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Abstract—The convergence of mobile computing and cloud
computing enables new multimedia applications that are both
resource-intensive and interaction-intensive. For these appli-
cations, end-to-end network bandwidth and latency matter
greatly when cloud resources are used to augment the computa-
tional power and battery life of a mobile device. We first present
quantitative evidence that this crucial design consideration
to meet interactive performance criteria limits data center
consolidation. We then describe an architectural solution that is
a seamless extension of today’s cloud computing infrastructure.
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I. INTRODUCTION

The convergence of cloud computing and mobile com-

puting has begun. Apple’s Siri for the iPhone [1], which

performs compute-intensive speech recognition in the cloud,

hints at the rich commercial opportunities in this emerging

space. Rapid improvements in sensing, display quality, con-

nectivity, and computational capacity of mobile devices will

lead to new cloud-enabled mobile applications that embody

voice-, image-, motion- and location-based interactivity. Siri

is just the leading edge of this disruptive force.
Many of these new applications will be interactive as well

as resource-intensive, pushing well beyond the processing,

storage, and energy limits of mobile devices. When their

use of cloud resources is in the critical path of user in-

teraction, end-to-end operation latencies can be no more

than a few tens of milliseconds. Violating this bound results

in distraction and annoyance to a mobile user who is

already attention-challenged. Such fine-grained cloud usage

is different from the coarse-grained usage models and SLA

guarantees that dominate cloud computing today.
The central contribution of this paper is the experimental

evidence that these new applications force a fundamental

change in cloud computing architecture. We describe five

example applications of this genre in Section II, and experi-

mentally demonstrate in Section III that even with the rapid

improvements predicted for mobile computing hardware,

such applications will benefit from cloud resources. The re-

mainder of the paper explores the architectural implications

of this class of applications. In the past, centralization was

the dominant theme of cloud computing. This is reflected in

the consolidation of dispersed compute capacity into a few

large data centers. For example, Amazon Web Services spans

the entire planet with just a handful of data centers located

in Oregon, northern California, Virginia, Ireland, Singapore,

Tokyo, and São Paolo. The underlying value proposition of

cloud computing is that centralization exploits economies

of scale to lower the marginal cost of system administration

and operations. These economies of scale evaporate if too

many data centers have to be maintained and administered.

Aggressive global consolidation of data centers implies

large average separation between a mobile device and its

cloud. End-to-end communication then involves many net-

work hops and results in high latencies. Section IV quantifies

this point using measurements from Amazon EC2. Under

these conditions, achieving crisp interactive response for

latency-sensitive mobile applications will be a challenge.

Limiting consolidation and locating small data centers much

closer to mobile devices would solve this problem, but it

would sacrifice the key benefit of cloud computing.

How do we achieve the right balance? Can we support

latency-sensitive and resource-intensive mobile applications

without sacrificing the consolidation benefits of cloud com-

puting? Section V shows how a two-level architecture can

reconcile this conflict. The first level of this hierarchy is

today’s unmodified cloud infrastructure. The second level is

new. It consists of dispersed but unmanaged infrastructure

with no hard state. Each second-level element is effectively

a “second-class data center” with soft state generated locally

or cached on demand from the first level. Data center

proximity to mobile devices is thus achieved by the second

level without limiting the consolidation achievable at the

first level. Communication between first and second levels

is outside the critical path of interactive mobile applications.

Throughout this paper, the term “cloud computing” refers

to transient use of computational cloud resources by mobile

clients. Other forms of cloud usage such as processing of

large datasets (data-intensive computing) and asynchronous

long-running computations (agent-based computing) are out-

side the scope of this paper.
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II. MOBILE MULTIMEDIA APPLICATIONS

Beyond today’s familiar desktop, laptop, and smartphone

applications is a new genre of software to seamlessly aug-

ment human perception and cognition. Consider Watson,

IBM’s question-answering technology that publicly demon-

strated its prowess in 2011 [2]. Imagine such a tool being

available anywhere and anytime to rapidly respond to urgent

questions posed by an attention-challenged mobile user.

Such a vision may be within reach in the next decade. Free-

form speech recognition, natural language translation, face

recognition, object recognition, dynamic action interpreta-

tion from video, and body language interpretation are other

examples of this genre of futuristic applications. Although

a full-fledged cognitive assistance system is out of reach

today, we investigate several smaller applications that are

building blocks towards this vision. Five such applications

are described below.

A. Face Recognition (FACE)

A most basic and fundamental perception task is the

recognition of human faces. The problem has been long

studied in the computer vision community, and fast al-

gorithms for detecting human faces in images have been

available for some time [3]. Identification of individuals

through computer vision is still an area of active research,

spurred by applications in security and surveillance tasks.

However, such technology is also very useful in mobile

devices for personal information management and cognitive

assistance. For example, an application that can recognize a

face and remind you who it is (by name, contact information,

or context in which you last met) can be quite useful to

everyone, and invaluable to those with cognitive or visual

impairments. Such an application is most useful if it can be

used anywhere, and can quickly provide a response to avoid

potentially awkward social situations.

