
The Impact of Multihop Wireless Channel on TCP
Throughput and Loss

Zhenghua Fu, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, Mario Gerla
UCLA Computer Science Department,

Los Angeles, CA 90095-1596
Email:{zfu,pzerfos,hluo,slu,lixia,gerla}@cs.ucla.edu

Abstract—This paper studies TCP performance over multihop
wireless networks that use the IEEE 802.11 protocol as the access
method. Our analysis and simulations show that, given a specific
network topology and flow patterns, there exists a TCP window
size W ∗, at which TCP achieves best throughput via improved
spatial channel reuse. However, TCP does not operate around
W ∗, and typically grows its average window size much larger;
this leads to decreased throughput and increased packet loss. The
TCP throughput reduction can be explained by its loss behavior.
Our results show that network overload is mainly signified by
wireless link contention in multihop wireless networks. As long
as the buffer size at each node is reasonably large (say, larger
than 10 packets), buffer overflow-induced packet loss is rare and
packet drops due to link-layer contention dominate. Link-layer
drops offer the first sign for network overload. We further show
that multihop wireless links collectively exhibit graceful drop
behavior: as the offered load increases, the link contention drop
probability also increases, but saturates eventually. In general,
the link drop probability is insufficient to stabilize the average
TCP window size around W ∗. Consequently, TCP suffers from
reduced throughput due to reduced spatial reuse. We further
propose two techniques, link RED and adaptive pacing, through
which we are able to improve TCP throughput by 5% to 30%
in various simulated topologies. Some simulation results are also
validated by real hardware experiments.

I. INTRODUCTION

TCP is an adaptive transport protocol that controls its
offered load (through adjusting its window size) according to
the available network bandwidth. It additively increases its
congestion window in the absence of congestion and throttles
down its window when a sign of congestion is detected. In the
wired Internet, congestion is identified by packet loss, which
results from buffer overflow events at the bottleneck router.
However, it is unclear how well such TCP mechanisms work
in a multihop wireless network; this is the focus of this work.

Multihop wireless networks have several characteristics
different from wired networks. Firstly, in a typical wireless
network that uses IEEE 802.11 MAC, packets may be dropped
due to either buffer overflow or link-layer contention caused
by hidden terminals. Such losses directly affect TCP window
adaptation. Secondly, wireless channel is a scarce, shared re-
source. Improving channel utilization through spatial channel
reuse is highly desirable. Multiple nodes that do not interfere
with each other should be encouraged to transmit concurrently.

How well TCP utilizes the multihop wireless channel through
spatial reuse poses another important issue. A fundamental
problem is that, TCP has to interact with ad hoc forwarding
and IEEE 802.11 MAC in a multihop wireless network, which
exhibits features quite different from the wired or wireless
cellular networks. Earlier research on TCP performance over
ad hoc networks has been focused on the impact of mobility-
induced factors, such as link breakage and routing failures [2],
[3]. However, the interaction between TCP and the underlying
multihop forwarding with the IEEE 802.11 MAC, is left
unaddressed.

In this paper, we study the effect of multihop wireless link
on TCP throughput and loss behavior for several simple net-
work configurations and flow patterns. Through both analysis
and simulations, we reveal several interesting results. First,
given a specific network topology and flow patterns, there
exists a TCP window size, say W ∗, at which its throughput
is highest through improved spatial channel reuse. Further
increasing the window size does not lead to further spatial
channel reuse, but results in increased link layer contention and
perceived packet losses. Second, the standard TCP protocol
does not operate around W ∗, and typically grows its average
window much larger than W ∗. Consequently, TCP experiences
throughput decrease due to reduced spatial channel reuse. We
observe 4% to 21% throughput reduction (from the highest
throughput) in our simulated scenarios.

The suboptimal throughput of TCP can be explained by its
loss behavior over the multihop wireless channel. In a wired
network, all incoming packets are dropped if buffer overflows
at a bottleneck. It helps TCP to quickly reduce its window
size to release congestion. Multihop wireless networks exhibit
different drop features. Unlike wired networks where buffer
overflow dominates packet losses, most packet drops experi-
enced by TCP are due to link layer contention, incurred by
hidden terminals. Buffer overflow induced packet loss is rare,
and the contention-induced packet loss offers the first sign of
network overload. Our analysis and simulations further show
that contention drops exhibit a load-sensitive feature: as the
offered TCP packets exceed W ∗ and increase further, link drop
probability becomes non-negligible and increases accordingly.
After the offered TCP packets exceed another threshold W̄ ,

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

A B DC G H I

DATA

ACK

DATA

ACK
FE

Fig. 1. Spatial reuse and contention.An example of 8 hop chain. Optimal spatial reuse is achieved when nodes {A, D, G} and nodes {B, C, E} are scheduled
for transmission alternatively. Node D is the hidden terminal for transmission A→B.

the link drop probability saturates and flattens out. It turns out,
however, that the link-layer drop probability is not significant
enough to stabilize the average TCP window size around
W ∗. It therefore leads to suboptimal TCP throughput. Some
simulation results are also validated with experiments.

Our observations also shed light on how to improve TCP
performance over multihop wireless networks. In this paper,
we propose two link layer techniques: a Link-RED algorithm
to tune the wireless link’s drop probability, and an adaptive
link-layer pacing scheme to increase the spatial channel reuse.
The goal is to let TCP operate in the contention avoidance
region. These simple techniques lead to 5% to 30% throughput
increase compared with standard TCP.

