STAR appears to be greatly compromised by
the high amount of missing data, which consistently esti-
mates incorrect species trees especially when data sets are
indecisive. Under these circumstances, the performance of
STAR can still be improved by sampling more genes, but the
number of genes required may be larger than most empirical
studies to date. For example, for the pattern S70%, the mean
RF distance between the species tree T4 and those esti-
mated by STAR was 0.388 even as the number of genes
increased to 2,000 (fig. 5).

When the degree of ILS was high (i.e., species trees T3 and
T6), the accuracy of species tree estimation declined, some-
times dramatically, as the amount of missing data increased.
For example, using complete data sets, the mean RF distance
between the species tree T3 and those estimated by the con-
catenation method was 0.060 as the number of genes in-
creased to 100 (fig. 6). In contrast, the mean RF distance
increased to 0.166, 0.304, and 0.666 for patterns G35%,
G53%, and G70%, respectively (fig. 5). Under these circum-
stances, ASTRAL showed higher accuracy with a mean RF
distance of 0.039, 0.104, and 0.468 for patterns G35%,
G53%, and G70%, respectively (fig. 5). These results indicate
that in the presence of high ILS, gene-tree-based coalescent
methods (ASTRAL and MP-EST) perform better than the
concatenation method when the number of genes is relatively
small. In addition, the adverse effects of missing data were
more pronounced for patterns R and S when the amount of
missing data was high (i.e., �53%). For example, for the pat-
tern G53%, the mean RF distance between the species tree T3
and those estimated by ASTRAL was 0.021 as the number of
genes increased to 200 (fig. 5). In contrast, the mean RF dis-
tance increased to 0.166 and 0.207 for patterns R53% and
S53%, respectively (fig. 5), despite the same amount of miss-
ing data (i.e., 53% for the 200-gene data sets). Moreover,
although the performance of species tree estimation was
greatly compromised by missing data when ILS was high,
the mean RF distances between estimated species trees and
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the true species tree decreased as the number of genes in-
creased. For example, as the number of genes increased to
1,000, the mean RF distance between the species tree T3 and
those estimated by ASTRAL decreased to 0.007 and 0.033 for
patterns R53% and S53%, respectively (fig. 5). These results
mirror our results above for indecisive data sets involving high
amounts of missing data. Here, we show that although high
amounts of missing data are problematic for all these meth-
ods when ILS is high, the accuracy of species tree estimation
can be improved by sampling more genes. Under extreme
circumstances, however, the number of genes required may
exceed most empirical studies to date.

We additionally explored the effects of missing data in
the presence of ILS using the yeast data set assembled by
Salichos and Rokas (2013). After removing poorly aligned
amino acid sequences and ambiguously aligned sites, the
yeast data set included 502 genes from 23 species, and the
average number of amino acid sites for each gene was 473.
The species tree inferred from the complete 502-gene data
set using the concatenation method was strongly supported
(i.e.,�97 bootstrap percentage [BP]; fig. 7a), and congruent
with the species tree inferred by Salichos and Rokas (2013).
Gene-tree-based coalescent and supertree methods simi-
larly produced well-resolved species trees. The only topolog-
ical differences between these methods were in the
placement of Candida lusitaniae. Here, MRP supported
the same relationships as those identified using the concat-
enation method, that is, C. lusitaniae as sister to all other
species in the Candida clade with 87 BP (fig. 7a). In contrast,
ASTRAL, MP-EST, and STAR placed C. lusitaniae as sister to

C. guilliermondii plus Debaryomyces hansenii with 100, 100,
and 99 BP, respectively (fig. 7b). Thus, for downstream as-
sessments we considered the species tree shown in figure 7a
as the accepted topology for the concatenation and super-
tree analyses; whereas the species tree shown in figure 7b
was the accepted topology for all gene-tree-based coales-
cent analyses. In addition, phylogenetic analyses of the 502
genes produced 502 distinct gene trees, and none of which
matched the two species trees. This mirrors previous find-
ings by Salichos and Rokas (2013), and suggests that there is
likely a high degree of ILS in the yeast data set.

When generating missing data on this 502-gene data set
using three patterns (R, G, and S; fig. 3), phylogenomic anal-
yses of these incomplete data sets generally corroborated
results using simulated data sets described above. As ex-
pected, in the presence of ILS, the accuracy of species tree
estimation declined as the amount of missing data in-
creased, and was especially pronounced for patterns R and
S when the amount of missing data was high (i.e., 70%).
Here, the concatenation method, ASTRAL, and MP-EST
were more robust to missing data: The mean RF distances
between species trees inferred from the complete data set
and those from data sets with 35% or 53% missing data were
less than 0.040, and increased up to 0.204 only for the pat-
tern S70% (fig. 8). In addition, the adverse effects of missing
data were more pronounced for STAR when data sets were
indecisive. For example, the mean RF distance between the
species tree inferred from the complete data set by STAR
and those from the pattern G70% was only 0.066, whereas
the mean RF distance increased to 0.366 for the pattern
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FIG. 7. Species trees of 23 yeasts inferred from the complete 502-gene data set. (a) The species tree inferred using concatenation (RAxML) and supertree
(MRP) methods. BPs from RAxML/MRP are indicated for each branch, and an asterisk indicates that the branch is supported by 100 BPs from both
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S70% even though the amount of missing data was the
same (fig. 8).

The Impact of Missing Data in the Presence of Both
ILS and Gene Rate Heterogeneity

Simulation analyses of our 5-taxon species trees S1–S4
(fig. 9a) demonstrated that when � was low (i.e., 0.001 for
species trees S1 and S2), on average 83% of the simulated gene
trees (when rooted with species E) were congruent with the
species tree topology. When � was high (i.e., 0.01 for species
trees S3 and S4), the topologies of simulated gene trees were
highly variable. Under these circumstances, on average only
16% of the simulated gene trees were congruent with the
species tree topology. Importantly, despite the highly discor-
dant topologies among gene trees, the most probable gene
tree still matched the species tree topology. Thus, species
trees S3 and S4 are not in the anomaly zone (Degnan and
Rosenberg 2006). In addition, each of these simulated data
sets included both slow- (i.e., gene sequences simulated on
the species tree S1 or S3) and fast-evolving (i.e., gene se-
quences simulated on the species tree S2 or S4 that possessed
long external branches leading to species A–C) genes (fig. 9b).
This allowed us to evaluate the effects of missing data in the
presence of both ILS and gene rate heterogeneity.