The face recognition application studied here detects faces

in an image, and attempts to identify the face from a pre-

populated database. The application uses a Haar Cascade of

classifiers to do the detection, and then uses the Eigenfaces

method [4] based on principal component analysis (PCA)

to make an identification. The implementation is based on

OpenCV [5] image processing and computer vision routines,

and runs on a Microsoft Windows environment. Training

the classifiers and populating the database are done offline,

so our experiments only consider the execution time of the

recognition task on a pre-trained system.

B. Speech Recognition (SPEECH)

Speech as a modality of interaction between human users

and computers is a long studied area of research. Most

success has been in very specific domains or in applications

requiring a very limited vocabulary, such as interactive voice

response in phone answering services, and hands-free, in-

vehicle control of cell phones. Several recent commercial

efforts aim for general purpose information query, device

control, and language translation using speech input on

mobile devices [1], [6], [7].

The speech recognition application considered here is

based on an open-source speech-to-text framework based on

Hidden Markov Model (HMM) recognition systems [8]. It

takes as input digitized audio of a spoken English sentence,

and attempts to extract all of the words in plain text format.

This application is single-threaded. Since it is written in

Java, it can run on both Linux and Microsoft Windows. For

this paper, we ran it on Linux.

C. Object and Pose Identification (OBJECT)

A third application is based on a computer vision al-

gorithm originally developed for robotics [9], but modified

for use by handicapped users. The computer vision system

identifies known objects, and importantly, also recognizes

the position and orientation of the objects relative to the

user. This information is then used to guide the user in

manipulating a particular object.

Here, the application identifies and locates known objects

in a scene. The implementation runs on Linux, and makes

use of multiple cores. The system extracts key visual ele-

ments (SIFT features [10]) from an image, matches these

against a database of features from a known set of objects,

and finally performs geometric computations to determine

the pose of the identified object. For the experiments in this

paper, the database is populated with thousands of features

extracted from more than 500 images of 13 different objects.

D. Mobile Augmented Reality (AUGREAL)

The defining property of a mobile augmented reality

application is the display of timely and relevant information

as an overlay on top of a live view of some scene. For

example, it may show street names, restaurant ratings or

directional arrows overlaid on the scene captured through

a smartphone’s camera. Special mobile devices that incor-

porate cameras and see-through displays in a wearable eye-

glasses form factor [11] can be used instead of a smartphone.

AUGREAL uses computer vision to identify actual build-

ings and landmarks in a scene, and label them precisely

in the view [12]. This is akin to an image-based query in

Google Goggles [13], but running continuously on a live

video stream. AUGREAL extracts a set of features from the

scene image, and uses the feature descriptors to find similar-

looking entries in a database constructed using features from

labeled images of known landmarks and buildings. The

database search is kept tractable by spatially indexing the

data by geographic locations, and limiting search to a slice

of the database relevant to the current GPS coordinates. The

prototype application uses a dataset of 1005 labeled images

of 200 buildings as the relevant database slice. AUGREAL

runs on Microsoft Windows, and makes significant use of
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Application Average request size Response size

FACE 62 KB < 60 bytes

SPEECH 243 KB < 50 bytes

OBJECT 73 KB < 50 bytes

AUGREAL 26 KB < 20 bytes

FLUID 16 bytes 25 KB

Figure 1. Average request & response size of each application

Typical Server Typical Handheld

Year Processor Speed Device Speed

1997 Pentium II 266 MHz PalmPilot 16 MHz

2002 Itanium 1 GHz Blackberry 133 MHz

5810

2007 Core 2 9.6 GHz Apple 412 MHz

(4 cores) iPhone

2011 Xeon X5 32 GHz Samsung 2.4 GHz

(2x6 cores) Galaxy S2 (2 cores)

Figure 2. Evolution of Hardware Performance (adapted from Flinn [14])

OpenCV libraries [5], Intel Performance Primitives (IPP)

libraries, and multiple processing threads.

E. Physical Simulation and Rendering (FLUID)

Our final application is used in computer graphics. Using

accelerometer readings from a mobile device, it physically

models the motion of imaginary fluids with which the user

can interact. For example, it can show liquid sloshing around

in a container depicted on a smartphone screen, such as

a glass of water carried by the user as he walks or runs.

The application backend runs a physics simulation, based on

the predictive-corrective incompressible smoothed particles

hydrodynamics (PCISPH) method [15]. We note that the

computational structure of this application is representative

of many other interactive applications, particularly “real-

time” (i.e., not turn-based) games.

FLUID is implemented as a multithreaded Linux

application. To ensure a good interactive experience, the

delay between user input and output state change has to

be very low, on the order of 100ms. In our experiments,

FLUID simulates a 2218 particle system with 20 ms

timesteps, generating up to 50 frames per second.

Figure 1 shows average request and response sizes for

each application. All applications send requests with input

data from the mobile device and receive back computed

results based on the inputs. The average request size is

tens of kilobyte for a captured image and several hundreds

kilobytes for a recorded speech input. The response size

is typically less than 100 bytes as the returned results

Dell Latitude 2102 Samsung Galaxy S2

CPU Intel Atom N550 ARM Cortex-A9

1.5 GHz per core 1.2 GHz per core

2 cores (4 threads) 2 cores

RAM 2 GB 1 GB

Storage 320 GB 16 GB

OS Linux, Windows Android

Figure 3. Dell Netbook Device Used in Experiments

are simple text strings. In FLUID application, however, the

requests are streams of sensed motion information using

accelerometer data, so each request is just a few bytes. The

response data is the state of the simulated world, so unlike

the other applications, the responses here are much larger

than the requests.

