
The impact of Multi-site Software Governance on Knowledge Management

Christina Manteli
VU University Amsterdam

cmanteli@cs.vu.nl

Bart van den Hooff
VU University Amsterdam

bhooff@feweb.vu.nl

Antony Tang
VU University Amsterdam

atang@cs.vu.nl

Hans van Vliet
VU University Amsterdam

hans@cs.vu.nl

Abstract—Software Development Governance (SDG) is an
emerging field of research, under the umbrella of information
technology governance. SDG challenges increase when software
development activities are distributed across multiple locations.
Coordination of knowledge management processes requires
specific attention in multi site development. This paper outlines
a multi-site software governance structure, based on three
aspects: the business strategy that binds the relationship of the
remote offices, the structure and composition of the remote
teams and the way tasks are allocated across sites. Knowl-
edge management processes (including knowledge creation,
knowledge transfer and communication) are identified and the
influence of different governance structures on these processes
is discussed. We do so through a case study at Océ, a multi-
national company in printing systems.

Keywords-Knowledge management; multi-site software de-
velopment; software governance;

I. INTRODUCTION

Governance is defined as those arrangements and prac-
tices that an organization puts in place to ensure that
the activities are appropriately managed [1]. In fact, only
recently attention has been paid to define governance in
software development: what are the structural attributes of
software development governance and what are the coor-
dination mechanisms that this governance embraces. SDG
challenges increase when software development activities
are distributed across multiple locations [2]. For example,
Heeks et. al. [3] investigate different strategies in multi-site
cooperation that can lead to either synching, that is a suc-
cessful cooperation, or sinking, an unsuccessful cooperation.

With the continuous and evolving strategies of distributed
software development, scholars have been considering the
challenges and the key issues of managing the knowledge
in those distributed environments (e.g. [4], [5], [6]). For
example, it was found that communication frequency and
speed significantly drops among remote teams [7]. As a re-
sult, knowledge tends to “stick” to locations and it becomes
difficult to transfer that knowledge from one site to another
[8].

In this paper, we argue that the way software companies
govern their multi-site development activities, can impact
the management of knowledge across remote locations. We
investigate two different types of multi-site software gover-
nance through a case study, in a multi-national organization.
We identify several knowledge management challenges that

emerge in these distributed environments, and we observe
how the governance structures impact these knowledge man-
agement challenges.

In section II, we define the attributes of multi-site software
governance, and we elaborate on the background theory of
knowledge management issues in distributed environments.
In sections III and IV the project overview and the research
methodology are described. In section V, we present the
knowledge management challenges identified within the case
study, and in section VI the impact of the multi-site soft-
ware governance structures on knowledge management is
discussed. Finally, section VII summarizes the main lessons
learned from this research and we conclude with suggestions
for future research.

II. BACKGROUND THEORY

A. Multi-site Software Development Governance

Software Development Governance (SDG) is an emerging
field of research, under the umbrella of information tech-
nology governance. The goal of SDG is to ensure that busi-
ness processes of the software company meet the strategic
requirements of the organization [9]. In order to achieve
this, software development processes should be aligned with
the company’s business goals on a strategic, tactical and
operational level. Chulani et. al. [9], for instance, describe a
unified view of SDG from the start at the senior executive
level and all the way down to the practitioner level where
projects are implemented.

The challenges of SDG increase, when software devel-
opment activities are engaged in a multi-site environment.
Several proposals have been made to define the attributes
of a software governance model for distributed develop-
ment projects, and the coordination mechanisms that this
model should embrace. Ramasubbu and Balan [2] have
proposed a research model on how to create a governance
framework for distributed software development, focusing
on three stages of a project lifecycle; planning, execution
and reflection. Gewald and Helbig [10] suggest a governance
framework for managing outsourcing engagements based
on organizational structures, joint processes and relationship
management functions.

As Bannerman [1] suggests, SDG should include both a
functional perspective in terms of what governance does as

2011 Sixth IEEE International Conference on Global Software Engineering

978-0-7695-4503-5/11 $26.00 © 2011 IEEE

DOI 10.1109/ICGSE.2011.16

40

well as a structural perspective dealing with what gover-
nance looks like. In this paper, we make our contribution
and define a multi-site software development governance
model from a structural perspective. We outline a multi-site
software governance structure, based on three aspects: the
business strategy that binds the mutual relationship of the
remote offices, the structure and composition of the remote
teams and the way tasks are allocated across sites. In the rest
of this section, we elaborate more on each of those attributes
and the reasons why we define them in the context of multi-
site software governance.

1) Business Strategy: According to [10] a multi-site
governance model should steer and control the cooperation
of the remote offices, based on partnership and mutual trust.
Additionally, Carmel and Tija [11] note that one of the
things that companies should not forget when they operate
in a global environment is the broader strategic goals and
their legal implications. Multi-site business strategy should
therefore consider the contractual and legal relationships
between the remote sites and the implications these might
have in their collaboration, communication and knowledge
management process.