Despite the fact that these data sets included different
ratios of slow- versus fast-evolving genes (i.e., 9:1, 7:3, 5:5, or
3:7), concatenation (RAxML), gene-tree-based coalescent
(ASTRAL, MP-EST, and STAR), and supertree (MRP) methods
consistently recovered the true species tree from complete
data sets as the number of genes increased. When ILS was low,
the proportion of simulations in which all five methods re-
covered the true species tree increased to 1.0 as the number
of genes increased to 100 (fig. 10). When ILS was high, all
methods similarly recovered the true species tree with a pro-
portion of �0.99 as the number of genes increased to 500
(fig. 10). These results suggest that in the presence of both ILS
and gene rate heterogeneity, all methods perform reliably
when data sets are complete and a sufficient number of
genes are sampled.

We generated missing data that were concentrated in fast-
evolving genes using one of two patterns, “random” versus
“nonrandom” (fig. 9b). Here, we use quotation marks to des-
ignate these patterns because in both cases missing data were
concentrated in fast-evolving genes and certain species. Thus,
they necessarily exhibit some inherent bias. For random miss-
ing data, a single gene sequence from one of ingroup species
A–C was randomly removed in each of the fast-evolving
genes; for nonrandom missing data, gene sequences from
only species C were removed in all fast-evolving genes. For
these two patterns, the amount of missing data was linked to
the percentage of fast-evolving genes in the data set. For
example, when 30% of the genes were simulated on the spe-
cies tree S2, 30% of total gene sequences in species C were
removed for the nonrandom missing data (fig. 9b).

In the case of random missing data, all five methods
accurately recovered the true species tree as the number of
genes increased. This is true even when the percentage of fast-
evolving genes increased to 70% (i.e., 70% of the total genes
contain a single missing sequence). Here, the proportion of
simulations in which the concatenation method using ML
recovered the true species tree was high (�0.97) as the
number of genes increased to 500 and 2,000 for low and
high ILS, respectively (fig. 10). Gene-tree-based coalescent
methods similarly recovered the true species tree with a
high proportion (�0.99), but using only 50 and 500 genes
for low and high ILS, respectively (fig. 10). Thus, in the
presence of gene rate heterogeneity and missing data, gene-
tree-based coalescent methods are more likely to recover the
true species tree when the number of genes is relatively small.

For nonrandom missing data, all methods accurately
recovered the true species tree as the number of genes in-
creased, as long as the percentage of fast-evolving genes was
low (i.e., �30% and �10% for low and high ILS, respectively).
Here, the proportion of simulations in which the concatena-
tion method using ML recovered the true species tree in-
creased to �0.88 as the number of genes increased to 50
and 2,000 for low and high ILS, respectively (fig. 10). In con-
trast, gene-tree-based coalescent methods recovered the true
species with a higher proportion (�0.95) as the number of
genes increased to 50 and 200 for low and high ILS, respec-
tively (fig. 10). Thus, in the presence of ILS and a low amount
of nonrandom missing data, the concatenation method using
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FIG. 8. The mean RF distances between species trees inferred from the
complete yeast data set versus those inferred from data sets with various
amounts of simulated missing data. Missing data were generated using
one of three patterns, R, G, and S as described in the main text and in
figure 3. Species trees were inferred using concatenation (RAxML), gene-
tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree
(MRP) methods.
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ML performs worse than gene-tree-based coalescent meth-
ods, but still identifies the true species tree as the number of
genes increases.

When increasing the percentage of fast-evolving genes in
the data sets, thus simultaneously increasing the amount of
missing data in species C, these methods differed sharply in
their ability to recover the true species tree. Under these cir-
cumstances, ASTRAL, MP-EST, and MRP similarly recovered
the true species tree with a high proportion (�0.96) as the
number of genes increased to 50 and 1,000 for low and high
ILS, respectively (fig. 10). In contrast, the proportion of simu-
lations in which the concatenation method using ML recov-
ered the true species tree decreased as the amount of
nonrandom missing data increased. When ILS was low, the
proportion of simulations in which the concatenation
method using ML recovered the true species tree dropped
to approximately 0.60 as the percentage of fast-evolving genes
increased to 50% (fig. 10). Here, the concatenation method
using ML inferred an incorrect species tree (topology II in
fig. 11a) with a proportion of 0.40 as the number of genes
increased to 2,000. When further increasing the percentage of

fast-evolving genes to 70% this became even worse: The pro-
portion of simulations in which the concatenation method
using ML recovered the true species tree declined to zero as
the number of genes increased to 2,000 (fig. 10). In these cases,
the concatenation method using ML consistently inferred
two incorrect species trees as the number of genes increased
(fig. 11a). When the number of genes increased to 2,000, the
BP values for these two incorrect relationships, that is, species
C as sister to species A (topology I) or species B (topology II),
ranged from 51 to 100 with a median of 79 and 90, respec-
tively (fig. 11b). In addition, when data sets included only
slow-evolving (i.e., gene sequences simulated on the species
tree S1) or only fast-evolving (i.e., gene sequences simulated
on the species tree S2) genes, the concatenation method
using ML accurately recovered the true species tree as the
number of genes increased, even if 70% of total genes were
missing in species C (fig. 10).