The rest of the paper is organized as follows. Background
information is provided in Section II. A thorough study of the
TCP throughput on several simple topologies and traffic pat-
terns is in Section 3. Section IV explains the TCP throughput
reduction from its loss behavior in multihop wireless networks.
Section V describes and evaluates mechanisms that improve
TCP performance. Section VI discusses a few issues. Section
VII summarizes the related work and Section VIII concludes
the paper.

II. BACKGROUND

We consider a static, multihop, wireless ad hoc network.
A single wireless channel is shared for transmissions, and
only receivers within the transmission range of the sender can
receive the packets. The IEEE 802.11 Distributed Coordination
Function, the de facto access method used in ad hoc networks,
serves as the wireless MAC protocol. In IEEE 802.11, each
packet transmission is preceded by a control handshake of
RTS/CTS messages. Upon overhearing the handshake, the
nodes in the neighborhood of both the sender and the receiver
defer their transmissions until the subsequent DATA-ACK
transmissions are completed.

Failures in the transmission of control and data packets are
usually caused either by the effect of the Hidden Terminal
[9], or by channel errors. Specifically, the sender drops the
DATA packet after sending the RTS message seven times and
does not receive a CTS from the receiver. DATA packets are
dropped after four retransmissions without receiving an ACK.
In this work, we do not consider the wireless channel errors,
as the current link-layer retransmission is sufficient to hide

such errors from upper layer protocols.
Even though the RTS/CTS handshake is employed, hidden

terminal problem still persists in an IEEE 802.11 ad hoc
network. A hidden terminal is a potential sending node in
the receiver’s neighborhood, which cannot detect the sender
and may disrupt the current packet transmission. We use
figure 1 as an example, in which two adjacent nodes are
about 200m apart. The current hardware specifies that for each
wireless node, its transmission range is about 250m, its carrier
sensing range is 550m, and its interference range is about
550m. The potential sending node D is a hidden terminal
of the current transmission pair A − B. When A and B are
initiating RTS-CTS handshake, D cannot hear CT S since it
is out of the 250m transmission range of node B. Besides, D
cannot sense A’s DATA transmission since A is out of D’s
550m carrier sensing range. Therefore, D may transmit to its
intended receiver E at any time. When D is transmitting to
E, it will cause collisions at B, since D is within the 550m
interference range for B. Therefore, hidden terminal D will
cause contention loss at node B.

Location-dependent contention, together with multi-hop
packet forwarding, also allows for spatial channel reuse.
Specifically, any two transmissions that are not interfering with
each other can potentially occur simultaneously; this improves
aggregate channel utilization. Figure 1 illustrates an example
for spatial reuse, in which pairs of A-B and E-F may transmit
simultaneously, but simultaneous transmissions from pairs of
A-B and C-D will collide. Improving spatial reuse will result
in increased TCP throughput.

III. TCP THROUGHPUT IN MULTIHOP WIRELESS

NETWORKS

In this section, we examine TCP throughput to see how
well it achieves spatial channel reuse using several simple
configurations including chain, grid, cross and random topolo-
gies. Our analysis, simulations1 and real experiments show
that excessive packets in flight (or equivalently, large TCP
sender window size), which is the typical case for the current
TCP protocol, degrades spatial channel reuse and reduces TCP
throughput. In fact, the throughput reduction can be as high as
21% in the simulated scenarios. We identify the TCP window
size at which TCP achieves highest throughput, for some

1All simulations are conducted in ns-2.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

simple configurations. In addition, we show the quantitative
difference between the highest TCP throughput and its steady-
state performance. We also verified our simulation results with
real hardware experiments, and found a good match between
these two.

A. Chain topology

In a chain topology, TCP packets travel along a chain
of intermediate nodes toward the destination. The successive
packets of a single connection interfere with each other as
they move down the chain, resulting in link layer contention.
We study the performance of the TCP flow whose source and
destination are placed at both ends of the chain respectively.

In a h-hop chain of IEEE 802.11 wireless nodes where
adjacent nodes are 200 meters apart, the following analysis
shows that TCP’s optimal throughput is achieved when its
window size is h

4 , with identical packet size. For example in
the chain of Figure 1: it is easy to see that nodes A and E,
4-hops away, can transmit concurrently. Therefore, for a h-
hop chain, the maximum number of concurrent senders can
not exceed h

4 . Furthermore, since each wireless node uses
IEEE 802.11 MAC that follows the DATA-ACK sequence for
each packet transmission, the MAC exhibits a feature similar
to the stop-and-wait protocol. Hence, the pipe size over each
hop is one packet, and the total pipe-size (i.e., the packets in
flight) that achieves best channel utilization is h

4 . In general,
if the TCP window size is below this value, it under-utilizes
the channel; if it is larger, it does not further increase the
channel utilization. In fact, as we show later, it reduces TCP
throughput.

Our simulations show a good match between our analysis
and the measured TCP throughput. Figure 2 (right) shows
simulation results for a single chain. For this set of simulations,
each node is 200 meters away from its immediate neighbors.
The figure plots the best TCP throughput measured at chain
topologies of variable lengths. To obtain the largest throughput
given a chain of certain length, we artificially bound the
maximum allowed sender window size MaxW in for TCP,
in the range of 1 to 32 packets2 At each MaxW in, we
run a TCP flow for 300 seconds and measure the achieved
throughput. The highest TCP throughput is selected out of
different MaxW in values. The results plotted in Figure 2
show that the TCP window size W ∗ (that achieves maximal
throughput) and h

4 match reasonably well, particularly for
longer chains with h > 20. For short chains, the simulation
value is one or two packets larger than h

4 . The reason is that
TCP packets in flight do not distribute evenly among nodes.
However, as the chain becomes longer, the uneven packet
distribution, or equivalently the queue size deviation at each
node, tends to become smaller, as shown in Table I. Therefore,

2It is similar to enforcing TCP flow control. Note that MaxMin only bounds,
but not necessarily represents the actual number of packets in flight.