III. WHY CLOUD RESOURCES ARE NECESSARY

A. Mobile Hardware Performance

Handheld or body-worn mobile devices are always

resource-poor relative to server hardware of comparable

vintage [16]. Figure 2, adapted from Flinn [14], illustrates

the consistent large gap in the processing power of typical

server and mobile device hardware over a 15-year period.

This stubborn gap reflects a fundamental reality of user

preferences: Moore’s Law has to be leveraged differently

on hardware that people carry or wear for extended periods

of time. This is not just a temporary limitation of current

mobile hardware technology, but is intrinsic to mobility. The

most sought-after features of a mobile device always include

light weight, small size, long battery life, comfortable er-

gonomics, and tolerable heat dissipation. Processor speed,

memory size, and disk capacity are secondary.

All the experiments in this paper use a Dell Latitude 2102

as the mobile device. This small netbook machine is more

powerful than a typical smartphone today (Figure 3), but it

is representative of mobile devices in the near future.

B. Extremes of Resource Demands

At first glance, it may appear that today’s smartphones

are already powerful enough to support mobile multimedia

applications without leveraging cloud resources. Some digi-

tal cameras and smartphones support built-in face detection.

Android 4.0 APIs support tracking of multiple faces and

give detailed information about the location of eyes and

mouth [17]. Google’s “Voice Actions for Android” per-

forms voice recognition to allow hands-free control of a

smartphone [18]. Lowe [19] describes many computer vision

applications that run on mobile devices today.

However, upon closer examination, the situation is much

more complex and subtle. Consider computer vision, for

example. Its computational requirements vary drastically

depending on the operational conditions. For example, it

is possible to develop (near) frame-rate object recognition
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Application Condition 1 Condition 2 Condition 3

SPEECH 0.057 s 1.04 s 4.08 s

FACE 0.30 s 3.92 s N/A

Figure 4. Average response time of applications on mobile device under
different conditions (see Sect. III-B)

(including face recognition [20]) operating on mobile com-

puters if we assume restricted operational conditions such as

a small number of models (e.g., small number of identities

for person recognition), and limited variability in observa-

tion conditions (e.g., frontal faces only). The computational

demands greatly increase with the generality of the problem

formulation. For example, just two simple changes make

a huge difference: increasing the number of possible faces

from just a few close acquaintances to the entire set of

people known to have entered a building, and reducing the

constraints on the observation conditions by allowing faces

to be at arbitrary viewpoints from the observer.

To illustrate the great variability of execution times pos-

sible with perception applications, we perform a set of

experiments using two of the applications discussed earlier.

We run the SPEECH and FACE applications on the mobile

platform, and measure the response times for a wide variety

of inputs. Figure 4 shows the results. For the speech applica-

tion, execution times generally increase with the number of

words the algorithm recognizes (correctly or otherwise) in an

utterance. Conditions 1, 2, 3 for this application correspond

to sentences in which no words, 1–5 words, and 6–22

words are recognized, respectively. The response time varies

quite dramatically, by almost 2 orders of magnitude, and

is acceptable only when the application fails to recognize

any words. When short phrases are correctly recognized, the

response time is marginal, at just over 1 second, on average.

For longer sentences, when the application works at all, it

just takes too long. For comparison, Agus et al. [21] report

that human subjects recognize short target phrases within

300 to 450 ms, and are able to tell that a sound is a human

voice within a mere 4 ms.

In the case of the face recognition application, the best

response times occur when there is a single, large, recog-

nizable face in the image. These correspond to Condition 1

in Figure 4. It fares the worst when it searches in vain at

smaller and smaller scales for a face in an image without any

faces (Condition 2). Unfortunately, response time is close

to the latter for images that only contain small faces. At

close to 4-second average response time in these conditions,

this application is unacceptably slow. For comparison, recent

experimental results on human subjects by Ramon et al. [22]

show that recognition times under controlled conditions

range from 370 milliseconds for the fastest responses on

familiar faces to 620 milliseconds for the slowest response

on an unfamiliar face. Lewis et al. [23] report that human

subjects take less than 700 milliseconds to determine the

absence of faces in a scene, even under hostile conditions

No Cloud With Cloud

Application median 99% median 99%

SPEECH 1.22 s 6.69 s 0.23 s 1.25 s

FACE 0.42 s 4.12 s 0.16 s 1.47 s

Figure 5. Response times with and without cloud resources.

such as low lighting and deliberately distorted optics.

Such data-dependent and context-dependent tradeoffs ap-

ply across the board to virtually all applications of this

genre. In continuous use under the widest possible range

of operating conditions, providing near real-time responses,

and tuned for very low error rates, these applications have

ravenous appetites for processing, memory and energy re-

sources. They can easily overwhelm a mobile device.