2) Team Structure and Composition: In software devel-
opment, team structure and composition is a critical factor
for good performance [12]. Team size, role descriptions
and role distribution are among those characteristics in
distributed teams that can influence team coordination and
communication and therefore team performance (e.g. [7],
[13], [14], [15]). For example, Kofman and Klinger [16]
suggest that role confusions (meaning the confusion caused
by the difference between how the role is described and
what people actually do within the role) may affect team
performance and communication. Faraj and Sproull [17]
also propose expertise coordination of a team – that is
the coordination of knowledge and skill dependencies –
as an important component of teamwork coordination for
knowledge teams. In this paper we argue that team structure
and composition is an integral part of multi-site software
development and it should be considered part of the gover-
nance structure.

3) Task Allocation: Several criteria exist on how to
distribute work across sites, such as based on the area of
expertise, on the software architecture and structure, or even
based on the development process steps from requirements
elicitation and communication to maintenance [18]. Work
dispersion and the interdependencies between the distributed
tasks influence the coordination and administration of the re-
mote offices [7]. For example, Mockus and Weiss [19] argue
that when assigning a task to a remote site, it is important
to consider that the allocated task matches the development-
resource capacities of that location. Additionally, according
to Carlile [20], as the number of dependencies between
actors increases, the complexity and the amount of effort
required to share and access knowledge at a boundary

also increases. Hence, we consider task allocation as a
fundamental attribute of multi-site software governance.

B. Knowledge Management Challenges

Software development is a knowledge-intensive process
and knowledge management challenges increase when the
development activities are distributed across multiple loca-
tions. Managing the knowledge in multi-site software devel-
opment includes the coordination of communication between
the remote teams [21]. Distance, for instance, between the
teams introduces barriers to informal and face-to-face com-
munication, and the collaboration of the remote colleagues
is dependent on synchronous or asynchronous communi-
cation tools [22]. Additionally, communication speed and
frequency is influenced by the coupling and the interde-
pendencies among the distributed tasks. It is suggested for
example, that tightly-coupled tasks that are distributed across
multiple sites, can increase the communication frequency
[19].

Another knowledge management challenge in distributed
software development is the knowledge capture which is
seen as the process of recording knowledge in a medium,
that is transforming and encoding it as information [23].
According to Correia and Aguiar [23], the effectiveness of
how knowledge is captured into artifacts, and acquired by
other team members, is of crucial importance to a project’s
success. Research also suggests that in distributed software
development, documentation must be current and reflect
what various teams are using and working on, to prevent as-
sumptions, misunderstandings and to support maintainability
[24].

Moreover, several factors can impede knowledge trans-
ferability across sites such as the use of different working
methods or the differences in skills and expertise of the
remote colleagues [25]. For example, Carlile [20] argues that
as the differences in the amount and the type of knowledge
that people possess increases, the effort required to share
and transfer that knowledge also increases. Furthermore,
transactive memory – the knowledge of who knows what
and where knowledge resides [26] – has been studied as
a supporting structure in knowledge transfer across multiple
locations [25]. Kotlarsky and Oshri [27], for instance, inves-
tigated two globally distributed system development projects
and argue that transactive memory as a mean of knowledge
sharing contribute to successful collaboration across remote
teams.

In this paper, we investigate knowledge management
challenges that can emerge in a multi-site software de-
velopment environment. Based on the aforementioned lit-
erature we classify the identified challenges under three
main categories, communication, knowledge creation and
storage and knowledge transfer. We also make a distinc-
tion between system-generic and unit-specific knowledge.
We define system-generic knowledge as the comprehensive

41

knowledge of the entire system that teams are working
on. In other words, it is the knowledge of how the end
product looks and functions. Unit-specific knowledge is the
particular knowledge that the individual has, for the specific
unit he or she is working on.

III. PROJECT OVERVIEW

The research was conducted at Océ1, a multi-national
company in printing systems, part of the Canon Group. Océ
is headquartered in the Netherlands, with offices in more
than 100 countries and over 20,000 employees. Research
and development departments work on hardware as well
as software innovations, and are located in nine different
countries.

Océ successfully applies an agile development methodol-
ogy to encourage creativity and productivity. The organiza-
tion is flat and employees are encouraged to be proactive
in owning up to work responsibilities. Océ has deliberately
opted for cooperation, as opposed to hierarchy, to foster
innovation and entrepreneurship. People are not curtailed
by strict processes and the drive to deliver business results
is strong, so the latter will take precedence over writing
excessive documentation, and a lot of knowledge therefore
remains transactive.

This case study focuses on one business unit which
specializes in high-end printers. The development of the
software used in those printers is distributed among the
main site (site NL) and two remote sites: site A and site
B. The software includes units such as accepting requests,
controlling print jobs, rendering images, controlling devices
(e.g. scanners) as well as local and remote user interfaces.

In the next subsections, we first sketch typical team
structure at Océ, followed by the business strategy, team
structure, and task allocation in the site NL - site A and site
NL - site B coalition, respectively.

A. Project team structure

In a typical team structure of project teams at Océ, a
project manager heads the project and is responsible for its
planning, realization, and successful completion. The project
manager also agrees upon the high-level specifications of the
project with upper management and marketing personnel.
Requirements and specifications are compiled into product
properties by the lead architect in the team. The specifica-
tions written by the lead architect start from a user-centric
view, i.e., scenarios on how the end-users will interact with
the product. For instance, the architect is responsible to
decide what happens in case of a request from the user of the
printer as in how should it function, which software units
should be triggered and how should they function, define
the interfaces between these units and the like. Teams also
comprise a system integrator who integrates the different

1www.oce.com

software units to build the software system. Additionally, the
system integrator reports issues encountered during integra-
tion and assigns them to the appropriate team or person to be
addressed. All three – the project manager, the lead architect,
and the system integrator – are assigned to a project for its
entire duration until the product has been released.