Recent theoretical and simulation studies have demon-
strated that phylogenetic analyses using ML can be biased
by the combination of missing data and among-site rate var-
iation (Lemmon et al. 2009; Simmons 2012b; Xia 2014). Our

+
A
B
C

D
E 0.01

S2

θ = 0.001 (low ILS)

S1

θ = 0.001 (low ILS)

A
B
C
D
E 0.01

+
70% S1 30% S2

“random” missing data “non-random” missing data

+
A
B
C

D
E 0.01

S4

θ = 0.01 (high ILS)

S3

θ = 0.01 (high ILS)

A
B
C
D
E 0.01

S6

θ = 0.01 (high ILS)

A
B

C
D

E 0.01

S5

θ = 0.01 (high ILS)

A
B
C

D
E 0.01

S8

θ = 0.01 (high ILS)

A
B
C
D

E 0.01

S7

θ = 0.01 (high ILS)

A
B

C
D

E 0.01

S9

θ = 0.01 (high ILS)

A
B
C
D

E 0.01

(a)

(b)

(c)

FIG. 9. DNA simulations using 5-taxon species trees to investigate the impact of missing data in the presence of both ILS and gene rate heterogeneity.
DNA sequences were simulated on species trees S1–S9 under the multispecies coalescent model (Rannala and Yang 2003). The lengths of all internal
branches are 0.001 (branch lengths are in mutation units), and the length of the external branch leading to outgroup species E is 0.004 for species trees
S1–S9. The population size parameter � is defined as 4mNe, where Ne is the effective population size and m is the average mutation rate per site per
generation. (a) Species trees used to simulate slow- and fast-evolving genes. For species trees S1 and S3, the external branches leading to species A, B, and
C are 0.001, 0.001, and 0.002, respectively, whereas for species trees S2 and S4, these three external branches are 0.101, 0.101, and 0.102, respectively. Thus,
DNA sequences simulated on species trees S1 and S3 represent slow-evolving genes, whereas DNA sequences simulated on species trees S2 and S4
represent fast-evolving genes. (b) Examples of the random and nonrandom missing data. For each data set, “X” percent of the total genes (where “X”
ranges from 90 to 30 in decrements of 20) were simulated on the species tree S1 or S3 (slow-evolving genes), and the remaining genes were simulated on
the species trees S2 or S4 (fast-evolving genes). To generate random missing data, a single gene sequence from one of the species that possessed long
external branches (i.e., species A, B, or C) was randomly removed for each of the fast-evolving genes. To generate nonrandom missing data, gene
sequences only from species C were removed for all fast-evolving genes. (c) Additional species trees with varying numbers and placements of the long
external branches to simulate fast-evolving genes. For the species tree S5, the external branches leading to species B and C are 0.101 and 0.102,
respectively; for the species tree S6, the external branches leading to species B and D are 0.101 and 0.103, respectively; for the species tree S7, the external
branches leading to species C and D are 0.102 and 0.103, respectively; for the species tree S8, the external branches leading to species B, C, and D are
0.101, 0.102, and 0.103, respectively; and for the species tree S9, the external branches leading to species A, B, C, and D are 0.101, 0.101, 0.102, and 0.103,
respectively.
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FIG. 10. Proportions of simulations in which the true five-taxon species tree was recovered from 50-, 100-, 200-, 500-, 1,000-, and 2,000-gene data sets
using concatenation (unpartitioned RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (MRP) methods. For each data
set, slow-evolving genes were simulated on the species tree S1 or S3, whereas fast-evolving genes were simulated on the species tree S2 or S4 (fig. 9a).
Missing data were generated in fast-evolving genes using the random or nonrandom pattern as described in the main text and in figure 9b. For
comparison, we additionally simulated data sets that included only slow-evolving (species tree S1 or S3) or only fast-evolving (species tree S2 or S4)
genes.
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results demonstrate that in the presence of gene rate hetero-
geneity, nonrandom missing data can similarly mislead the
concatenation method using ML even when data sets are
decisive. Under these circumstances, we demonstrate that
adding genes with nonrandom missing data decreases the

performance of the concatenation method using ML,
which consistently infers the incorrect species trees.
Moreover, when ILS was high, the proportion of simulations
in which the concatenation method using ML recovered the
true species tree declined to zero as the percentage of fast-
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evolving genes increased to 30% (fig. 10), that is, only 30% of
gene sequences were missing in species C. Under these cir-
cumstances, all ML programs implemented here (i.e., unparti-
tioned/partitioned RAxML, GARLI, and PhyML; fig. 11c)
consistently inferred two incorrect species trees (fig. 11a),
whereas the concatenation method using parsimony still ac-
curately recovered the true species tree as the number of
genes increased (fig. 11c). Thus, the negative effects of
nonmissing data on the concatenation method using ML
appear to be greatly exacerbated when gene rate heteroge-
neity is combined with a high degree of ILS. These results
collectively indicate that the presence of nonrandom missing
data, high ILS, and gene rate heterogeneity represent a triple
threat to the concatenation method using ML.

STAR was also misled by nonrandom missing data when
70% of gene sequences were missing in the species C. Here, in
the presence of gene rate heterogeneity, the proportion of
simulations in which STAR recovered the true species tree
decreased to 0.36 and 0.03 as the number of genes increased
to 2,000 for low and high ILS, respectively (fig. 10). Similar to
the concatenation method using ML, STAR consistently
inferred two incorrect species trees (topologies I and II in
fig. 11a) as the number of genes increased. In addition, for

data sets that included only slow-evolving genes (i.e., gene
sequences simulated on the species tree S1 or S3), STAR ac-
curately recovered the true species tree even when 70% of
total genes were missing in species C (fig. 10). However, when
data sets included only fast-evolving genes (i.e., gene se-
quences simulated on the species tree S2 or S4), STAR con-
sistently inferred two incorrect species trees (topologies I and
II in fig. 11a) as the number of genes increased (fig. 10). These
results indicate that a high amount of nonrandom missing
data can also mislead the gene-tree-based coalescent method
STAR. However, unlike the concatenation method using ML,
it appears that the adverse effects of nonrandom missing data
on STAR are not due to the presence of gene rate heteroge-
neity, but instead due to the presence of fast-evolving genes
as simulated using a combination of long external and short
internal branches in the species tree.