C. Improvement from Cloud Computing

Performance improves considerably when cloud resources

are leveraged. Figure 5 shows the median and 99th percentile

response times for the SPEECH and FACE experiments of

Figure 4 with and without use of cloud resources. For the

speech case, we leverage an Amazon EC2 instance. For

the face recognition application, we use a private cloud.

Although variability in execution times still exists, the

absolute response times are significantly improved. These

experiments confirm that leveraging cloud resources can

improve user experience for mobile multimedia applications.

IV. EFFECTS OF CLOUD LOCATION

In reality, “the cloud” is an abstraction that maps to ser-

vices in sparsely scattered data centers across the globe. As a

user travels, his mobile device experiences high variability in

the end-to-end network latency and bandwidth to these data

centers. We examine the significance of this variability for

mobile multimedia applications. Response time for remote

operations is our primary metric. Energy consumed on the

mobile device is a secondary metric. Application-specific

metrics such as frame rate are also relevant.

A. Variable Network Quality to the Cloud

In this paper, we focus on Amazon EC2 services provided

by several data centers worldwide. We use the labels “East,”

“West,” “EU,” and “Asia” to refer to the data centers located

in Virginia, Oregon, Ireland and Singapore. We measured

end-to-end latency and bandwidth to these data centers from

a WiFi-connected mobile device located on our campuses in

Pittsburgh, PA and Lancaster, UK. We also repeated these

measurements from off-campus sites with excellent last-mile

connectivity in these two cities. Figure 6 and 7 present our

measurements, and quantify our intuition that a traveling

user will experience highly variable cloud connectivity.

There are also some surprises in the data.

One surprise is the amazingly good connectivity to EC2

East from our Pittsburgh, PA campus. From a wired connec-

tion, we measured 8 ms ping times and 200 Mbps transfer

rates to this site. Such numbers are more typical of LAN
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Ideal Measured on campus Measured off campus
EC2 Latency BW to/from Cloud (Mbps) Latency (ms) BW to/from Cloud (Mbps) Latency (ms)
site (ms) Day 1 Day 2 Day 3 min. median. 90% Day 1 Day 2 Day 3 min. median. 90%

East 1.8 28 / 34 42 / 34 20 / 15 8.7 9.2 12.4 5.1 / 13.7 5.1 / 14.2 5.1 / 13.4 13.8 17.9 21.3

West 24.2 12 / 14 20 / 18 11 / 2.5 91.6 92.1 95.5 5.0 / 13.9 5.1 / 13.6 4.9 / 13.4 83.9 90.3 93.8

EU 36.8 3.6 / 0.9 13 / 0.4 7.6 / 0.9 98.3 99.3 103.0 4.9 / 13.8 5.0 / 11.8 4.8 / 13.3 110 112 115

Asia 102.5 10 / 0.5 2.4 / 0.2 3.0 / 0.4 255 265 272 4.6 / 9.4 4.6 / 9.2 4.4 / 9.7 266 277 286

Figure 6. Measured Network Quality to Amazon EC2 Sites from Carnegie Mellon University (Pittsburgh, PA) (”Ideal” is at speed of light)

Ideal Measured on campus Measured off campus
EC2 Latency BW to/from Cloud (Mbps) Latency (ms) BW to/from Cloud (Mbps) Latency (ms)
site (ms) Day 1 Day 2 Day 3 min. median. 90% Day 1 Day 2 Day 3 min. median. 90%

East 38.5 4.7 / 5.2 4.7 / 5.2 5.6 / 5.5 86.6 89.4 101 0.8 / 3.3 1.9 / 4.7 0.6 / 3.1 97.3 106 123

West 54.3 5.4 / 3.5 5.4 / 3.5 3.6 / 3.6 155 159 208 0.5 / 2.4 1.4 / 2.8 0.7 / 2.6 165 182 201

EU 1.7 6.7 / 10.4 6.7 / 10.4 8.0 / 10.5 16.2 32.7 63.4 1.7 / 9.4 2.5 / 14.5 1.4 / 7.6 31 43.6 64

Asia 73.2 4.7 / 2.6 4.7 / 2.6 6.2 / 2.7 273 279 325 0.3 / 1.6 1.4 / 1.9 0.5 / 1.6 259 272 291

Figure 7. Measured Network Quality to Amazon EC2 Sites from Lancaster University (Lancaster, UK) (”Ideal” is at speed of light)

connections than WAN transfers! We believe that this is

due to particularly favorable network routing between our

campus and the EC2 East site. This hypothesis is confirmed

by the poorer off-campus measurements shown in Figure 6.

Thus, our EC2 East on-campus results best serve to indicate

what one can expect from a LAN-connected private cloud.

Li et al. [24] report that average round trip time (RTT) from

260 global vantage points to their optimal Amazon EC2

instances is 73.68 ms. Therefore, the EC2 West numbers

in Figure 6 are more typical of cloud connectivity.

Another surprise is the great range of bandwidths ob-

served, particularly the upload/download asymmetry and

the significant variation between experiments. To mitigate

this time-varying factor, we scheduled our experiments on

weekday nights when conditions were stable and bandwidth

consistently high. All experiments in the rest of the paper

were run under these conditions on campus in Pittsburgh.