Chain Len. (hops) 4 7 10 16 48
Buffer Deviation 1.45 1.31 1.23 1.10 1.05

TABLE I

Buffer deviation among nodes in chain topologies.

MaxWin = in # hops 1 2 4 8 16 32
Avg. TCP wnd. 1 2 3.9 7.1 9.2 9.6

TABLE II

TCP average window w.r.t. MaxWin in 7-hop chain.

best spacial reuse is more likely to achieve at h
4 for longer

chains.
Our analysis applies with different packet sizes, as long

as successive packets of the TCP flow are of identical size.
The results shown in figure 2 (left) confirm that the best TCP
window W ∗ is invariant to different packet sizes of 576B,
1KB, and 1460B. However, the throughput achieved by TCP
is different due to different per-packet overhead.
1) Suboptimal TCP Throughput: If we let the TCP window

size grow arbitrarily (i.e., leave MaxW in unbounded) –
the typical case in reality, we observe that TCP experiences
throughput reduction. Figure 2 shows that the throughput
reduction is about 4% from the highest achievable throughput
in a 7-hop chain. As the chain becomes longer, the observed
throughput reduction can be as high as 10%. Also, Table II
shows that for the case of unbounded MaxW in, the average
TCP sender window size eventually stabilizes at 10 packets in
a 7-hop chain. This steady-state window size is about 4 times
as large as its W ∗ ≈ 2. Since more packets are in flight, most
of these packets will be backlogged at intermediate nodes,
more or less evenly distributed across all nodes. These buffered
packets at each node will increase contention loss due to the
hidden terminal effect, thus leading to throughput reduction.
In the next section, we will see this throughput reduction due
to excessive TCP window size is much more significant in
more complex topologies, resulting in as high as 15% to 21%
throughput reduction in grid or random topologies.
2) Verification using Real Hardware: As a rough check

on the above simulations, Figure 2 (middle) shows results
measured on real hardware over a 7-hop chain. The hardware
was configured to mimic the simulation parameters used in
Figure 2 (Left) as closely as possible. The radios are Lucent
ORiNOCO wireless cards, operating in the ad hoc mode at
2Mbps. During the experiment, 8 notebooks form a 7-hop
chain and only neighboring nodes are within the transmission
range. Manual routing is used for packet forwarding. As we
can see from Figure 2 (Middle), two curves of the measured
TCP throughput and the simulated value match fairly well. It
demonstrates that our ns-2 simulations are accurate enough to
model the reality. Specifically, the average difference between

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 5 10 15 20 25 30 35
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

5 TCP Performance on a 7 hop chain

TCP Maximum Window in # of packets

TC
P

 T
hr

ou
gh

pu
t i

n
bi

t/s
ec

packet size 1460 Bytes
Packet size 1024 Bytes
Packet size 576 Bytes

0 5 10 15 20 25 30 35
120

140

160

180

200

220

240

260

280

TCP MaxWin size (# of packets)

M
ea

su
re

d
T

hr
ou

gh
pu

t (
kb

ps
)

NS−2 Simulated Results
Real Testbed Measurement

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

chain length in # of hops

w
in

do
w

 s
iz

e
in

 #
 o

f p
ac

ke
ts

optimal window
1/4 of the chain length

Fig. 2. Best TCP Throughput is achieved when window size is about 3 in an 7-hop Chain. Left: Single TCP throughput for different packet sizes Middle:
Real Testbed experiment measurement on single TCP throughput for different MaxWin with packet size 1460 bytes. Right: TCP optimal window size v.s.
chain length.

the measured TCP throughput and the simulated results is less
than 10%, and the difference between the curves (with respect
to MaxMin) is almost negligible.

B. More complex topology and flow patterns

The results described above show that there exists a value
for the TCP window size in the chain topology, so that channel
reuse is maximized. It results in best channel utilization and
consequently highest TCP throughput. In order to gain a
general understanding of the TCP throughput, we expand our
study to scenarios of more complex topologies and TCP flow
patterns, including cross, grid and random topologies, and up
to 12 flows. We keep the simulation parameters the same as
in Section III.A, unless explicitly specified.

In all cases, we observe that there exists a TCP window
size that achieves the best throughput, and TCP generally ex-
periences 15% to 21% throughput degradation from its highest
achievable value. The following provides a short summary:

a) Cross topology: In the cross topology shown in Fig-
ure 3, we run two TCP flows from node 0 to node 6 and
from node 7 to node 12 respectively. The simulation results in
Table III show that, the best window W ∗ for each flow is 2. In
contrast, our measured aggregate TCP window is 12 packets
at steady state, and 20% throughput reduction is observed.

b) Grid topology: On the 13 X 13 grid topology shown
in Figure 3, we run 4, 8 and 12 TCP flows respectively. In each
of these three cases, flows are spaced evenly in each direction.
The results are summarized in Table III. In all cases, measured
TCP windows are significantly larger than the size for highest
achievable throughput, and throughput is consequently up to
21% lower as shown in the 12-flow case.

c) Random topology: We also run extensive simulations
with random topologies, in which 200 nodes are placed within
a rectangular area of size 1000×2500. 20 TCP flows are placed
in the network, with their sources and destinations randomly
selected. We still observe the existence of the best TCP
window when the highest aggregate throughput is achieved,
given each specific topology and flow settings. And the regular

6543210

7

8

9

10

11

12

TCP Flow 1

TCP
Flow 2

13
 N

od
es

13 Nodes

Fig. 3. More complex simulated topologies. Left: cross topology with 13
nodes. 200 meter distance between two adjacent nodes. 2 TCP flows in each
direction. Right: 13x13 grid topology, 200 meter distance between horizontal
or vertical adjacent nodes .