In addition to the species tree S4, we simulated fast-
evolving genes under a high degree of ILS using species
trees S5–S9 (fig. 9c), where we varied the number and place-
ment of the long external branches. Here, DNA sequences
from one of the ingroup species that possessed long external
branches, for example, species B or C for the species tree S5,
were removed in all fast-evolving genes. Thus, these data sets
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FIG. 11. (a) Proportions of simulations in which two incorrect five-taxon species trees were inferred from 50-, 100-, 200-, 500-, 1,000-, and 2,000-gene
data sets using the concatenation method (unpartitioned RAxML). For each data set, 30% of genes were simulated on the species tree S1 (i.e., slow-
evolving genes), and the remaining genes were simulated on the species tree S2 (i.e., fast-evolving genes; fig. 9a). Missing data were generated in fast-
evolving genes using the nonrandom pattern as described in the main text and in figure 9b. The arrow highlights the branch of interest, and for which
BPs are summarized in figure 11b. (b) Summary of BPs inferred from the 2,000-gene data sets using the concatenation method (unpartitioned RAxML).
For each data set, 600 genes were simulated on the species tree S1 (i.e., slow-evolving genes), and the remaining 1,400 genes were simulated on the
species tree S2 (i.e., fast-evolving genes; fig. 9a). Missing data were generated in fast-evolving genes using the nonrandom pattern as described in the
main text and in figure 9b. (c) Proportions of simulations in which the true five-taxon species tree was recovered 50-, 100-, 200-, 500-, 1,000-, and 2,000-
gene data sets using concatenation methods (partitioned RAxML, GARLI, PhyML, NJ, and parsimony). For each data set, 70% of genes were simulated on
the species tree S3 (i.e., slow-evolving genes), and the remaining genes were simulated on the species tree S4 (i.e., fast-evolving genes; fig. 9a). Missing
data were generated in fast-evolving genes using the nonrandom pattern as described in the main text and in figure 9b.
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allowed us to more thoroughly examine the effects of
nonrandom missing data on species tree estimation in the
presence of ILS and gene rate heterogeneity. Similar to species
trees S3 and S4, the topologies of gene trees simulated on
species trees S5–S9 were highly variable: On average only 16%
of the simulated gene trees were congruent with the species
tree topology. Despite the presence of a high amount of
nonrandom missing data (i.e., 70% of gene sequences were
missing in species B, C, or D), ASTRAL, MP-EST, and MRP
consistently recovered the true species tree with a high pro-
portion (�0.97) as the number of genes increased to 1,000
(fig. 12). This is true for all 14 data sets we examined here,
suggesting that these methods are especially robust to
nonrandom missing data. In contrast, STAR and the concat-
enation method using ML produced inconsistent results for
most of these 14 data sets. For missing data concentrated in
species B, STAR accurately recovered the true species tree
with a high proportion (�0.99) as the number of genes in-
creased to 500; whereas the concatenation method using ML
consistently inferred an incorrect species tree (topology II in
fig. 11a) as the number of genes increased to 2,000 when fast-
evolving genes were simulated on species trees S5 and S8
(fig. 12). For missing data concentrated in species C, the pro-
portion of simulations in which STAR recovered the true
species dropped dramatically (�0.18) as the number of
genes increased to 2,000 when fast-evolving genes were sim-
ulated on species trees S4 and S9 (fig. 12). The concatenation
method using ML performed even worse under these circum-
stances: The proportion of simulations in which the true spe-
cies tree was recovered decreased to zero as the number of
genes increased to 2,000 for all species trees examined here
(i.e., species trees S4, S5, S7, S8, and S9; fig. 12). For missing data
concentrated in species D, the proportion of simulations in
which STAR recovered the true species dropped to �0.04 as
the number of genes increased to 2,000 for all species trees
examined here (i.e., species trees S6–S9; fig. 12). In these cases,
the proportion of simulations in which the concatenation
method using ML recovered the true species was similarly
low (�0.40) for species trees S7–S9, but increased to 0.95 as
the number of genes increased to 2,000 for the species tree S6
(fig. 12). Thus, these results collectively suggest that in the
presence of both ILS and gene rate heterogeneity, STAR and
the concatenation method using unpartitioned or parti-
tioned ML are more likely to be misled by nonrandom missing
data. In contrast, ASTRAL, MP-EST, and MRP are more robust
under these circumstances.

Finally, we explored the effects of nonrandom missing data
in the presence of both ILS and gene rate heterogeneity using
a subset of the mammal data set assembled by Tsagkogeorga
et al. (2013). The six-taxon Scrotifera data set we analyzed
here included 1,394 genes, and the average number of nucle-
otide sites for each gene was 1,078. Phylogenomic analyses of
this data set produced a well-supported species tree (fig. 13a),
which was congruent with the species trees inferred by
Tsagkogeorga et al. (2013) and Liu, Xi, and Davis (2015).
In addition, a clade consisting of Cetartiodactyla plus
Perissodactyla was supported by all analyses using the com-
plete data set, that is, 95/82, 72, 80, 81, 78, and 73 BP for the

concatenation method using ML (unpartitioned/partitioned
RAxML), the concatenation method using parsimony,
ASTRAL, MP-EST, STAR, and MRP, respectively (fig. 13c).
Thus, we interpret the monophyly of Cetartiodactyla plus
Perissodactyla as the accepted relationship. As expected,
the rapid radiation of the Laurasiatherian mammals (Zhou
et al. 2012) produced a short internal branch separating
the four orders in the inferred species tree (fig. 13a), and
a high degree of discordance among individual gene trees
(Liu, Xi, and Davis 2015). Moreover, the relative evolutionary
rates of these 1,394 genes varied from 0.15 to 3.14, suggesting
the presence of gene rate heterogeneity in the Scrotifera
data set.