B. Impact on Response Time

We next evaluate how cloud connectivity affects the

applications described in Section II. We consider six cases.

The first, labeled “Mobile,” runs the application entirely

on the mobile device. Cloud connectivity is irrelevant, but

the resource constraints of the mobile device dominate. In

four other cases, the mobile device performs the resource-

intensive part of each operation on one of the four Amazon

Mobile 1WiFi Cloud (East, West, EU, Asia)
CPU Atom E5320 Xeon N550 X-Large Instance

1.5 GHz 1.86 GHz 20 Compute Units
2 cores, 4 threads 4 cores 8 virtual cores

RAM 2 GB 4 GB 7 GB
VMM none KVM Xen,VMware

Figure 8. Platform specifications

data centers and blocks until it receives the result.

The sixth case, labeled “1WiFi,” corresponds to the the-

oretical best-case for data center location. With today’s

deployed wireless technology, this is exactly one WiFi hop

away from a mobile device. This can only be approximated

today in special situations: e.g., on a WiFi-covered campus,

with access points connected to a private data center through

a lightly-loaded gigabit LAN backbone. If naively imple-

mented at global scale, 1WiFi would lead to a proliferation

of data centers. Section V discusses how the consolidation

benefits of cloud computing can be preserved while scaling

out the 1WiFi configuration.

Figure 8 compares the characteristics of the compute

platforms used in our configurations. For 1WiFi, we create

a minimal data center using a six-year old WiFi-connected

server. The choice of this near-obsolete machine is delib-

erate. By comparing it against a fast mobile device and

fast EC2 cloud instances, we have deliberately stacked the

deck against 1WiFi. Hence, any wins by this strategy in our

experiments should be considered quite meaningful.

FACE: Figure 9 summarizes the response times mea-

sured for FACE under different conditions. Here, we test with

300 images that may have known faces, unknown faces, or

no faces at all. Processing on the mobile device alone can

provide tolerable response times for the easier images, but is

crushed by the heavy-tailed distribution of processing costs.

Only 1WiFi can provide fast response (<200ms) most of

the time, and a tolerable worst case response time. Hence,

1WiFi is the best approach to running FACE.

SPEECH: Results for SPEECH are somewhat different

(Figure 10). Here, the application generally requires sig-

nificant processing for each query, and data transfer costs

are modest. This changes the relative performance of the
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Figure 9. FACE: Cumulative distribution function (CDF) of response times in ms (300 images).
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Figure 10. SPEECH: CDF of response times in ms (500 WAV files, each recording one sentence).
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Figure 11. OBJECT: CDF of response times in ms (300 images).
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Figure 12. AUGREAL: CDF of response times in ms (100 images).
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Figure 13. FLUID: CDF of response times in ms (10 minute runs, accelerometer data sampled every 20ms). (see also Figure 14)

Normalized Displayed

Simulation Frame Rate

Speed (FPS)

mobile 0.2 9.2

1WiFi 1.0 49.8

east 1.0 42.8

west 1.0 10.3

eu 1.0 3.6

asia 1.0 1.6

Figure 14. Simulation speed, frame rate for FLUID.

Mobile 1WiFi East West EU Asia

FACE
(W) 14.8 12.6 11.4 10.9 11.0 11.0

(J/query) 16.4 5.4 6.6 8.5 9.5 14.3

SPEECH
(W) 16.1 14.5 14.5 14.4 14.4 14.4

(J/query) 22.5 8.2 5.3 11.2 12.2 26.9

OBJECT
(W) 16.8 14.5 14.5 14.6 14.5 14.5

(J/query) 107.0 48.2 28.9 41.5 35.3 43.8

AUGREAL
(W) 13.9 11.7 11.3 11.7 11.3 11.3

(J/query) 3.3 1.1 3.1 5.1 5.2 9.4

FLUID
(W) 17.0 15.8 15.9 15.8 15.8 15.7

(J/frame) 1.9 0.3 0.4 1.8 4.6 10.7

Figure 15. Energy consumption on mobile device
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Figure 16. Experiments of Figure 10 repeated with faster 1WiFi machine
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Figure 17. Experiments of Figure 11 repeated with faster 1WiFi machine

strategies significantly. As the response time is dominated

by processing time, this favors the more capable but distant

servers in the cloud over the weak 1WiFi server. Processing

without cloud assistance is out of the question. For SPEECH,

using the closest EC2 data center is the winning strategy. To

understand the effect of a more powerful 1WiFi machine,

we repeated that experiment with an Intel i-3770 desktop.

The results shown in Figure 16 confirm that 1WiFi now

dominates the alternatives.

OBJECT: Compared to the previous two applications,

OBJECT requires significantly greater compute resources.

Unfortunately, the processing load is so large that none of

the approaches yield acceptable interactive response times

(Figure 11). This application really needs more resources

than our single VM instances or weak 1WiFi server can

provide. To bring response times down to reasonable levels

for interactive use, we will either need to parallelize the

application beyond a single machine/VM boundary and em-

ploy a processing cluster, or make use of GPU hardware to

accelerate critical routines. Both of these potential solutions

are beyond the scope of this paper. Using the faster 1WiFi

machine (Intel i-3770) does help significantly (Figure 17).