TCP throughput suffers about 15% reduction compared with
the maximum, as shown in Table III.

C. Summary

All simulations and analysis confirm that for a given topol-
ogy and traffic pattern, there exists a window size W ∗, at
which TCP achieves the best possible spatial channel reuse,
and consequently increases the channel utilization. W ∗ is in
general a function of the node topology and flow patterns,
though we are able to derive it only for simple configurations
assuming perfect coordinations among nodes.

However, if we let TCP MaxW in go unbounded (i.e.,
the normal TCP behavior), a common observation for all
topologies and flow patterns examined before is that TCP
experiences a 4% to 21% decrease in its throughput. For
example, The TCP throughput difference between the highest
and steady-state in random topology, given in table III, is about
15%. This shows that TCP normally operates suboptimally,
and there is clearly room for improvement. The simulations
also show that this is mainly due to the fact that the average
TCP window size is much larger than the best W ∗, thus
causing more packet drops and reduced throughput.

In order to understand why TCP’s stead-state average win-
dow size is much larger than W ∗, we examine TCP loss
behavior in the multihop wireless networks.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Topology Number of flows Optimal Measured Optimal Average measured
Throughput (Kbps) Throughput (Kbps) Window Window

6-hop Chain 6 298 272 2 22
7-hop Chain 3 255 215 2 16

13-node Cross 2 248 203 4 12
169-node Grid 4 287 241 8 14
169-node Grid 8 957 824 8 19
169-node Grid 12 872 690 8 26

200-node Random 20 1,196 1,015 - -

TABLE III

Aggregate TCP throughput and window size for all flows in more complex topologies. In all cases, TCP stable performance is suboptimal.

IV. TCP LOSS BEHAVIOR

In this section, we investigate TCP’s throughput reduction
from the packet loss’s perspective. It turns out that, unlike the
wired Internet where all incoming packets will be dropped
once buffer overflows, the drop probability in a multihop
wireless network is not significant, when the TCP window
reaches and exceeds W ∗. The low drop probability, after the
maximal link capacity is reached, results in an average TCP
window size much larger than W ∗. This in turn causes exces-
sive packet drops due to hidden terminal effects, contributing
to throughput reduction of TCP.

A. Link-layer contention v.s. buffer overflow

In the wired Internet, packet losses are mainly due to
buffer overflows at the bottleneck router. In multihop wireless
networks, if we tentatively ignore the loss due to interferences
(since the link-layer retransmissions can shield almost all such
losses from TCP), packet drops may be possibly caused by
buffer overflows or contentions due to hidden terminals.

The following analysis shows that most packet drops in the
multihop wireless network are due to link-layer contentions
and buffer overflows are rare. For the simple chain topology
of Figure 1, consider the case where each node has exactly one
packet in its buffer – a common case as the measurement in
Table IV shows. Although buffer occupancy is low, packets
can still be dropped due to link contention. Assume that
node D first starts transmitting its buffered packet to E after
a random backoff period, by initiating the RTS-CTS-DATA-
ACK handshake with node E. After hearing from node D,
node B will defer until the packet transmission is completed
(recall that D is within the carrier-sensing range of B). During
this period, if node A which is unable to detect the ongoing
transmission between D and E, initiates an RTS message to B,
the latter will not be able to reply. If A receives no response
from B after seven retransmissions of the RTS, it drops its
head-of-line packet, according to the IEEE 802.11 MAC.
What we just described is essentially a case of the Hidden
Terminal, and it results in packet drops even at low buffer

Node ID #1 #2 #3 #4 #5 #6 #7 #8 #9
Max. Buf 9 11 13 14 16 15 12 10 6
Avg. Buf 0.4 0.8 1 1.9 1.9 1 0.9 0.7 0.3

TABLE IV

Buffer occupancy in packets. No packet drop due to buffer overflow.

occupancy (only one packet). In contrast, wireline networks do
not experience link drops, but suffer from buffer overflows. In
the same chain topology, the wired counterpart will experience
buffer overflow drops at the first node of the chain.

The simulations for an 8-hop chain confirm the above
analysis. In the 300-second simulation run, all 165 TCP drops
out of 12349 transmissions are due to link drops, and none is
caused by buffer overflows. The average buffer occupancy at
each node, shown in Table IV, is only about 1∼2 packets.

We also conduct extensive simulations using more com-
plex configurations and flow patterns including grid, cross,
and random topologies. The simulation results show that, in
general, buffer overflows are rare, and most packet drops
experienced by TCP are due to link contentions. However,
in the corresponding wired setting, all drops happen due to
buffer overflows.

B. Load-sensitive Drop Probability

In a multihop wireless network, it is the link-layer con-
tention induced packet loss that offers the first sign of network
overload. Therefore, the next question is how this loss occurs
as the network overload builds up. The drop probability will
decide the average TCP window size at which TCP stabilizes
eventually.