Project teams also comprise one or more software unit
teams that implement the software units. Each unit has a
unit leader and a unit architect analogous to the project
manager and lead architect at the project level. The unit
leader is responsible for planning and organizing. The unit
architects transform the high-level specifications received
from the lead architect into detailed technical specifications
and pass them to the software engineers who implement the
code and test it. The unit architects are coordinated by the
lead architect, who is often the only team member with the
overall view of where (or in which units) do the different
functionalities of the product reside. Most software units are
not developed for a single product but their deliverable is
tuned and integrated into several products. A software team
can develop a software unit for four, or even more, projects
at the same time. This challenges system behavior as well
as architecture.

B. Relationships between site NL and site A

The collaboration between site A and site NL concerns
the co-development of a software unit, which means that
the development activities of that unit are distributed among
members in a team in the NL site and members in a team
in site A. Not all information available at site NL can be
freely shared with site A.

For the unit developed between site A and site NL, the
unit leader is located in site NL. In site A, another role is
created, referred to as the team leader, who is the coordinator
of the local team at site A as well as the main contact person
with the team in site NL. Both teams consist of software
engineers, testers as well as unit architects.

Development tasks are allocated to the software engineers
of the two sites by the unit leader of the specific software
unit. Two main criteria are applied in deciding which tasks
should be sent to site A: the first is based on previous
experience, i.e., whether a software engineer has worked
on a certain task before, and therefore he or she is more
capable in dealing with a specific change request, resolving
related defects or adding new features. The second criterion
is the complexity of the task. If requirements are difficult to
communicate through email, or via the phone, the tasks are
more likely to be assigned to someone at the NL site.

C. Relationships between site NL and site B

Site B is responsible for the development of a software
unit, with an independent unit team that develops the unit
and ships it back to site NL for integration. The team in site
B has a unit leader, a unit architect and software engineers

42

and testers. All information available at site NL can be
shared with site B.

In the beginning of each release cycle, the project manager
from the NL site and the unit leader from site B, as well
as the lead architect from the NL site and the unit architect
from site B, create a plan for the next release and discuss the
requirements to be implemented. At the end of each release,
the work developed and tested in site B is shipped back to
the NL site for integration and system and product testing.

IV. RESEARCH METHODOLOGY

The research was conducted based on a qualitative data
analysis approach. Qualitative research refers mainly to
the investigation and analysis of personal experiences and
behaviors, as well as organizational functions and social
interactions [28]. In order to gather the required data for the
analysis, we chose to perform semi-structured interviews.
In semi-structured interviews, questions can be open-ended
allowing a conversational manner, while at the same time,
an interview protocol can still be followed [29].

To gather the data, 20 interviews were conducted with a
duration of approximately 90 minutes each. An interview
protocol was designed to guide the discussions, which cov-
ered questions on the topics of communication and knowl-
edge management. The respondents included employees
from all three sites, with different roles and positions. Table
I presents the number of the respondents, their roles and the
location. Site A has no system integrators, unit architects or
designers, therefore no interviews from these roles at that
location were held.

Table I
INTERVIEW PARTICIPANTS ACROSS LOCATIONS

site NL site A site B
Software Engineers, Testers,
Unit Architects

5 3 2

System Integrators, Unit Ar-
chitects, Designers

3 - 1

Project Managers, Team Lead-
ers

2 2 2

Total 10 5 5

All interviews were recorded and transcribed. To process
the data, the Atlas.ti2 tool was used, a commercial software
for qualitative analysis of textual and visual data. The
interviews were analyzed based on the coding process of mi-
croanalysis or otherwise called a “line-by-line” analysis [28].
The codes were eventually grouped into emerging concepts.
These concepts reflect the identified knowledge management
challenges and the multi-site governance structures that
impact those challenges. In a companion article [36], a larger
set of interviews is used to validate a collection of software
architecture knowledge management practices.

2www.atlasti.com

V. KNOWLEDGE MANAGEMENT CHALLENGES

A. Communication

Within the case study company, several observations can be
made with regard to communication. Between site NL and
site A, communication frequency is more intense among all
the team members and across all development phases, from
software engineers to unit leaders. Between site NL and site
B communication frequency depends on the development
phase. More specifically, a more intense communication
seems to be necessary in the beginning of the release cycle
during requirements planning and communication, as well
as near the end of a release cycle during integration and
testing. Figure 1 qualitatively illustrates the communication
frequency of site NL - site A and site NL - site B coalition.

Figure 1. Communication Frequency through the development life cycle

Requirements Architecture Design Coding Testing Integration Maintenance

C
om

m
un

ic
at

io
n

Fr
eq

ue
nc

y

High

Low

medium

Site NL - Site A

Site NL - Site B

In a distributed development environment, communication
can be either asynchronous using emails and chats, or
synchronous through video conferences and face-to-face
meetings. Synchronous communication is generally consid-
ered preferable in distributed environments [30]. The reason
is that a small issue can take longer to be resolved using
emails circulating between sites, while a brief conversation
through the phone can quickly resolve and clarify issues.
Communication speed and frequency is important in multi-
site environment, and potential delays in communication can
cause delivery and project delays.