When increasing the amount of missing data that were
concentrated in Felis catus, the clade of Cetartiodactyla plus
Perissodactyla was still moderately to weakly supported by
ASTRAL, MP-EST, and MRP. Here, when the amount of
nonrandom missing data was high (i.e., 70% of gene se-
quences were missing in F. catus), the topology remained
the same but BP values for this clade dropped to 56,
53, and 66 BP for ASTRAL, MP-EST, and MRP, respectively
(fig. 13c). Similarly, the clade of Cetartiodactyla plus
Perissodactyla was supported by the concatenation method
using parsimony with 81 BP when 70% of gene sequences
were missing in F. catus (fig. 13c). In contrast, the concatena-
tion method using ML produced incongruent placements
of Cetartiodactyla across data sets with various amounts
of nonrandom missing data. Here, when the amount of
nonrandom missing data was low (i.e., 10% of gene sequences
were missing in F. catus), the concatenation method using ML
supported the accepted placement of Cetartiodactyla as sister
to Perissodactyla (67 and 59 BP for unpartitioned and parti-
tioned RAxML, respectively; fig. 13c). When the amount of
nonrandom missing data was high (i.e., 70% of gene se-
quences were missing in F. catus), however, the concatenation
method using ML instead placed Cetartiodactyla as sister to
Carnivora (fig. 13b) with moderate support (76 and 70 BP for
unpartitioned and partitioned RAxML, respectively; fig. 13c).
STAR similarly placed Cetartiodactyla incorrectly as sister to
Carnivora when the amount of nonrandom missing data was
high (i.e., 70% of gene sequences were missing in F. catus), but
the BP value was lower (i.e., 58; fig. 13c). Thus, our analyses of
this six-taxon Scrotifera data set corroborate our simulation
results above, and suggest that in the presence of both ILS and
gene rate heterogeneity, nonrandom missing data may pos-
itively mislead species tree estimation. This appears to be
especially pronounced for STAR and the concatenation
method using unpartitioned or partitioned ML, which con-
sistently produce incorrect results when the amount of
nonrandom missing data is high.

Conclusions
Our analyses identify that missing data can indeed influence
species tree estimation under a variety of circumstances. We
show that two gene-tree-based coalescent methods, ASTRAL
and MP-EST, and the supertree method MRP are more robust
even when the amount of missing data is high. To our knowl-
edge, few studies have developed statistical metrics to assess
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FIG. 12. Proportions of simulations in which the true five-taxon species tree was recovered from 50-, 100-, 200-, 500-, 1,000-, and 2,000-gene data sets
using concatenation (unpartitioned RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (MRP) methods. For each of
these data sets, 30% of the total genes were simulated on the species tree S3 (slow-evolving genes; fig. 9a) and the remaining genes were simulated on
one of species trees S5–S9 (fast-evolving genes; fig. 9c). Missing data were generated in fast-evolving genes by removing gene sequences from one of the
species that possessed long external branches (species B, C, or D).
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the fitness of sequence data for phylogenomic analyses in the
presence of missing data (e.g., Waddell 2005; Sanderson et al.
2010; Steel and Sanderson 2010). The recent establishment of
phylogenetic decisiveness (Sanderson et al. 2010; Steel and
Sanderson 2010) to characterize incomplete taxon coverage
is a major advancement in this respect and merits wider
usage. However, it does not completely address the poten-
tially biased effects of nonrandom missing data we iden-
tify here. Owing to the prevalence of missing data in
phylogenomic analyses, it is entirely possible that nonrandom
missing data may be a more widespread phenomenon than is
thought. Whether or not this is the case, and to what extent
this could be exacerbated by gene rate heterogeneity and a
high degree of ILS is a fertile ground for future investigation.

Finally, how should we as a community deal with missing
data in empirical analyses? This depends on numerous factors,
including the percentage of missing data, the pattern of miss-
ing data (e.g., random vs. nonrandom), the degree of ILS, and
the sample size (e.g., the number of taxa and the number of
genes). In general, under ideal circumstances, we recommend
that practitioners not filter genes with missing data. This
recommendation was also concluded recently by Streicher
et al. (2015). In addition, we recommend choosing models
and methods that are more robust to the adverse effect of

missing data. Our study demonstrates the additional ways in
which these models and methods could be better refined and
applied to phylogenomic data sets.

Materials and Methods

Simulating Missing Data Using 17-Taxon Species Trees
under Varying Degrees of ILS

To investigate the impact of missing data on species tree
estimation in the presence of ILS, we simulated DNA se-
quences on six 17-taxon species trees with two different to-
pologies (i.e., symmetrical species trees T1–T3 and pectinate
species trees T4–T6) under the multispecies coalescent
model (Rannala and Yang 2003). For each of the ultrametric
species trees T1–T6 (fig. 2), species Q was designated as the
outgroup and the height of the tree was held constant at 0.05
(lengths herein are reported in mutation units, i.e., the
number of nucleotide substitutions per site). For each gene,
one allele was sampled from each of the species A–Q. The
lengths of the internal branches were held constant in species
trees T1–T3 and T4–T6 (i.e., 0.01 and 0.003125, respectively).
In addition, we applied different values of the population size
parameter � to simulate varying degrees of ILS (i.e., 0.001, 0.01,
and 0.1 for species trees T1–T3, respectively, and 0.0003125,
0.003125, 0.03125 for species trees T4–T6, respectively; fig. 2).

Bos taurus

Vicugna pacos

Equus caballus

Canis familiaris

Felis catus

Eidolon helvum
0.01

Cetartiodactyla

Perissodactyla

Carnivora

Chiroptera

B. taurus

V. pacos

C. familiaris

F. catus

E. caballus

E. helvum

Cetartiodactyla

Chiroptera

Carnivora

Perissodactyla

*

*
*

MP-EST STAR

73 52
61

74 71
81 78

53 58

74

80

ASTRAL

64

75

MRP

59
58

67
73

62/62
67/59
95/82

RAxML

69/61
76/70 6656

10%
30%
50%
70%

complete

Data set

52
56
72

Parsimony

72
81

conc. coal. super.