“Network overload” actually has different implications in
the multihop wireless context. In the wireline counterpart, a
busy link or a built-up queue at the bottleneck signifies a
condition of network overload. In a multihop wireless network,
network overload is no longer a bottleneck link property, but
a shared feature of multiple links. It cannot be detected within
a single hop alone. Informally, we can define it as the state

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 2 4 6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
1 tcp

packet dropping probability seen by tcp

(aggregate) window size of tcp flows in network (packets)

Pa
ck

et
 d

ro
pp

ing
 p

ro
ba

bil
ity

3 3.5 4 4.5 5 5.5

x 10
5

0

20

40

60

80

100

120

140

offered load in bit/sec

p
ac

ke
ts

dr
op

pe
d

buffer overflow drops
MAC Collision drops

UDP/CBR performance: Packet Drop Classification

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

offered load in bit/sec

pr
ob

ab
ilit

y o
f p

ac
ke

t d
ro

p a
t m

ac

UDP/CBR Performance: Packet Drop Probability

Fig. 4. RED-like Link Drop Behavior. Contention loss happens well before buffer overflows.. Left: Contention loss v.s. buffer-overflow loss; Middle: Contention
loss as a function of offered load. Right: Throughput variation as contention builds up.

of the network where the incoming traffic is more than the
network can handle, while operating at the point of maximum
utilization; this is met when the optimal spatial channel reuse
is achieved.

Our simulations show that link drop exhibits graceful drop
feature as network load increases. This is clearly different
from the tail-drop gateway of the Internet (in which the drop
probability becomes one once the buffer is full and the load
further increases).

Figure 4 (left) plots the link drop probability as a function
of the TCP window size. We use the TCP window size to
characterize the current network load. The graph shows that
contention drop probability gradually increases as more and
more packets are injected into the network. The figure clearly
presents graceful link drops, with the increase of network
load. To better understand the underlying mechanics of this
link drop behavior, we also experimented with a CBR flow
using UDP. From the results of contention loss probability
shown in Figure 4 (right), a similar gradual link drop behavior
is exhibited as the network load increases. The figure also
depicts the saturation of the contention drop probability, which
happens when the load is beyond a certain threshold.

We further ran extensive simulations with more complex
topologies including cross, grid, and random layout and more
complex flow patterns. The detailed results, not included here
due to space constraints, provide findings similar to the above.

To summarize, simulations show that multihop wireless
links exhibit graceful drop behavior in the presence of network
overload: When the TCP window size is smaller than W ∗

(which allows for best spatial reuse and channel utilization),
the drop probability is negligible. When the window size is
bigger than W ∗, drop probability starts to increase. When the
window size reaches another threshold W̄ , the drop probability
saturates. From Figure 1, we can also explain why the drop
probability eventually saturates as the load increases. As far as
contention drop probability is concerned, the number of non-
empty buffers is the key, while the absolute number of packets
in the buffer does not matter much. When all the buffers are
non-empty, the network reaches highest-level contention. The
value of link drop probability is governed by the 802.11 MAC
protocol, and not by the number of packets in each buffer –

the latter aspect is only related to TCP congestion control and
decides on how long the TCP flow will stay in the link loss
phase.

1.0

Buffer Limit

Buffer LoadLink Load

L
in

k

D

ro
p

 P

ro
b
ab

il
it

y

D
ro

p

P

ro
b
ab

il
it

y

Network Maximum
Utilization

All Node
Backlogged

Fig. 5. Wireless link drop v.s. wired tail drop

C. An Analysis of Link Drop Probability in a Random Topol-
ogy

The following analysis shows why multihop wireless links
exhibit graceful drop as the load increases. Consider an N -
node random topology. For simplicity, assume that each node
has the same probability to become backlogged (i.e., has
packets to deliver). We denote the total number of backlogged
nodes in the network as m and all of them are ready for
transmission. We will show that as m increases, the link drop
probability will increase but saturate at a certain network load.

The m backlogged nodes in the network will use the
RTS-CTS-DATA-ACK handshake of 802.11 protocol for data
transmission. If m is very large, not each of the m nodes is
able to successfully transmit its data packet, due to collisions.
Among m nodes, let us denote that c(m) nodes are able to
successfully initiate RTS request. This happens only if each
of these c(m) nodes detects clear channel through its carrier
sensing. Note that c(m) ≤ m for large m. Due to hidden
terminal problem [8], [9], not all of these c(m) nodes may
successfully transmit their DATA packets. Let us denote the
number of nodes that are able to successfully transmit the
DATA packets as b(m). It is easy to see that b(m) ≤ c(m).

Using Markov chain models, we can derive each node’s
packet loss probability Pl as follows (The proof is given in

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

the technical report [13]):

Pl(m) =
b(m)

m

1 − (
1 − b(m)

c(m)

)r+1 ·
(

1 − b(m)
c(m)

)r

(1)

where r = 7 is the maximum retry count for RTS in 802.11
MAC.

The following three corollaries characterize the graceful
drop behavior of multihop wireless links, with the two thresh-
old values of B∗ and C∗ defined as follows. In the random
topology of N nodes, B∗ denotes the maximum number
of nodes that can transmit their DATA packets concurrently
without collision. At this value, the network achieves highest
channel spatial reuse. Among N nodes, C∗ denotes the
maximum number of nodes that can initiate RTS messages,
i.e., they perceive clear channel through carrier sensing).

First consider the case when the network is underloaded:
Corollary 4.1: Denote the maximum number of nodes (that

can concurrently transmit DATA in the given topology) as B∗.
When the number of backlogged nodes m is smaller than B∗,
i.e., m < B∗, then packet drop probability Pl ≈ 0.

Since m ≤ B∗, on average all m nodes can transmit
simultaneously. Therefore, b(m) ≈ c(m) ≈ m in steady state.
According to (1), the drop probability over each link is Pl ≈ 0.
This means that, as long as the network is underloaded, the
link drop is negligible.