Based on the need for communication among the
different roles and across locations, the use of the different
means of communication varies. Software engineers and
architects use an instant messaging (IM) tool on an
everyday basis. The IM tool allows for direct exchange of
messages as well as the possibility for desktop sharing. This
synchronous communication part of the chat tool covers
the need for the everyday communication that software
engineers and architects have. The introduction of the
instant messaging (IM) tool was a significant improvement
in the communication between site A and site NL, during
the last year. Through the IM tool, they can see when
some of their remote colleagues are online and available

43

at the moment, and they come directly in contact with the
person they need. Considering the high needs for frequent
communication that the two locations have, the addition of
a complementary tool of synchronous communication was
perceived from the Océ employees as a great advancement
in the collaboration methods.

“The advantage of chat is that it is much faster. Once the
person is available, you start asking and you can do this
very fast in a short time” (Team leader, site A)

With the IM tool, software engineers can also use desktop
sharing, improving communication speed and potentially
improving performance. Desktop sharing permits remote
colleagues to have a real time, interactive communication
while they share their desktop environments. They can
check each other’s work, if certain features have been
implemented the right way, or solve bugs by tackling
problems together and assisting each other.

“And we can also talk and give control and then you
can go sort of around the code and check and it’s very
fast. Desktop sharing covers pretty much all the needs I
have.”(Software engineer, site A)

“We share the desktop of a developer - like this morning
we did it again to just get a feedback on the look and feel
of an implemented part or behavior - and then you can,
together with the developers in site A and site NL, you
can click through stuff and see what has been implemented
before and check in the code.” (Unit leader, site NL)

In the case of unit leaders, phone calls and organized video
conference are the most common means of synchronous
communication. The difference is that unit leaders, although
they still need to communicate on an everyday basis, hardly
ever work all day in front of their desk. Chatting therefore
cannot serve their needs, and phone calls are preferred.
Email seems to be the next favorite tool for communication
for all roles. It serves best when many people need to be
involved in a discussion, or informed about a decision. At
the same time, email allows for a more direct means of
sharing documents with many colleagues. Finally, traveling
is more common for unit leaders, and less so for software
engineers.

B. Knowledge Creation and Storage

According to Hansen et. al. [31], codification is pursued
when knowledge is documented and stored in databases,
while personalization relies on the tacit knowledge that
people possess and sharing that knowledge in person-
to-person communications. With their choice for an
agile development method, the NL site has deliberately
opted for a strong personalization strategy. Employees

are encouraged to cooperate with each other, taking
initiative and responsibility without being constrained by
strictly defined processes. With this approach, much of the
knowledge remains tacit and details will not always be
updated in the corresponding documents.

“And sometimes there are documents, the system behavior
documents, and system architecture documents, but they are
mostly on a higher level.” (Software Engineer, site NL)

“Most of the time you don’t just look for information
in documents or in databases, but you walk to a person
whom you know is working on stuff or knowledgeable and
you just ask questions. And maybe that person also doesn’t
know but he will give you a pointer to somebody else, and
so you just do it by communicating and do it by talking to
people.” (Unit Leader, site NL)

The observed codification and personalization practices
within site NL have certain implications for site A and site
B. In the case of site B, we noticed that documents are
stored and shared with site NL through the use of different
repositories and tools. These tools include development
platforms and applications as well as communication tools
like emails and chats. Consequently, people find it difficult
to search through all these databases and repositories to
locate the right document and the up-to-date information
they need. Because of this situation and because of the
relative development independence site B has, some local
codification strategies have developed and site B maintains
its own internal way of documenting knowledge. This
independence, but also separation, from the working
methods of site NL, inevitably creates a gap in knowledge
sharing between site NL and site B.

“We have a SharePoint where we put a lot of the
documentation; that’s a recent technology we use here.
I think it’s been introduced over the last year. And it’s
convenient for all people because previously that was quite
a mess, because you have one version of the document in
one share folder on the network, and the other, the same
document elsewhere.” (Software Engineer, site B)

Documentation storing and sharing between site NL
and site A also has certain characteristics. Because of
the information barriers between them, the team at site A
does not have access to all the documentation available
in the databases of the NL site. As a consequence, site A
employees need to ask their colleagues from the NL site
for any extra information they might need. In turn, site
NL people need to put extra effort and time to find that
information and send it back to site A. In Océ, proactiveness
is encouraged, but so is asking for information one needs
to do a proper job.

44

“I don’t mind. I’m actually happy that they are asking
for information, because we’ve seen a lot of cases where
they just didn’t ask and they did something or assumed
something, and afterwards they complained they didn’t
have anything - they didn’t ask! We’re really in a mode
that people should ask for information, so I’m really happy
they ask, so then already I quickly see what it’s about and
see if I can help” (Software Engineer, site NL)

C. Knowledge Transfer

The majority of the project is developed at the NL site
and therefore most of the system-generic knowledge also
resides in site NL. This inevitably causes knowledge to be
“sticky” [8], which means that it takes additional effort for
that knowledge to be transferred from the NL site to the
remote sites.

