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Abstract 

This work aims to investigate the main problems that impact the pricing models and the sensitivity measures of American options 
written on shares without a pay-out, in the presence of negative interest rates with a specific focus on the Monte Carlo method. The 
first paragraph carries out a review of the anomalies caused by such an odd condition and focuses thereafter on the core topic of the 
research by treating a wide range of numerical models suitable for unbiased evaluation of the early exercise, thus expanding the 
existing literature. The two following paragraphs are dedicated to describing the models used for the correct estimation of fair value: 
binomial lattice models (Cox-Ross-Rubinstein - CRR Tree, Leisen Reimer - LR Tree, Jarrow-Rudd - JR Tree and Tian Tree), 
trinomial stochastic trees, Finite Difference Method (FDM) scheme and the Longstaff-Schwartz Monte Carlo. Particular attention is 
paid to this last approach which allows to combine the flexibility of traditional numerical integration schemes for stochastic processes 
on equity with the estimation of the convenience of exercising the American option ahead of time. After conducting quantitative tests 
both on pricing and on the estimation of sensitivity measures, the LR Tree was selected as the most performing deterministic 
algorithm to be compared with the Monte Carlo stochastic technique. The final part of the work focuses on quantifying the valuation 
gap introduced by negative interest rates in the valuation of American options written on an unprofitable underlying comparing the 
traditional valuation approach and the deterministic Leisen Reimer model and the Longstaff-Schwartz stochastic model. 
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1) The main problems caused by negative interest rates 

The first paragraph introduces the main problems related to the presence of negative nominal interest rates. After a brief introduction, 
in which the main historical facts that led central banks to reduce interest rates to negative values will be discussed, more specific 
issues will be addressed, linked to the technical issues caused by the zero lower bound of rates. The last of these issues, namely the 
effect that negative interest rates have on options written on equity that do not pay dividends, will be the core topic of this work. 

1.1) Negative interest rates and historical-economic context 

It all began in the United States of America in 2006, the year in which the so-called subprime mortgage crisis broke out: the term 
subprime refers to those loans with high financial risk, mainly mortgage loans, that many American banks disbursed in favor of 
customers with a high risk of default. Between 2000 and 2003, the Fed drastically reduced interest rates, from 6.5% to 1%. This 
decreasing trend in rates, together with other factors, triggered an increase in the demand for mortgage loans, fueled in turn by a 
growing real estate market, characterized by speculative practices and also by a parallel financial market based on the securitization of 
the same mortgage loans, in which large banks, retail banks and institutional investors held and traded very complex financial 
instruments such as MBS - Mortgage-Backed Securities or CDO - Collateralized Debt Obligation (Holt, 2009). The crisis started to 
appear in the second half of 2006 when the US housing bubble began to deflate in the face of a rate hike by the FED, from 1% to 
5.25%, which occurred in a rather short period of time, from 2004 to 2006. The graph in Figure 1 traces the trend of the Federal Fund 
Rate. The sudden rise in rates caused a high percentage of default on subprime loans. Consequently, the prices of financial 
instruments built on these loans, which constituted a market whose capitalization vastly exceeded the total value of the underlying 
loans, collapsed along with the real estate market (Bernanke, 2010). The consequences were rather disastrous, involving the main US 
Investment Banks, which suffered very heavy losses caused by the sharp depreciation of MBS and CDOs, and collaterally by CDS 
(Credit Default Swaps). The market values of the banks also dropped significantly. The most striking and emblematic case occurred in 
September 2008, when Lehman Brothers, one of the most important American financial institutions, founded in 1850, filed for 
bankruptcy (Lehman Brothers Holding Inc, 2008). The American Government decided not to save the bank to give a strong signal to 
the financial system, and to prevent future moral hazard behavior by other banks or financial institutions typically considered "Too 
Big To Fail". This complex series of circumstances led to a strong mistrust in the financial system and to a contagion effect that 
caused the so-called credit crunch: with this term, which literally means a "tightening of credit", we mean a significant and sudden 
contraction in the supply of credit, at the end of a prolonged period of expansion. The banks initially froze the interbank credit market 
out of mutual distrust, wary of the solvency of their respective counterparties. This led to a general contraction of credit even in the 
retail market and corporate market, triggering a process of economic recession that brought a strong impact on the real economy. The 
credit crisis globally spread like wildfire, also affecting the Eurozone, where many institutions were saved with public funds or with 
bail-in procedures. The strong distrust in the financial system generated panic in certain cases, as in the case of Northern Rock, a 
British institution specializing in real estate loans, which in 2007 suffered an out-and-out bank run (Dunkley, 2017). To face those 
circumstances, the ECB adopted a series of measures aimed at implementing an expansive monetary policy, with the aim of 
stimulating the economy and ensuring price stability in the Eurozone. The ECB therefore cut interest rates until they reached negative 
levels in 2014 (ECB, 2014). The goal was to disincentivize banks from depositing liquidity with the central bank, whose negative 
interest rate would have led to a loss on deposits, in favor of the use of such liquidity for the provision of loans to businesses and 
consumers. The graph in Figure 2 shows the evolution of the Deposit Facility Rate, i.e., the interest rate that banks receive on deposits 
with the European Central Bank. The graph clearly shows the systematic cut of the DFR, aggressively from 2008 until the first half of 
2009, then more gradually, reaching the zero level in 2012, and finally assuming negative values from 2014. 
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Figure 1 - Federal Fund Rate between 2000 and 2022 (Source: FRED Economic Data) 