AUGREAL: This application employs a low-cost fea-

ture extraction algorithm, and an efficient approximate

nearest-neighbor algorithm to match features in its database.

While these processing costs are modest, data transfer costs

are high because of image transmission. Therefore, as shown

in Figure 12, none of the EC2 cases is adequate for this ap-

plication. They generally provide slower response times than

execution on the mobile device. 1WiFi, on the other hand,

works extremely well for this application, providing very fast

response times (around 100ms) needed for crisp interactions.

This is clearly the winning strategy for AUGREAL.

FLUID: Response time for FLUID is defined as the time

between the sensing of a user action (i.e., accelerometer

reading), to when that input is reflected in the output.

This largely reflects three factors: the execution time of a

simulation step, network latency, and data transfer time for

a frame from the simulation thread. As seen in Figure 13,

local execution on the mobile device produces good response

times, since all but the first factor are essentially zero.

However, simulation speed and frame rate also need to be

considered (Figure 14). The simulation runs asynchronously

to the inputs and display, and tries to match simulated time

with wall-clock time. Since the mobile device cannot execute

the simulation steps fast enough, fluid motions are less than

one fifth of realistic speeds. The cloud strategies do not

have this issue, but due to bandwidth and network latencies,

cannot deliver the results of the simulation fast enough to

sustain the full frame rate. Only 1WiFi and East can deliver

both good responsiveness and high frame rates.

C. Impact on Energy Usage

Battery life is a key attribute of a mobile device. Exe-

cuting resource-intensive operations in the cloud can greatly

reduce the energy consumed on the mobile device by the

processor(s), memory and storage. However, it increases

network use and wireless energy consumption. Since peak

processor power consumption exceeds wireless power con-

sumption on today’s high-end mobile devices, this tradeoff

favors cloud processing as computational demands increase.

Network latency has recently been shown to increase energy

consumption for remote execution by as much as 50%, even

if bandwidth and computation are held constant [25], [14].

This is because hardware elements of the mobile device

remain in higher-power states for longer periods of time.

Figure 15 summarizes energy consumption on our mobile

device for the experiments described in Section IV-B. For

each application, the first row shows the power dissipation

in watts, averaged over the whole experiment. In all cases,

172



       Today’s 
  Unmodified Cloud 

(Level 1 Data Centers) 

Internet 

1WiFi 1WiFi 1WiFi 

Level 2 data center  
and associated 
mobile devices 

Level 2 data center  
and associated 
mobile devices 

Level 2 data center  
and associated 
mobile devices 

Figure 18. Two-level Hierarchical Cloud Architecture

this quantity shows little variation across data centers. Local

execution on the mobile device incurs the highest power

dissipation. Note that the netbook platform has a high

baseline idle power dissipation (around 10W), so the relative

improvement in power is likely to be larger on more energy-

efficient hardware.

Average power dissipation only tells part of the story.

Cloud use also tends to shorten the time to obtain a result.

When this is factored in, the energy consumed per query

or frame is dramatically improved. These results are shown

in the second row for each application in Figure 15. In the

best case, the energy consumed per result is reduced by a

factor of 3 to 6. The strategies that exhibit the greatest energy

efficiency are also the ones that give the best response times.

D. Summary and Discussion

The results of Sections IV-B and IV-C confirm that logical
proximity to data center is essential for mobile applications

that are highly interactive and resource intensive. By “log-

ical proximity” we mean the end-to-end properties of high

bandwidth, low latency and low jitter. Physical proximity

is only weakly correlated with logical proximity because of

the well-known “last mile” problem [26].

1WiFi represents the best attainable logical proximity.

Our results show that this extreme case is indeed valuable

for many of the applications studied, both in terms of

response time and energy efficiency. It is important to keep

in mind that these are representative of a new genre of

cognitive assistance applications that are inspired by the

sensing and user interaction capabilities of mobile devices.

Mobile participation in server-based multiplayer games such

as Doom 3 is another use case that can benefit from logical

proximity [27]. The emergence of such applications can be

accelerated by deploying infrastructure that assures mobile

users of continuous logical proximity to the cloud. The situ-

ation is analogous to the dawn of personal computing, when

the dramatic lowering of user interaction latency relative to

time-sharing led to entirely new application metaphors such

as the spreadsheet and the WYSIWYG editor.

(a) Outdoor (b) Solar Powered (c) Indoor

Figure 19. Unattended Micro Data Centers (Sources: [28], [29])

V. SCALING OUT 1WIFI

We thus face contradictory requirements. On the one hand,

the 1WiFi property is valuable for mobile computing. On

the other hand, it works against consolidation because there

have to be many data centers at the edges of the Internet

to ensure 1WiFi cloud access everywhere. Consolidation is

the essence of cloud computing because dispersion induces

diseconomies of scale: the marginal cost of administering

machines in a centralized data center is typically lower than

when they are spread over smaller data centers. How can

we reconcile these contradictory requirements?

A. Concept

We assert that the only practical solution to this problem

is a hierarchical organization of data centers, as shown in

Figure 18. Level 1 of this hierarchy is today’s unmodified

cloud infrastructure such as Amazon’s EC2 data centers.