“We don’t feel the same handicaps as our remote
colleagues, and maybe, I hope I do my best to keep them in
touch and things like that, but yes, here we can act much
faster.” (System Integrator, site NL)

Another reason that enforces the stickiness of knowledge
is the lack of the actual physical printing machines at the
remote sites. The teams in the remote sites develop and test
their work using simulators or they have a type of printer
with limited functionality. This restricts their knowledge
on how the entire system works, and their capabilities to
perform as good as their colleagues in site NL.

“But I do think that having a machine would help in
understanding how the system works and, for now I don’t
understand yet why they don’t have a machine.” (Unit
leader, site NL)

Concerning the unit-specific knowledge, the situation
seems to differ between the co-development cooperation
site NL-site A and the independent development site
NL-site B. In the first case, function-specific knowledge
remains in the NL site, and it is difficult to be transferred
to the site A team. The main reason appears to be the lack
of the printing machines in the remote site that limits their
capabilities, as well as the unit-specific knowledge of the
team in site A.

“This year it was the first time that we saw also how
this kind of testing is done. It was all taped and they made
a sort summary and we just saw how something was tested
and so on. But it was the first time we saw that. And
then we heard the customer saying, yes, we’d like this and
that and then we heard, yes, we will have to do that and
that and you will get the requests and so on.” (Tester, site A)

Another challenge in knowledge transfer is how to locate
the knowledge. As we have previously observed, a strong
personalization strategy is pursued in agile development
methodologies. People rely more on the transfer of
knowledge in a person-to-person way, and it becomes more
efficient to know who knows what. Transactive memory is
highly visible in the agile environment of the NL site and
it has been recognized as an efficient way of improving
performance, since people can find the right information by
spending the least effort and time [17].

“And it makes it easier to know who is working on
what part of the implementation, and that’s also what we
learn by being there, that you are more aware of what
question should I ask and to whom. Don’t just blow out
your question and send it to five engineers, but when we
talk about this part of the end phase, I know I have to
contact this person” (Designer, site NL)

VI. MULTI-SITE SOFTWARE GOVERNANCE

A. Business Strategy

The contractual relationships and as a result the
information barriers between site NL and site A seem
to impact knowledge sharing between remote colleagues.
People in site A do not have direct access to the
documentation that is available in site NL, and as a
consequence they rely on the selected information and
documentation that site NL sends them.

“Site A is some kind of different entity. And therefore,
we always have to ask, please, or we don’t have access
to all the repository that they have and usually then we
have to ask, please, could you please copy that from there
to here so that we can have also access and sometimes it
might be annoying but . . . ” (Software Engineer, site A)

Additionally, people in site NL and especially the
software engineers have to invest more time and effort
to filter the information and share it with their remote
colleagues.

“So they cannot access the Wiki, so in the beginning
we put a lot of stuff in the Wiki and they couldn’t access it,
so problem. Later they said, well, we could use sharepoint
and put stuff on there, and you have versioning so it’s kind
of a mix between Wiki and storing documents and, well,
I’ve actually never really used it a lot.” (Software Engineer,
site NL)

Finally, the flat organization and the agile environment
in site NL enforce the quick response time from people
working in that site. Software engineers in site NL are
encouraged to take responsibilities and initiative and act
accordingly and they can quickly reply to their colleagues

45

in site A, increasing the speed of communication between
the two remote locations.

“I expect that people are perhaps in meetings and
they are quite busy, but usually they are able to answer
me right away and its very, very good for us.” (Software
engineer, site A)

B. Team Structure and Composition

In distributed teams the lack of team cohesion is a rec-
ognized challenge [32]. Team members in remote locations
are less likely to perceive themselves as part of the same
team, compared to team members working in a co-located
environment. Moreover, in a highly agile environment, there
is less attention to documentation and as a result much
knowledge remains tacit. Transferring tacit knowledge re-
quires personal interactions and in a multi-site environment
these interactions need more effort and time to take place.

As described earlier, the largest part of the project
remains in the NL site. Consequently, more people are
working there and more knowledge resides at that site.
Most of the software units are developed in site NL, and
most of the software unit-specific decisions are taken there.
Additionally, the unit leaders and system integrators are
located in site NL which means that also all the system-
generic decisions are taken in site NL. Since most of the
project knowledge is created in site NL and remains agile,
people are less likely to understand the need to transfer that
knowledge to their remote colleagues.

“We are big brother, and they are only small team,
and yes, we can settle a lot of issues, at the coffee machine,
and yes, they don’t participate. But that’s the organization.
If we were with three equally groups, one in site A with
their responsibility, one in site B with same responsibility,
and one in site NL with same responsibility, that would
be different. We also would feel that we can’t just decide
something at the coffee machine, we have to put it on paper
and we have to agree before the parties, but since we have
the system architect and the biggest role, its too easy not to
document things, too easy not to have a meeting about it,
I think that’s the case for a large part.” (Unit leader, site NL)

The hierarchical organization of the teams might influence
knowledge sharing. Previous research suggests that as the
role differentiation increases in software development teams,
it leads to a decrease in interaction and a corresponding
decline in the shared mental model [33]. Within Océ, it is
perceived that the hierarchical organization is more intense
among the team structures in site B. By hierarchy, we
mean that a unit leader for example has more decision
making power on design and development matters than a
developer. As a result, developers in site NL believe that
their colleagues in site B need more time to take an action

(e.g. fix a bug or work on a Change Request) and that often
can cause delays; this has not been quantitatively confirmed
though.