In the second case when the number of backlogged nodes
m is larger than B∗, i.e., the network is overloaded, we have:
Corollary 4.2: When the network is overloaded (i.e., the

number of backlogged nodes m is greater than B∗), the link
drop probability Pl increases as m increases.

We still use (1) to see why the above is true. In this case,
all m nodes can successfully initiate an RTS message but only
B∗ nodes can transmit their DATA without collisions. That is,
b(m) ≈ B∗ but c(m) ≈ m. Therefore, B∗ < m < C∗. It is
easy to see that Pl(m) is an increasing function of m since
dPl(m)

dm > 0. This shows that link drop probability increases
as the network load (as expressed by m) further increases.

Finally, we look at the third case. As the network load
further increases, then link drop probability starts to saturate:
Corollary 4.3: Once network is heavily loaded in the sense

that m > C∗, then the link drop probability Pl remains stable
in the saturated state.
In this case, among the m nodes, only C∗ out of c(m)
nodes can initiate RTS, and only B∗ nodes can transmit
DATA packets without collision. Therefore, c(m) ≈ C∗ and
b(m) ≈ B∗. Then long term Pl(m) remains statistically flat
according to (1).

Our simulation results show a good match with the above
simplified analysis.

D. Why TCP suffers from throughput reduction?

Now we use the graceful link drop behavior to explain
why standard TCP suffers from throughput reduction as de-
scribed in section III. TCP achieves highest throughput at the
window size W ∗ that maximizes spatial reuse. The analysis
and simulations of Sections IV-A and IV-B indicate that,
the packet drop probability is close to zero at window size
W ∗. When the TCP window size exceeds W ∗, the link drop
probability starts to increase. However, due to the graceful
drop feature, it is not sufficient to keep TCP from maintaining
its average window size around W ∗. Instead, the average
window size Wavg is much larger than W ∗. Since the Wavg in-
flight packets are statistically distributed among intermediate
nodes evenly, link drop probability is non-zero. The link
contention in turn reduces the chance of maximal spatial reuse.
Consequently, TCP suffers from throughput degradation from
the highest achievable throughput (i.e., when best spatial reuse
is obtained).

V. IMPROVING TCP PERFORMANCE

This section describes two techniques to improve TCP
performance over multihop wireless networks. The link RED
technique seeks to react earlier to link overload. The adaptive
pacing technique seeks to improve spatial reuse. The combina-
tion of these two techniques is able to improve TCP throughput
by as much as 30%.

A. Distributed Link RED (LRED)

Our Link RED (LRED) algorithm is based on the observa-
tion that TCP can potentially benefit from the built-in dropping
mechanism of the 802.11 MAC. The main idea is to further
tune up wireless link’s drop probability, based on the perceived
link drops. While the wired RED provides a linearly increasing
drop curve as the queue exceeds a minimum value min th,
LRED does so as the link drop probability exceeds a minimum
threshold.

In LRED, the link layer maintains the average number of
the retries for recent packet transmissions. The head-of-line
packet is dropped/marked from the buffer with a probability
based on this average number. At each node, if the average
number of retries is small, say less than min th, which means
that the node is rarely hidden, packets in the buffer are not
dropped/marked. When it gets larger, the dropping/marking
probability is computed, and the minimum value of the com-
puted drop probability and a maximum bound max P is used.

A feature of this algorithm is that it can integrate with ECN-
enabled TCP flows. Instead of blindly dropping packets, we
can simply mark them at the link layer, and thus allow ECN-
enhanced TCP flows to adapt their offered load without losing
any packets. TCP performance is further improved, by paying
the moderate cost of a slightly more complex link-layer design.

To summarize, LRED is a simple mechanism that, by
monitoring a single parameter –the average number of retries

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

in the packet transmissions at the link-layer, accomplishes
three goals: a) It helps to improve TCP throughput, b) It
provides TCP an early sign of network overload, and c) It helps
to improve inter-flow fairness, as shown in the simulations of
Section V-C.

Algorithm 1 L-RED: LinkLayerSend(Packet p)
Require: avg retry is the average MAC retries for each

packet
1: if avg retry < min th then
2: mark prob ← 0
3: pacing ← ON
4: else
5: mark prob = min{avg retry−min th

max th−min th , max P}
6: set pacing OFF
7: end if
8: mark p with mark prob
9: MacLayerSend(p, pacing)

10: retry = GetMacRetries()
11: avg retry = 7

8avg retry + 1
8retry

B. Adaptive Pacing

Our second technique seeks to take an adaptive pacing
approach at the link-layer. The goal is to improve spatial
channel reuse, by distributing traffic among intermediate nodes
in a more balanced way, while enhancing the coordination of
forwarding nodes along the data path. This design works in
concert with the 802.11 MAC.

In the current 802.11 protocol, a node is constrained from
contending for the channel by a random backoff period, plus
a single packet transmission time that is announced by its
immediate downstream node. However, the exposed receiver
problem [8] persists due to lack of coordination between nodes
that are two hops away from each other. Adaptive pacing
solves this problem, without requiring nontrivial modifications
to the 802.11, or a second wireless channel [8]. The basic idea
is to let a node further back-off an additional packet transmis-
sion time when necessary, in addition to its current deferral
period (i.e. the random backoff, plus one packet transmission
time). This extra backoff interval helps in reducing contention
drops caused by exposed receivers, and extends the range of
the link-layer coordination from one hop to two hops, along
the packet forwarding path.

The algorithm works together with LRED as follows.
Adaptive pacing is enabled by LRED. When a node finds
its average number of retries to be less than min th, it
calculates its backoff time as usual. When the average number
of retries goes beyond min th, adaptive pacing is enabled
and the backoff period is increased by an interval equal to
the transmission time of the previous data packet. This way,
a better coordination among nodes is achieved under different
network load.