(a) (b)

(c)

FIG. 13. (a) The species tree of six mammals inferred from the complete 1,394-gene data set using concatenation (unpartitioned/partitioned RAxML
and parsimony as implemented in PAUP*), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (MRP) methods. Branch lengths
shown here (in mutation units) were estimated from the concatenated matrix using unpartitioned RAxML. BPs are indicated for each branch, and an
asterisk indicates that the branch is supported by 100 BPs using all methods. The arrow highlights the branch of interest, and for which BPs are
summarized in figure 13c. (b) The alternative species tree inferred from data sets with nonrandom missing data using concatenation (unpartitioned/
partitioned RAxML) and gene-tree-based coalescent (STAR) methods. Branch lengths shown here (in mutation units) were estimated from the
concatenated matrix using unpartitioned RAxML. The arrow highlights the branch of interest, and for which BPs are summarized in figure 13c. (c)
Summary of BPs inferred from data sets with various amounts of missing data that were concentrated in Felis catus. We first sorted all 1,394 genes based
on relative evolutionary rates estimated using the DistR method. DNA sequences from F. catus were then removed in fast-evolving genes, which
corresponded to “X” percent of the total genes (where “X” ranges from 10 to 70 in increments of 20). The cell with hatching indicates bootstrap support
is below 50 BP; colored cells (orange: Cetartiodactyla as sister to Perissodactyla, blue: Cetartiodactyla as sister to Carnivora) indicate relationships that
received bootstrap support �50 BP.
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For each of the species trees T1–T6, we assumed that popu-
lation size was constant across all populations. The popula-
tion size parameter � is defined as 4mNe, where Ne is the
effective population size and m is the average mutation rate
per site per generation. To determine whether our values of �
were comparable with empirical studies, we converted our
branch lengths to coalescent units. In order to accomplish
this, the branch lengths in mutation units must be divided by
�. Here, we determine that the lengths of the internal
branches in species trees T1–T6 (i.e., 0.1, 1, and 10 coalescent
units) are within the range of two well-studied examples: The
branches in Passerina buntings (i.e., as short as 0.05 coalescent
units) (Carling and Brumfield 2008; Degnan and
Rosenberg 2009) and the two internal branches in the
human–chimpanzee–gorilla–orangutan species tree (i.e.,
~1.2 and ~4.2 coalescent units) (Rannala and Yang 2003;
Degnan and Rosenberg 2006, 2009).

We then simulated 50, 100, 200, 500, 1,000, and 2,000 gene
trees on each of species trees T1–T6 using the R function
“sim.coaltree.sp” as implemented in Phybase v1.3 (Liu and Yu
2010). Each gene tree was then utilized to simulate DNA
sequences of 1,000 bp using Seq-Gen v1.3.3 (Rambaut and
Grassly 1997) with the JC69 model (Jukes and Cantor 1969).
Each simulation was repeated 100 times, which resulted in a
total of 600 data sets for each of the species trees T1–T6.

Next, we generated missing data on each of our simulated
data sets. The three patterns we used to generate missing data
were designated as R, G, and S (fig. 3). These largely followed
Hovm€oller et al. (2013) and Roure et al. (2013), and were
designed to mimic patterns of missing data from published
phylogenomic data sets. For pattern R, missing data were
randomly distributed across ingroup species for all genes,
that is, it was equally likely to remove sequences from any
gene and any of the ingroup species A–P. Here, 35%, 53%, or
70% of the total gene sequences were removed in each data
set, which corresponded to removing an average of 6, 9, or 12
sequences per gene, respectively. In addition, for each gene, a
minimum of four taxa (three ingroups and one outgroup)
was required to produce a meaningful gene tree. This emu-
lates the pattern of missing data due to low coverage in
next-generation sequencing. For pattern G, missing data
were randomly distributed across ingroup species but con-
centrated in a subset of randomly chosen genes. To do this,
we first randomly selected a subset of genes (i.e., 46%, 69%, or
92% of the total genes to achieve 35%, 53%, or 70% missing
data, respectively), and then for each selected gene, randomly
removed sequences from ingroup species A–P until there
were only three ingroup species remaining. This pattern of
missing data represents the case where certain genes are more
likely to be lost from the genome, but in which these losses
are not concentrated in a subset of species. For pattern S,
missing data were randomly distributed among all genes but
concentrated in a subset of randomly chosen ingroup species.
To do this, we first randomly selected 13 ingroup species, and
then for each selected species, randomly removed sequences
from a predefined proportion of all genes (i.e., 0.46, 0.69, or
0.92 to achieve 35%, 53%, or 70% missing data, respectively).
This pattern of missing data represents the case where only a

few species are sampled completely (e.g., full genome se-
quences) and other species are sampled less completely
(e.g., shallow sequencing or low-quality DNA). Finally, for
each of the three patterns, we used the metric of phylogenetic
decisiveness sensu Sanderson et al. (2010) to characterize the
pattern of incomplete taxon coverage induced by missing
data. Perl scripts from Sanderson et al. (2010) were used to
determine whether a data set was decisive regarding the true
species tree (i.e., species trees T1–T6).

Species trees were estimated using 1) the concatenation
method as implemented in RAxML (Stamatakis 2014), 2)
three commonly used gene-tree-based coalescent methods
(i.e., ASTRAL, MP-EST, and STAR), and 3) a supertree
method MRP (Baum 1992; Ragan 1992). For concatenation
analyses, the best-scoring ML trees were estimated from
concatenated gene sequences using both unpartitioned
(i.e., a single GTR +G model) and partitioned (i.e., a separate
GTR +G model for each gene) models. Optimal tree
searches were conducted using RAxML v8.1.3 with five in-
dependent searches starting from random trees (-d -f o -m
GTRGAMMAX —no-bfgs). For coalescent analyses, gene
trees were first estimated using RAxML with the GTR +G
model (-d -f o -m GTRGAMMAX —no-bfgs), and rooted
with species Q. These estimated gene trees were then uti-
lized to construct species trees using ASTRAL v4.7.1, MP-EST
v1.4, and the STAR method as implemented in Phybase
(default settings were used for ASTRAL, MP-EST, and
STAR). For supertree analyses, the MRP was first computed
from estimated gene trees following Mirarab, Reaz, Bayzid,
et al. (2014), and species trees were then estimated using
parsimony analyses as implemented in PAUP* v.4.0b10
(Swofford 2002) with the standard heuristic search (hsearch
start = stepwise addseq = random nreps = 100 savereps = no
swap = tbr hold = 1 multrees = yes). Topological differences
between estimated species trees and their true species tree
were measured using the normalized RF distance as imple-
mented in RAxML (-f r). The normalized RF distance, or the
RF distance (Kupczok et al. 2010), ranges between 0.0 and
1.0, and is calculated by dividing the RF metric (Robinson
and Foulds 1981) by 2� (n� 3), where n is the number of
species. If the estimated species tree matches the true spe-
cies tree, the RF distance equals zero; if there is one split (i.e.,
a bipartition of a set of species) that is present in the esti-
mated species tree but not in the true species tree, the RF
distance equals 0.071 and 0.050 for a data set with 17 and 23
species, respectively. The mean RF distance was then calcu-
lated on the 100 data sets for each of the gene number
categories (i.e., 50, 100, 200, 500, 1,000, and 2,000 genes).