“I had to wait for days through the official channel
of delivering, of updating.” (Software Engineer, site B)

“Usually I’m telling him I discussed this or if somebody is
requesting to do something first we have to ask here on our
site, is it okay for you if I do this because I was requested,
and if he says, yes, then we are doing it. If he says, no, we
have to say, sorry, can’t do it yet.” (Software Engineer, site
A)

Finally, team structure and composition can impact
the communication speed and frequency. Based on
the way teams are organized within the company,
interaction between remote locations is more likely to occur
through the “contact persons”. This can potentially create
communication bottlenecks and delays.

“It’s better if you inform your responsible before you
contact. But it might depend on responsible, also. There are
some that they need to know everything before you contact
the remote location, and sometimes you have a responsible
that delegates to you the responsibility of something.”
(Software Engineer, site A)

C. Task Allocation

In task allocation, we examine the way development activ-
ities are distributed among sites. We have already mentioned
the two main task allocation methods identified in the Océ
case study (co-development between site NL-site A and
more independent development between site NL-site B).
During the analysis, several knowledge challenges appear
to be influenced by this construction. An important aspect
is that, most often, the task allocation is tightly coupled
with the team structure and composition [34], and more
specifically in distributed development environments [35].

One of the first things to be noticed is the influence of
task allocation on the communication frequency. As already
described previously, communication frequency between site
NL and site A is higher. On the other hand, communication
frequency between site NL and site B depends more on the
development phase. Consequently, we observe that tightly-
coupled activities require a more intense communication
compared to loosely-coupled activities. Team composition
also plays a role in this case, as the fluctuation in the commu-
nication frequency refers primarily to software engineers and
unit architects. Unit leaders who communicate for progress
status and planning purposes have a more stable communi-
cation frequency based on scheduled regular meetings. For
example, there is a Software Progress Committee that meets
once every week to discuss project planning and current

46

status.
In addition, the codification strategy appears to be influ-

enced by task allocation. In the case of co-development
between site NL and site A, where development activi-
ties are tightly coupled, it is also noticeable that remote
colleagues are more dependent on documentation sharing.
Site B, however, has a self-sufficient domain knowledge
and their communication with site NL is on interfacing and
integration. There is a local Sharepoint site within site B and
the team has its own, local procedures of how and when to
document and share knowledge, limiting their codification
dependencies with site NL.

The location where domain knowledge resides, is also
connected with task allocation. In co-development, all
knowledge (system-generic and unit-specific) remains in site
NL and therefore additional effort needs to be invested in
knowledge sharing between the remote sites.

Finally, task allocation can have a social impact
on knowledge management. The motivation of site A
colleagues can be influenced by the lack of responsibility
in the development tasks that they receive, and they more
often leave the company. When an employee leaves the
company that means that he or she takes the knowledge
obtained so far, and at the same time Océ has to hire
someone else, train him and integrate him with the team,
the project and the company.

“You just get small pieces of the cake. This is also
frustrating for the guys here, because they are, in terms of
qualification, they know the technology, at least the same
level as the guys in site NL, but they lack the top level
domain knowledge, and this causes instability in the team,
because one could say, okay, I’m very good in Java. I can
do more than this small piece of user interface. ” (Team
leader, site A)

VII. LESSONS LEARNED

We have examined two multi-site software governance
structures and their differences. The first difference relates
to the business strategy that binds the relationship between
the remote offices. Between site NL and site A there are
information barriers. The next difference is the way tasks
are allocated. The site NL and site A teams co-develop a
software unit, which implies that the development activities
and dependencies between the two sites are tightly coupled.
On the other hand, site B is responsible for the development
of a complete software unit, meaning that the development
activities are more independent from site NL. Finally, the
two governance structures are similar as far as team structure
and team composition is concerned. Site NL is a flat
organization, with small distances between roles, and agility
is highly supported. The remote sites however are more
hierarchically structured and focus more on strict processes
and procedures.

Table II
THE IMPACT OF MULTI-SITE SOFTWARE GOVERNANCE ON

KNOWLEDGE MANAGEMENT

Business
Strategy

Multi-site Software Governance

Task Allocation

Team Structure
& Composition

Site NL-Site A:
• They are different companies
and information barriers exist
between the remote sites

Site NL-Site B:
• They are the same company and
no information barriers exist
between the remote sites

Knowledge Management
Challenges

• No direct documentation due to
information barriers.
• Information sent from Site NL to
Site A needs to be filtered.
• Communication frequency is higher.

Site NL-Site A:
• Site NL is a flat organization,
while Site A is hierarchically
structured.
• Role descriptions differ between
sites.
• Unbalanced team sizes.

Site NL-Site B:
• Site NL is a flat organization,
while Site B is hierarchically
structured.
• Role descriptions differ between
sites.
• Unbalanced team sizes.

• Hierarchical structures create
bottlenecks in knowledge sharing.
• Too much focus on agility stresses
tacit communication and
documentation remains outdated.
• Different role descriptions makes
knowledge difficult to locate.
• Knowledge tends to stick where the
majority of teams, or where the larger
teams are located.