Level 2 consists of stateless data centers at the edges of

the Internet, servicing currently-associated mobile devices.

We envision an appliance-like deployment model for

Level 2 data centers. They are not actively managed after

installation. Instead, soft state (such as virtual machine

images and files from a distributed file system) is cached on

their local storage from one or more Level 1 data centers. It

is the absence of hard state at Level 2 that keeps management

overhead low. Consolidation or reconfiguration of Level 1

data centers does not affect the 1WiFi property at Level 2.

Adding a new Level 2 data center or replacing an existing

one only requires modest setup and configuration. Once

configured, a Level 2 data center can dynamically self-

provision from Level 1 data centers.

Physical motion of a mobile device may take it far from

the Level 2 data center with which it is currently associated.

Beyond a certain distance, the 1WiFi property may no

longer hold. In that case, a mechanism similar to wireless

access point handoff can be executed to seamlessly switch

association to a different Level 2 data center.

B. Physical Realization

The hardware technology for Level 2 data centers is al-

ready here today for reasons unrelated to mobile computing.

For example, Myoonet has pioneered the concept of micro
data centers for use in developing countries (Figure 19(a)

and (b)) [28]. AOL has recently introduced indoor micro-

data centers for enterprises (Figure 19(c)) [29]. Today, these

micro data centers are being used as Level 1 data centers
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in private clouds. By removing hard state and adding self-

provisioning, they can be repurposed as Level 2 data centers.

In the future, one can envision optimized Level 2 data

centers for 1WiFi. For example, with modest engineering

effort, a WiFi access point could be transformed into a

“nano,” “pico,” or “femto” Level 2 data center by adding

processing, memory and storage.

While much innovation and evolution will undoubtedly

occur in the form factors and configurations of future Level

2 data centers, we can identify four key attributes that any

such implementation must possess:

• Only soft state: It does not have any hard state, but only

cached state from Level 1. It may also buffer data from

a mobile device en route to Level 1.

• Powerful, well-connected and safe: It is powerful

enough to handle resource-intensive applications from

multiple associated mobile devices. Bandwidth between

Level 1 and Level 2 is good, typical WAN latency is

acceptable, and network failures are rare. Battery life is

not a concern. It can be trusted as a computing platform.

• Close at hand: It is easily deployable within one Wi-Fi

hop of associated mobile devices.

• Builds on standard cloud technology: It leverages and

reuses Level 1 software infrastructure and standards

(e.g. OpenStack [30]) as much as possible.

C. Operating Environment

There is significant overlap in the requirements specifi-

cations for Levels 1 and 2. At both levels, there is the

need for: (a) strong isolation between untrusted user-level

computations; (b) mechanisms for authentication, access

control, and metering; (c) dynamic resource allocation for

user-level computations; and, (d) the ability to support a

very wide range of user-level computations, with minimal re-

strictions on their process structure, programming languages

or operating systems. At Level 1, these requirements are

met today using the virtual machine (VM) abstraction. For

precisely the same reasons they are so valuable at Level 1,

we foresee VMs as central to Level 2.

A rich ecosystem of VM-based mechanisms, policies and

practices already exists for Level 1, but some changes may

be needed for Level 2. For example, cooling and power are

major concerns at Level 1 but are less important important

at Level 2 because data centers are much smaller and ease

of deployment is the dominant concern.

Trust is a differentiator between the two levels. A Level 1

data center is effectively a small fort, with careful attention

paid to physical security of the perimeter. Tampering of

hardware within Level 1 is assumed to be impossible.

Mechanisms such as TPM-based attestation are therefore not

often used at this level. In contrast, a Level 2 data center

has weak perimeter security even if it is located in a locked

closet or above the ceiling. Hence, tamper-resistant and

tamper-evident enclosures, remote surveillance, and TPM-

based attestation will all be more important at Level 2.

The speed of provisioning is another major differentiator

between Level 1 and Level 2. Today, Level 1 data centers

are optimized for launching VM images that already exist

in their storage tier. They do not provide fast options for

instantiating a new custom image. One must either launch an

existing image and laboriously modify it, or suffer the long,

tedious upload of the custom image over a WAN. In contrast,

Level 2 data centers need to be much more agile in their

provisioning. Their association with mobile devices is highly

dynamic, with considerable churn due to user mobility. A

user from far away may unexpectedly show up at a Level

2 data center (e.g., if he just got off an international flight)

and try to use it for an application such as a personalized

language translator. For that user, the provisioning delay

before he is able to use the application impacts usability.

We see at least three different approaches to rapid provi-

sioning at Level 2. One approach is to exploit higher-level

hints of user mobility (e.g., derived from online schedules,

travel information, real-time tracking, explicit user guid-

ance, etc.) to pre-provision Level 2 data centers. A second

approach is to launch a VM instance at Level 2 without

provisioning delay, and then demand page the VM state as

execution proceeds. This reduces startup delay at the cost of

unpredictable delays during execution. The feasibility of this

approach has been shown in the Internet Suspend/Resume

system [31] and other similar systems. A third approach is to

synthesize the desired VM state from a pre-cached base VM

and a relatively small dynamically-transmitted overlay [32],

[33], [34]. Exploring the tradeoffs and optimizations in this

space will be important future research, but the feasibility

of dynamic provisioning is not in doubt.