Algorithm 2 Adaptive Pacing
Require: extra Backoff = 0

1: if received ACK then
2: random Backoff ← ran backoff(cong win) {DATA

transmission succeeded. Setup the backoff timer}
3: if pacing is ON then
4: extra Backoff = TX Time(DATA) + overhead
5: end if
6: backoff ← random Backoff + extra Backoff
7: start backoff timer
8: end if

TCP NewReno LRED+
flow 1 244 Kbps 166 Kbps
flow 2 0 Kbps 153 Kbps

Aggregate 244 Kbps 319 Kbps
Fairness 0.5 0.9983

TABLE V

Throughput and Fairness Comparison between NewReno and

NewReno+LRED+PACING in Cross Topology.

C. Performance Evaluation

This section evaluates the performance of TCP NewReno
over the 802.11 standard and our enhanced link layer, on chain,
cross and grid topologies. We study the scenarios of single and
multiple TCP flows.
Chain topology The results for chain topologies of various

lengths, both for a single flow and six flows, are plotted in
Figure 6. In all cases, we observe that our LRED + adaptive
pacing enhanced link layer is able to boost TCP throughput up
to 30%. Furthermore, our modifications force TCP to stabilize
at a window size close to the best value. For chains longer than
15 hops, our techniques are again able to achieve a gain of
10%∼30% in throughput; and as it appears, the longer the
chain, the better the throughput improvement. This is because
our pacing mechanism helps TCP to improve spatial channel
reuse; the longer the chain, the more it benefits from the
channel reuse.
Cross Topology Two flows over a 13-node cross topology

were simulated in this experiment. Table V presents the
throughput and fairness results for both flows. The fairness
results are computed using the fairness index (

∑n
i=1 xi)

2

n·∑n
i=1 x2

i
, as

defined in [11]. Our design not only increases aggregate
throughput, but also improves fairness of both flows. On the
other hand, TCP NewReno over the unmodified link layer
results in large unfairness; this is mainly due to the well-known
MAC-layer capture effect of the IEEE 802.11 protocol [6].
Grid Topology Finally, for the grid case, we simulated 2,

4, 8 and 12 flows over a 13×13 grid topology (Figure 3).
Aggregate throughput and fairness results are summarized in
Table VII, while more details for the specific case of 4 flows, 2

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5
x 10

5

chain length in # of hops

tcp
 th

ro
ug

hp
ut

in
bit

/se
c

LRED+Pacing Improvement: 1 TCP flow in Variable Chain

TCP NewReno
NewReno+LRED+Pacing

0 10 20 30 40 50 60
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

5

chain length in # of hops

ag
gr

eg
ate

 th
ro

ug
hp

ut
of

6 t
cp

 flo
ws

 in
 bi

t/s
ec

LRED+Pacing Improvement: 6 TCP flow in Variable Chain

TCP NewReno
NewReno+LRED+Pacing

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

chain length in # of hops

av
er

ag
e w

ind
ow

 si
ze

 in
 #

of
pa

ck
ets

LRED+Pacing Improvement: Average TCP achieved window

TCP NewReno
NewReno+LRED+Pacing
1/4 of the chain length

Fig. 6. Throughput improvement over TCP NewReno in h-hop chain topologies (h = 3, . . . , 48). Left: Single flow throughput; Middle: 6-flow aggregate
throughput; Right: Average window size.

TCP NewReno TCP NewReno
w/standard LL w/LL+LRED+PACING

flow 1 532 Kbps 85512 Kbps
flow 2 126229 Kbps 90459 Kbps
flow 3 115554 Kbps 70334 Kbps
flow 4 1608 Kbps 47946 Kbps

Aggregate 242923 294251
Fairness 0.51 0.95

TABLE VI

Throughput and Fairness Comparisons between NewReno and

NewReno+LRED+PACING. 4 flows in 13×13 Grid.

in each direction, are provided in Table VI. Again, in all cases,
we are able to achieve about 5%∼10% throughput increase,
while significantly improving the fairness index.

VI. DISCUSSIONS

This section further discusses several issues.
Other TCP variants Based on the results shown in Sections

III and IV, it seems that TCP Vegas, which gauges the
throughput before increasing its congestion window size, may
work better in the ad hoc settings. Our experiments show
that TCP Vegas and TCP NewReno perform comparably in
short hops (≤ 6). However, in longer hops (≥ 9), TCP Vegas
performs 10%∼20% worse than NewReno. The main reason is
that TCP Vegas keeps its window size very small (e.g., about
3 packets even in a 16-hop chain), and it cannot fully utilize
the multihop wireless channel. TCP NewReno seems to be the
best TCP variant that we could compare with.
Variable packet size In most analysis and simulations pre-

sented in previous sections, we assume identical packet size.
If the packet length varies, our study shows that these results
still hold: there exist a TCP window size W ∗ that achieves
highest throughput but TCP is unable to achieve it. However,
the relationship between W ∗ and the network topology is more
complicated.
Implications of our results The built-in load-sensitive link

drop property can assist in controlling the network overload,
and this is particularly true for long-hop flows. However, the
drop behavior has a lot of randomness and is hard to control. In
our design, we intend to reduce the randomness and fine-tune

the drop behaviors through the adaptive pacing mechanism,
and use LRED to limit contentions.