Site NL-Site A:
• They co-develop a function and
their activities are tightly coupled.

Site NL-Site B:
• They develop independently and
their activities are loosely
coupled.

• Tightly coupled activities increase
the need for knowledge sharing.
• Co-development creates a greater
need for codified knowledge.
• Communication frequency is high.

• Knowledge tends to stick to the
independent development teams.
• Communication frequency depends
on the release phase.

Having defined the two cases of multi-site software gov-
ernance, we investigated the impact different governance
structures might have on several knowledge management
challenges. Table II presents our main findings. The knowl-
edge management challenges identified within the case study
concern the communication, the knowledge creation and
storage and the knowledge transfer. The main impacts ob-
served are:

• The information barriers between offices increase the
effort and time spent on managing the creation, storage
and sharing of knowledge, both tacit and explicit.

• The unbalanced structure and composition of teams
impedes the smooth flow of knowledge. For example,
when the team leader of the unit is located in the NL
site, unit-specific knowledge “sticks” to the NL site.

• Allocating tightly-coupled activities among remote
teams, increases the need for knowledge sharing and
more effort needs to be spent in knowledge transfer.
The communication frequency is higher because team
members need to be in contact on an everyday basis
for the coordination of their development activities.

Summarizing our observations, the software governance
between site NL and site A has a stronger impact on
knowledge management than the software governance be-
tween site NL and site B. Whether the observed impact is
beneficial for the productivity and the performance of the

47

distributed project –for example in terms of development
speed or number of residual bugs– needs further study. We
round off this research with a structural perspective of multi-
site software governance associated with (a) the business
strategy between the remote offices, (b) the structure and
composition of the distributed teams, and (c) the allocation
of the development tasks across sites. We believe that these
attributes should be considered for the success of a multi-
site software governance structure. We should not forget,
however, that there is no “one size fits all” solution to gov-
ernance but that an effective governance is rather dependent
on the situational characteristics of a software company [1].

VIII. CONCLUSION

We have defined a multi-site governance structure based
on business strategy, team structure and composition and
task allocation. We also identified several knowledge man-
agement processes, within the distributed software develop-
ment environment, dealing with communication, knowledge
creation, storage and sharing. In our case study, information
barriers between sites, unbalanced team composition and
tight coupling of distributed activities impact knowledge
management processes.

Multi-site software governance should be further re-
searched and enriched, by eliciting more information and
identify other governance aspects besides we identified so
far. By creating a more concrete definition of what con-
stitutes multi-site software governance, we can build more
accurate models and perform additional case studies on
how to organize and administer multi-site software develop-
ment activities at a strategic, tactical as well as operational
level. Our aim is to expand and supplement the results of
the present case study and create a multi-site governance
framework based on best practices. This way we obtain a
sound insight into what steps should be taken, and how
organization and development activities should be structured
to best align business and software development goals.

ACKNOWLEDGMENT

This research has been partially sponsored by the Dutch
Joint Academic and Commercial Quality Research & De-
velopment (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For
inFormatIoN about architectural knowledge and the Dutch
“Regeling Kenniswerkers”, project KWR09164, Stephenson:
Architecture knowledge sharing practices in software prod-
uct lines for print systems.

REFERENCES

[1] P. L. Bannerman, “Software development governance: A
meta-management perspective,” in Proceedings of the 2009
ICSE Workshop on Software Development Governance, ser.
SDG ’09. IEEE Computer Society, 2009, pp. 3–8.

[2] N. Ramasubbu and R. K. Balan, “Towards governance
schemes for distributed software development projects,” in
Proceedings of the 1st international workshop on Software
development governance, ser. SDG ’08. New York, NY,
USA: ACM, 2008, pp. 11–14.

[3] R. Heeks, S. Krishna, B. Nicholson, and S. Sahay, “Synching
or sinking: Global software outsourcing relationships,” IEEE
Software, vol. 18, pp. 54–60, 2001.

[4] T. Dingsøyr, R. Conradi, and S. Telecom, “A survey of case
studies of the use of knowledge management in software
engineering,” International journal of software engineering
and knowledge engineering, vol. 12, no. 4, p. 391, 2002.

[5] A. Tiwana, “An empirical study of the effect
of knowledge integration on software development
performance,” Information and Software Technology, vol. 46,
no. 13, pp. 899 – 906, 2004. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V0B-
4CHGF41-2/2/74d374a68b357388303c799d0792377f

[6] S. L. Jarvenpaa and D. E. Leidner, “Communication and
trust in global virtual teams,” Organization Science,
vol. 10, pp. 791–815, 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=767698.768296

[7] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Transactions on Software Engineering, vol. 29, no. 6,
2003.

[8] G. Szulanski, “The process of knowledge transfer: A di-
achronic analysis of stickiness,” Organizational Behavior and
Human Decision Processes, vol. 82, no. 1, pp. 9 – 27, 2000.

[9] S. Chulani, C. Williams, and A. Yaeli, “Software development
governance and its concerns,” in Proceedings of the 1st
international workshop on Software development governance,
ser. SDG ’08. ACM, 2008, pp. 3–6.

[10] H. Gewald and K. Helbig, “A governance model for managing
outsourcing partnerships: A view from practice,” in Proceed-
ings of the 39th Annual Hawaii International Conference on
System Sciences - Volume 08. IEEE Computer Society, 2006.