Simulating Missing Data Using a Phylogenomic Data
Set of 23 Yeasts

To further explore the impact of missing data on species tree
estimation in the presence of ILS, we conducted analyses
similar to the ones described above but instead using an
empirical data set. For this objective, we obtained the
amino acid sequences assembled by Salichos and Rokas
(2013), which included 1,070 orthologs (referred to here as
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genes) from 23 budding yeast genomes. For each gene, amino
acid sequences were aligned using MUSCLE v3.8.31 (Edgar
2004) with the default settings. We first cleaned up the
data by removing sequences from the alignment if they con-
tained less than 70% of the total alignment length (Jiao et al.
2012). Poorly aligned amino acid sequences were further re-
moved using trimAl v1.2rev59 (-resoverlap 0.75 -seqoverlap
80) (Capella-Guti�errez et al. 2009), and ambiguously aligned
sites were trimmed using trimAl with the heuristic automated
method (-automated1). We included only those genes con-
taining amino acid sequences from all 23 species. Candida
lusitaniae was used to root the gene trees.

Missing data were similarly generated on the complete
data set using one of three patterns described above (i.e., R,
G, and S; fig. 3). For the pattern R, 35%, 53%, or 70% missing
data were randomly distributed across ingroup species and all
genes. For the pattern G, we first randomly selected a subset
of genes (i.e., 42%, 64%, or 85% of the total genes to achieve
35%, 53%, or 70% missing data, respectively), and then for
each selected gene, randomly removed sequences from
ingroup species until only three ingroup species remained.
For the pattern S, we first randomly selected 19 ingroup spe-
cies, and then for each selected species, randomly removed
sequences from a predefined proportion of all genes (i.e., 0.42,
0.64, or 0.85 to achieve 35%, 53%, or 70% missing data,
respectively).

For concatenation analyses, the best-scoring ML trees were
inferred from concatenated gene sequences using RAxML
with a single WAG model (Whelan and Goldman 2001) fol-
lowing Salichos and Rokas (2013). Optimal tree searches were
conducted using five independent searches starting from
random trees (-d -f o -m PROTGAMMAWAGF —no-bfgs).
For coalescent and supertree analyses, gene trees were in-
ferred from each gene using RAxML with the WAG model
(-d -f o -m PROTGAMMAWAG —no-bfgs), and rooted with
C. lusitaniae. These gene trees were then utilized to construct
species trees using ASTRAL, MP-EST, STAR, and MRP as de-
scribed above. Each simulation of missing data was repeated
100 times, and the mean RF distances were calculated as
described above to assess topological differences between
species trees inferred from the complete data set and those
from data sets with various amounts of missing data.

Simulating Missing Data Using 5-Taxon Species Trees
in the Presence of Both ILS and Gene Rate
Heterogeneity

Recent studies have shown that rate heterogeneity across
sites can greatly affect species tree estimation. In particular,
incongruence in the phylogenetic placement of key lineages
has been attributed to fast-evolving sites (e.g., Goremykin
et al. 2009, 2013; Zhong et al. 2011; Xi et al. 2013, 2014).
Thus, we are specifically interested in the influence of missing
data that are concentrated in fast-evolving genes. This could
be particularly relevant to target enrichment methods (e.g.,
multiplex PCR and sequence capture) (Thomson et al. 2008;
Turner et al. 2009; Lemmon and Lemmon 2013) when uni-
versal primers or probes are used. In this case, a probe set

might not be designed to capture fast-evolving gene se-
quences, especially for species that exhibit elevated substitu-
tion rates.

To explore the impact of missing data in the presence of
both ILS and gene rate heterogeneity, we simulated DNA
sequences on five-taxon species trees under the multispecies
coalescent model (Rannala and Yang 2003). Here, we down-
sized our taxon sampling to reduce the computational
burden associated with these analyses. For species trees S1–
S4 (fig. 9a), species E was designated as the outgroup. For each
gene, one allele was sampled from each of the species A–E.
The lengths of the internal branches (i.e., 0.001) and the
lengths of the external branches leading to species D and E
(i.e., 0.003 and 0.004, respectively) were held constant in spe-
cies trees S1–S4. In order to simulate various evolutionary
rates along the same external branches among species trees,
we varied branch lengths rather than mutation rates as one
allele was sampled from each gene. For species trees S1 and S3,
the external branches leading to species A–C are short (i.e.,
0.001, 0.001, and 0.002, respectively), whereas for species trees
S2 and S4, these three external branches are long (i.e., 0.101,
0.101, and 0.102, respectively). Our choice of long and short
branches was guided by phylogenies of clades that have un-
dergone an ancient rapid radiation, for example, the insect
clade Neoptera (Kjer et al. 2006; Whitfield and Kjer 2008) and
the plant clade Malpighiales (Davis et al. 2005; Xi et al. 2012).
In addition, we assumed that each gene lineage simulated
from a branch in the species tree was subject to the same
substitution rate specified for that branch. Thus, gene trees
simulated on species trees S1 and S3 effectively represent
slow-evolving genes, whereas gene trees simulated on species
trees S2 and S4 represent genes that evolve rapidly in species
A–C (referred to here as fast-evolving genes). Furthermore, we
applied different values of � to simulate varying degrees of ILS
(i.e., 0.001 for species trees S1 and S2, and 0.01 for species trees
S3 and S4; fig. 9a).