 

 

Figure 2 - ECB Deposit Facility Rate years 2000-2022 (Source: FRED Economic Data). 

 
After briefly discussing the economic and financial causes that led to negative nominal interest rates, the main effects caused by this 
anomalous condition are discussed hereafter. 
 

1.2) Problems related to negative interest rates 

For the first time in history, apart from a brief period in Japan in the 90s, a scenario of negative nominal interest rates occurs (Ansa, 
2014). This peculiar circumstance brings a series of consequences within the financial system. The unexpected impacts that never 
occurred before are numerous and are accompanied by a dense literature which tries to analyze the potential repercussions on markets 
and financial instruments, whose issues and exchanges usually took place under the assumption of the presence of positive levels of 
interest rates.  

1.2.1) Potential effects on the investment choices of investors 

In the presence of negative interest rates, Government bonds with floating coupons linked to Euribor (for example CCTs) could 
theoretically yield negative coupons, which will be set to zero (floor) and this could lead investors to select riskier investments, but 
with a positive return. In this way, the investor might invest his money in financial instruments characterized by greater volatility, 
therefore potentially unsuitable to his risk appetite. 

1.2.2) Application of negative rates on deposits 

There is also the possibility that banks apply negative interest rates on the deposits of their account holders, inducing the latter to 
withdraw their money and deposit it with other institutions which, on the contrary, do not charge their customers on deposits. This 
issue can trigger a competition mechanism within the banking system, which results in the bank taking over this cost, with obvious 
repercussions on the financial statements. 

1.2.3) Anomalies in the interest rates term structure 

Moving on to more quantitative problems, one of them is certainly linked to the anomalies found in the interest rate curve (Cafferata 
et al., 2019). Let us consider the 6-month Euribor, one of the most relevant interest rates as it is typically used as a parameter for 
indexing mortgages, bonds and derivatives. The historical and prospective evolution of the 6-month Euribor has been analyzed by 
financial analysts and traders from all over the world. However, most of the models for representing the dynamics of this short-term 
rate are affected by the issue of negative interest rates, since their structure does not allow negative values within the formulas of the 
stochastic differential equations (Giribone, 2020). 
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1.2.4) Anomalies in the surface of the implied volatilities in caps and floors 

Implied volatility provides an estimate of the expected volatility of the underlying made by the market maker, during the residual life 
of an option. It is one of the most important parameters in evaluating the price of an option. Before the advent of negative interest 
rates, the main framework used for determining the implied volatility was the Black framework, i.e., the log-normal model (Black, 
1976). In a context with negative interest rates, the log-normal volatility surfaces observed in financial markets are incomplete. To 
address this problem, market makers have replaced Black's log-normal model with Bachelier's normal model (Haug, 2007). This 
model guarantees the integrity of the volatility surfaces when interest rates are negative. Normal volatility is expressed in basis points 
and is obtained by numerically inverting the Bachelier formula starting from the premiums of actively listed options on the market. 
The problem of moving from the log-normal model to the normal model exposes the counterparties to model risk, i.e., the risk 
associated with carrying out transactions with a different model, therefore at different prices (Giribone, Ligato & Mulas, 2017). 
Furthermore, the problem of changing the model has caused various issues to existing contracts, since, if the reference pricing model 
is contractually specified, such calculation method cannot be changed. To solve these data missing problems, rather complex 
techniques have been applied to rebuild the incomplete volatility surfaces of the Black model, also related to Machine Learning 
techniques (Caligaris, Giribone & Neffelli, 2017). 