[11] E. Carmel and P. Tija, Offshoring Information Technology:
Sourcing and Outsourcing to a Global Workforce. Cambridge
University Press, 2006.

[12] H.-L. Yang and J.-H. Tang, “Team structure and team per-
formance in is development: a social network perspective,”
Information Management, vol. 41, no. 3, pp. 335 – 349,
2004.

[13] M. B. O’Leary and J. N. Cummings, The spatial, temporal,
and configurational characteristics of geographic dispersion
in teams. MIS Quaterly, 2007, vol. 31, no. 3.

[14] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D.
Herbsleb, “Familiarity, complexity, and team performance in
geographically distributed software development,” Organiza-
tion Science, vol. 18, no. 4, pp. 613–630, 2007.

48

[15] M. B. O’Leary and M. Mortensen, “Go (con)figure: Sub-
groups, imbalance, and isolates in geographically dispersed
teams,” Organization Science, vol. 21, no. 1, pp. 115–131,
2010.

[16] A. Kofman, A. Yaeli, T. Klinger, and P. Tarr, “Roles,
rights, and responsibilities: Better governance through deci-
sion rights automation,” in Proceedings of the 2009 ICSE
Workshop on Software Development Governance, ser. SDG
’09. IEEE Computer Society, 2009, pp. 9–14.

[17] S. Faraj and L. Sproull, “Coordinating expertise in software
development teams,” Manage. Sci., vol. 46, no. 12, pp. 1554–
1568, 2000.

[18] A. Lamersdorf, J. Munch, and D. Rombach, “A survey on
the state of the practice in distributed software development:
Criteria for task allocation,” Global Software Engineering,
International Conference on, vol. 0, pp. 41–50, 2009.

[19] A. Mockus and D. M. Weiss, “Globalization by chunking: A
quantitative approach,” IEEE Softw., vol. 18, pp. 30–37, 2001.
[Online]. Available: http://dx.doi.org/10.1109/52.914737

[20] P. R. Carlile, “Transferring, Translating, and Transforming:
An Integrative Framework for Managing Knowledge across
Boundaries,” Organization Science, vol. 15, no. 5, pp. 555–
568, 2004.

[21] P. J. Ågerfalk, B. Fitzgerald, H. Holmström, B. Lings,
B. Lundell, and E. Conchúir, “A framework for considering
opportunities and threats in ditstributed software develop-
ment,” in International Workshop on Distributed Software
Development. Austrian Computer Society, 2005.

[22] D. E. Damian and D. Zowghi, “The impact of stakehold-
ers? geographical distribution on managing requirements in
a multi-site organization,” in RE ’02: Proceedings of the
10th Anniversary IEEE Joint International Conference on
Requirements Engineering. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 319–330.

[23] F. F. Correia and A. Aguiar, “Software knowledge capture and
acquisition: Tool support for agile settings,” in ICSEA ’09:
Proceedings of the 2009 Fourth International Conference on
Software Engineering Advances. IEEE Computer Society,
2009, pp. 542–547.

[24] J. D. Herbsleb and D. Moitra, “Guest editors’ introduction:
Global software development,” IEEE Software, vol. 18, pp.
16–20, 2001.

[25] I. Oshri, P. Van Fenema, and J. Kotlarsky, “Knowledge
transfer in globally distributed teams: the role of transactive
memory,” Information Systems Journal, vol. 18, no. 6, pp.
593–616, 2008.

[26] D. Wegner, Transactive memory: A contemporary analysis of
the group mind. Springer-Verlag, 1987, pp. 185–208.

[27] J. Kotlarsky and I. Oshri, “Social ties, knowledge sharing
and successful collaboration in globally distributed system
development projects,” Eur. J. Inf. Syst., vol. 14, no. 1, pp.
37–48, 2005.

[28] A. L. Strauss and J. M. Corbin, Basics of Qualitative Re-
search: Techniques and Procedures for Developing Grounded
Theory. Sage Publications, Inc., 1998.

[29] R. K. Yin, Case Study Research: Design and Methods. Sage
Publications, Inc, 2003.

[30] E. Carmel and R. Agarwal, “Tactical approaches for allevi-
ating distance in global software development,” IEEE Softw.,
vol. 18, no. 2, pp. 22–29, 2001.

[31] What’s your strategy for managing knowledge, vol. 77, 1999.

[32] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Commun. ACM, vol. 49,
no. 10, pp. 41–46, 2006.

[33] L. L. Levesque, J. M. Wilson, and D. R. Wholey, “Cognitive
divergence and shared mental models in software develop-
ment project teams,” Journal of Organizational Behavior,
vol. 22, no. 2, 2001.

[34] A. Lamersdorf, J. Münch, and D. Rombach, “A decision
model for supporting task allocation processes in global
software development,” in Product-Focused Software Process
Improvement, ser. Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2009, vol. 32, pp.
332–346.

[35] A. Barcus and G. Montibeller, “Supporting the allocation of
software development work in distributed teams with multi-
criteria decision analysis,” Omega, vol. 36, no. 3, pp. 464 –
475, 2008.

[36] V. Clerc, P. Lago, and H. van Vliet, “Managing Architectural
Knowledge in GSD: What to Share, and How to Do It!” 2011,
submitted.

49