Unique to Level 2 is the problem of dynamic discovery by

mobile clients, as a precursor to association. One approach

is manual selection, using a mechanism similar to what is

already in use today for choosing WiFi networks based on

their SSIDs. More sophisticated solutions could also be built,

leveraging existing low-level service discovery mechanisms

such as UPnP, Bluetooth Service Discovery, Avahi, and Jini.

VI. DISCUSSION

A. When Level 1 is Unreachable

The hierarchical organization of Figure 18 was derived

solely from considerations of performance and consolida-

tion. As a bonus, it also improves availability. Once a

Level 2 data center has been provisioned for an associated

mobile device, WAN network failures or Level 1 data center

failures are no longer disruptive. This achieves disconnected

operation, a concept originally developed for distributed file

systems [35]. Simanta et al [36], [37] explore the tradeoffs

between performance and availability in the methods used

to dynamically provision Level 2 from Level 1.
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The improved availability of the two-level architecture

applies even to mobile applications that are not latency-

sensitive. Any mobile application that uses the cloud for

remote execution can benefit. Although not widely discussed

today, the economic advantages of data center consolidation

come at the cost of reduced autonomy and vulnerability to

cloud failure. These are not hypothetical worries, as shown

by the day-long outage of Siri in 2011 [38], [39], the multi-

hour weather-related outage of Amazon’s data center in

Virginia in June 2012 [40], and the extended Christmas Eve

2012 outage of Netflix’s video streaming service due to an

Amazon failure [41]. As users become reliant on mobile

multimedia applications, they will face inconvenience and

frustration when a cloud service for a critical application

is unavailable. These concerns are especially significant in

domains such as military operations and disaster recovery.

B. Data Placement

Although we have mainly considered the computational

aspects of a distributed offload infrastructure, appropriately

handling data placement can be important for many appli-

cations. If an application requires a relatively small data

set for its operation, then the application VM can wholly

contain the needed data, and we can trivially migrate and

offload the executable and data as a single unit. At the

other extreme, for an application that uses a very large data

set in an unpredictable manner, there is little one can do

to effectively place data. Rather, one must fetch data as

needed from Level 1 datacenters, or if this is too expensive,

restrict the application to running in the central datacenter.

Most applications will likely fall between these extremes –

they may have substantial data sets, but will typically use

only a subset, and exhibit locality in access. In many cases,

we can predict the likely data required from context, and

hoard [35] this data at the Level 2 datacenters. For example,

in a map application, physical location is highly correlated

with accessed map data, so the geographical region around

the Level 2 data center can be locally cached. Similarly, for a

face recognition database, the faces of people who reside in

the local region are likely to be most important. Automatic

caching capabilities of distributed file systems like the Coda

File System [42] or the OceanStore project [43] can exploit

this locality, mediate the distribution and modification of

data between Level 1 and Level 2 data centers, as well as

provide resiliency in face of failures. Unfortunately, most

cloud-sourced data repositories today (e.g., GoogleMaps,

Flickr, etc.) do not provide a distributed file system interface.

For these, we can imagine a solution that instantiates local

proxies on the Level 2 datacenters that provide intelligent

caching of data from these repositories. Applications and

mobile devices associated with a Level 2 data center can

direct their requests to these proxies rather than directly to

the cloud to benefit from local data hoarding.

VII. RELATED WORK

This is the first work to rigorously explore the impact

of mobile multimedia applications on data center consoli-

dation. The concept of “cyber foraging” by mobile devices

(i.e., leveraging nearby resources) was first articulated in

2001 [44]. Flinn [14] describes the extensive work on this

topic since then. A 2009 position paper [33] argued that end-

to-end latency was the critical determinant of whether public

clouds were adequate for deeply immersive applications.

It introduced the concept of “cloudlets,” which correspond

to Level 2 data centers in this paper. However, that work

offered no experimental evidence to support its claim. While

cloudlets were shown to be sufficient by construction, they

were not shown to be necessary. One way to view this paper

is that it provides the empirical evidence that cloudlets are

not a luxury, but indeed a necessity in the face of real world

network connectivity to public cloud infrastructure.

Recent work by others corroborates the conclusions of

this paper. Clinch et al. [45] explore the need for logical

proximity when using a large static display from a mo-

bile device. Their results are consistent with the findings

reported here. Soyata et al. [46] use Monte Carlo simulation

to explore how a face recognition algorithm should be

partitioned across multiple back-end computation engines.

They conclude that a cloudlet-based strategy is optimal, and

provide experimental validation.

VIII. CONCLUSION

The convergence of mobile computing and cloud com-

puting enables new multimedia applications that are both

resource-intensive and interaction-intensive. For these appli-

cations, end-to-end network bandwidth and latency matter

greatly when cloud resources are used to augment the

computational power and battery life of a mobile device.

In this paper, we have presented quantitative evidence that

latency considerations limit data center consolidation. We

have shown how this challenge can be addressed by a two-

level hierarchical structure that seamlessly extends today’s

cloud computing infrastructure.
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