We then simulated 50, 100, 200, 500, 1,000, and 2,000 genes
on species trees S1 and S2 using Phybase and Seq-Gen as
described above. For each data set (fig. 9b), “X” percent of
the total genes (where “X” ranges from 90 to 30 in decrements
of 20) were simulated on the species tree S1 (slow-evolving
genes), and the remaining ones were simulated on the species
trees S2 (fast-evolving genes). These simulations represent
different ratios of slow- versus fast-evolving genes in the
data sets. Next, we generated missing data that were concen-
trated in fast-evolving genes using one of the two patterns we
designated as random and nonrandom (fig. 9b). To generate
random missing data, a single gene sequence from one of the
species that possessed long external branches (i.e., species A,
B, or C for the species tree S2) was randomly removed for each
of the fast-evolving genes. To generate nonrandom missing
data, gene sequences only from species C were removed for all
fast-evolving genes. We additionally simulated data sets that
included only slow-evolving (species tree S1) or only fast-
evolving (species tree S2) genes, which functioned as a control
to assess the influence of missing data in the absence of gene
rate heterogeneity. For each of these two data sets, we first
randomly selected 70% of the total genes (i.e., the highest
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percentage of fast-evolving genes in our simulated data sets),
and then generated missing data that were concentrated in
these genes using the random or nonrandom pattern as de-
scribed above. Species trees were then estimated for each data
set using RAxML, ASTRAL, MP-EST, STAR, and MRP as de-
scribed above. In addition, we conducted bootstrap analyses
for each of the concatenated 2,000-gene matrices using stan-
dard bootstrapping. To do this, we first created 100 boot-
strapped matrices from the original concatenated matrix (-f j -
m GTRGAMMAX -N 100 —no-bfgs), and then estimated the
best-scoring ML trees from bootstrapped matrices using
unpartitioned RAxML as described above. For comparison,
we also estimated the species trees from concatenated gene
sequences using parsimony as implemented in PAUP* (pset
stepmatrix = allstates gapmode = missing; bandb), NJ as im-
plemented in PAUP* (dset distance = jc; nj breakties = ran-
dom), and two other commonly used ML programs, GARLI
v2.01.1067 (ratematrix = 6rate statefrequencies = estimate
ratehetmodel = gamma numratecats = 4 invariantsi-
tes = none streefname = random searchreps = 5 col-
lapsebranches = 0) and PhyML v20120412 (-a e -b 0 -c 4 -f
m -m GTR -o tlr -s SPR -v 0 —rand_start —n_rand_starts 5).

Similarly, we simulated data sets with missing data using
species trees S3 (slow-evolving genes) and S4 (fast-evolving
genes), which possessed a higher degree of ILS compared with
species trees S1 and S2. In addition to the species tree S4 (i.e.,
three long external branches leading to species A–C), we ex-
plored the effects of nonrandom missing data in the presence
of both ILS and gene rate heterogeneity using species trees
S5–S9 (fig. 9c). For these species trees, we varied the number
and placement of long external branches. Here, the external
branches leading to species B and C are long in species tree S5
(i.e., 0.101 and 0.102, respectively), the external branches lead-
ing to species B and D are long for the species tree S6 (i.e.,
0.101 and 0.103, respectively), the external branches leading to
species C and D are long for the species tree S7 (i.e., 0.102 and
0.103, respectively), the external branches leading to species
B–D are long for the species tree S8 (i.e., 0.101, 0.102, and
0.103, respectively), and the external branches leading to spe-
cies A–D are long for the species tree S9 (i.e., 0.101, 0.101,
0.102, and 0.103, respectively). For each of these data sets, 30%
of the total genes were simulated on the species tree S3 (slow-
evolving genes) and the remaining ones were simulated on
one of species trees S5–S9 (fast-evolving genes). To generate
nonrandom missing data, gene sequences from one of the
species that possessed long external branches (i.e., species B, C,
or D) were removed for all fast-evolving genes. Species trees
were estimated using RAxML, ASTRAL, MP-EST, STAR, and
MRP as described above.

Simulating Nonrandom Missing Data Using a
Phylogenomic Data Set of Six Mammals

To further explore the impact of nonrandom missing data in
the presence of both ILS and gene rate heterogeneity, we re-
analyzed the data set assembled by Tsagkogeorga et al. (2013),
which included 2,320 coding DNA sequence alignments
(referred to here as genes) from 22 mammals. We first created

a submatrix by pruning the original data set to include
six species from the clade Scrotifera (Bos taurus [order
Cetartiodactyla], Canis familiaris [Carnivora], Eidolon helvum
[Chiroptera], Equus caballus [Perissodactyla], F. catus
[Carnivora], and Vicugna pacos [Cetartiodactyla]), and
E. helvum was assigned as the outgroup. These four orders
were targeted because they exhibit a rapid radiation in the
Late Cretaceous (Zhou et al. 2012), that is, short internal
branches separate these orders in the inferred species tree
(Tsagkogeorga et al. 2013). These compressed internal
branches are where ILS is likely to be high.

To create a complete data set for subsequent analyses, we
included only those genes containing DNA sequences from all
six species. We additionally created four data sets with various
amounts of missing data that were concentrated in F. catus
(fig. 13c). To do this, genes were first sorted based on relative
evolutionary rates estimated using the Distance Rates (DistR)
method (Bevan et al. 2005). DNA sequences from F. catus
were then removed in fast-evolving genes, which corre-
sponded to “X” percent of the total genes (where “X”
ranges from 10 to 70 in increments of 20). Species trees
were estimated using concatenation (RAxML and parsimony
as implemented in PAUP*), gene-tree-based coalescent
(ASTRAL, MP-EST, and STAR), and supertree (MRP) methods
as described above, and bootstrap support was estimated
using a multilocus bootstrapping approach (Seo 2008) with
100 replicates.

Supplementary Material
Supplementary figure S1 is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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