VII. RELATED WORK

TCP over wireless cellular networks has been an active
research topic. [1] presents a summary of TCP optimization
over such networks, where the single wireless link is the
first/last hop in the data path. The focus is to hide wireless
channel errors from TCP. Due to the built-in link layer
retrnasmission mechanism of the IEEE 802.11 protocol, most
channel-errors can be made transparent to upper layers and
channel error-induced packet losses are negligible. We study
another problem, i.e., link-contention induced packet losses,
which do not exist in the single-hop cellular wireless networks.

There are several recent studies on TCP performance over
ad hoc networks. [2] investigates the effect of mobility-induced
link breakage on TCP performance. It studies the impact of
routing dynamics of DSR protocol and mobility pattern upon
TCP protocol. The authors further proposed an explicit link
failure notification (ELFN) technique to help TCP differentiate
link failure-induced losses from congestion losses. A more
recent work [3] examines various performance aspects of
TCP-ELFN. We focus on TCP performance in static ad hoc
networks instead, and study the impact of multihop, shared
wireless medium upon TCP. In fact, we use pre-configured,
manual routing in our study to minimize the impact of routing
dynamics.

[6], [7] study the effect of TCP ACK traffic on TCP per-
formance, where severe unfairness and capture effect caused
by the MAC backoff mechanism are reported. The work is
conducted in the context of two MAC protocols: CSMA and
FAMA, and TCP is observed to have very small throughput
when it traverses multiple wireless hops with a window size
larger than 1 packet. The authors call for introduction of link-
layer ACKs to help reduce packet drops. Our work showed
that even with link-layer ACKs in IEEE 802.11 MAC, TCP
still suffers packet losses due to link-layer contentions. In fact,
all packet drops are due to such contentions, and buffers never
overflow in our simulated scenarios. We further show that TCP
typically operates in a sub-optimal region that does not lead
to best utilization of the shared wireless channel.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

NR Aggregate NR Fairness LRED+ Aggregate LRED+ Fairness
2 flows 203K bps 0.502 252K bps 0.921
4 flows 241K bps 0.508 294K bps 0.952
8 flows 824K bps 0.524 963K bps 0.527

12 flows 690K bps 0.455 880K bps 0.56

TABLE VII

Aggregate throughput and fairness comparisons between NewReno and NewReno+LRED+PACING with 2, 4, 8 and 12 flows in grid topology.

Our study of the best TCP window size is also related to
[12], where the capacity of an ad-hoc network is analyzed. It is
also shown in [12] that there exists an optimal throughput for
a UDP/CBR flow when varying its offered load. In particular,
over an ad hoc chain, the optimal throughput achieved is
approximately 1/4 to 1/7 of the effective wireless bandwidth
that maximizes the spatial reuse along the chain. When the
offered load exceeds this point, the throughput of the UDP
flows sharply decreases. In this paper, we study the interaction
between TCP and the underlying IEEE 802.11 DCF MAC.
Based on our analysis of the link layer drop probability, we
propose two mechanisms, i.e., LRED and Adaptive Pacing
to fine-tune the dropping behaviors and improve the TCP
throughput.

VIII. CONCLUSION

Ad hoc networks hold great promise in pervasive computing
and wireless sensor networks. TCP is a natural choice for
reliable data delivery in this scenario. This work systematically
studies the impact of shared medium on TCP performance.
Our results show that over multihop wireless network, the
throughput of TCP improves significantly if it operates around
certain window that achieves highest spacial channel reuse.
However, TCP typically stabilizes around a much larger win-
dow, thus resulting in reduced throughput. To gain more in-
sight, we further studied the packet losses under different load
conditions, and found out that network nodes in a multihop
wireless setting collectively exhibit a distributed, graceful drop
feature. As the network load increases, the drop probability
increases but eventually saturates. We also propose two link-
layer techniques, LRED and Adaptive Pacing, which improve
the throughput of standard TCP flows by as much as 30%.

REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz. “A
Comparison of Mechanisms for Improving TCP Performance over
Wireless Links,” IEEE/ACM Transactions on Networking, Dec. 1997

[2] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile
Ad Hoc Networks,” ACM MOBICOM 1999

[3] J. P. Monks, P. Sinha and V. Bharghavan, “Limitations of TCP-ELFN
for Ad Hoc Networks,” MOMUC 2000

[4] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Perfor-
mance of TCP Pacing,” IEEE INFOCOM 2000

[5] L. S. Brakmo, S. W. O’Malley and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” ACM SIGCOMM
1994

[6] M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and L. Wang, “TCP over
Wireless Multihop Protocols: Simulation and Experiments,” IEEE ICC
1999

[7] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless
Multihop Networks,” IEEE WMCSA 1999

[8] V. Bharghavan, “Performance Analysis of a Medium Access Protocol
for Wireless Packet Networks,” IEEE Performance and Dependability
Symposium 1998.

[9] D. Allen, “Hidden Terminal Problems in Wireless LAN,” IEEE 802.11
Working Group paper 802.11/93-xx.

[10] S. Floyd and V. Jacobson. “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking 1(4):397-413,
Aug. 1993

[11] R.Jain, D-M. Chiu and W. Hawe. “A Quantitative Measure of Fair-
ness and Discrimination For Resource Allocation in Shared Conputer
Systems,” Technical Report TR-301, DEC Research Report, September,
1984

[12] Jinyang Li, Charles Blake, Douglas S. J. De Couto, Hu Imm Lee, and
Robert Morris, ”Capacity of Ad Hoc Wireless Networks,” Proceedings
(MobiCom ’01) Rome, Italy, July 2001.

[13] Zhenghua Fu, et al. “TCP over Multihop Wire-
less Networks,” UCLA Computer Science Tech. Rep.,
www.cs.ucla.edu/wing/publication/tech010702.ps

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