1.2.5) Valuation of options written on interest rates 

One of the most debated issues in the sector’s literature is the impact that negative interest rates have on options written on interest 
rates (Burro et al., 2017). Interest Rate options are financial instruments that have been widely used in recent years. They are 
generally embedded, i.e., incorporated within bonds or in bank assets such as mortgages. Among the most common we can mention 
Caps, Floors and Collars. Those derivative contracts are called yield-based options and are characterized by a cash settlement which 
amount is the difference between the value of the underlying and a strike price. Before the advent of negative interest rates, the main 
framework for pricing this type of contract has always been Black's log-normal model. With the advent of negative rates, this model 
can no longer work due to the negative input (i.e., the forward rate F) which should be inserted within the auxiliary variables in the 
well-known Black closed formula. This issue arises because the logarithm of a negative value does not exist in real numbers. This 
makes it impossible to use pricing techniques based on the log-normal model for valuating options written on interest rates. (Giribone 
& Ligato, 2016). A very similar phenomenon occurs for swaptions: negative interest rates do not allow for a correct estimate of the 
fair value and of the sensitivity measures even for this type of interest rate derivative. 

1.3) Effect of negative interest rates on the pricing of options written on equity that pays no dividend 

A decidedly less debated issue is that relating to the effects that negative interest rates have on options written on non-profitable 
shares, that is, those that pay no dividends. According to the theory of options, there are fourteen fundamental properties that options 
must satisfy, regardless of the pricing model used (Hull, 2015). In particular, one of them states: 

"Under the assumption that the underlying share pays no dividend, it will never be worth exercising an American call option 
prematurely, so it will be priced like its European analogue". 

In mathematical terms, this can be written as: 𝑓𝐴(𝑆, 𝐾, 𝑇, 𝑟, 0, 𝜎) = 𝑓𝐸(𝑆, 𝐾, 𝑇, 𝑟, 0, 𝜎) (1) 𝑓𝐴(𝑆, 𝐾, 𝑇, 𝑟, 0, 𝜎) ≥ 𝑓𝐸(𝑆, 𝐾, 𝑇, 𝑟, 0, 𝜎) ≥ 𝑆𝑡 − 𝐾 𝑒−𝑟𝑇 (2) 

Where: 𝑆 is the spot level of the underlying, 𝐾 is the strike price of the option, 𝑇 is the time to maturity, 𝑟 is the risk-free rate, 𝑞 = 0 
is the continuous dividend yield and  𝜎 is the volatility. Furthermore: 𝑓𝐴(𝑆, 𝐾, 𝑇, 𝑟, 0, 𝜎) ≥ max [0 ; 𝑆𝑡 − 𝐾] (3) 

If we combine (2) with (3) we obtain: 𝑆𝑡 − 𝐾 < 𝑆𝑡 − 𝐾 𝑒−𝑟𝑇 (4) 

Well, this property is no longer valid in the presence of negative interest rates, and a bias can therefore be observed between the price 
of the European call and of the American call option, with resulting effects also on the sensitivity measures of the options, i.e., on the 
Greeks (Cafferata, Giribone, & Resta, 2017). A considerable problem therefore arises, namely that of identifying robust alternative 
routines that allow the valuation of this type of option in the presence of negative rates. The most widely used techniques for pricing 
American options, especially short-term ones, are the so-called quasi-closed formulas, such as the Bjerksund-Stensland formula 
(Bjerksund & Stensland, 2002). The issue with those techniques is that their algorithms are characterized by an if-condition which, in 
the absence of a dividend yield, returns the price of the European option. However, the extreme situation of a market characterized by 
negative interest rates is not considered. It is therefore necessary to implement techniques that consider the possibility of having an 
early exercise, even if the underlying has no pay-out. In (Cafferata, Giribone & Resta, 2017), the authors analyze the issues mentioned 
above and integrate their work with a numerical experiment in which certain pricing techniques applied to an American call option are 
implemented in different market scenarios: a first case in which interest rates are positive and the underlying pays a dividend, a 
second case in which the rates are again positive but the underlying share is not profitable, and finally a third case where market 
conditions are the most extreme since, in addition to a zero dividend yield, negative interest rates are observed. The models used for 
pricing the options were essentially the following: 

- The Barone-Adesi-Whaley (BAW) model (Barone-Adesi & Whaley, 1987). 

- The 1993 Bjerksund-Stensland model (Bjerksund & Stensland, 1993). 
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- The 2002 Bjerksund-Stensland model (Bjerksund & Stensland, 2002). 

- The trinomial model (Boyle, 1986). 

The first three models consist of the so-called quasi-closed formulas, while the fourth is a lattice model. The Authors infer from the 
results of the experiment that the bias generated by the quasi-closed formulas, used for calculating the price of an American call and 
of a European call, is due to approximation errors, and that such bias can be reduced through the implementation of a trinomial 
stochastic tree (Cafferata, Giribone, & Resta, 2017). The purpose of the present article is to integrate that work with further 
deterministic numerical methods and to compare them to those based on the Monte Carlo methodology. In fact, the latter generally 
allows greater flexibility in the definition of payoffs which can be useful for modeling structured products. 

2) The implemented deterministic numerical pricing methodologies 

The main lattice techniques and the finite difference method implemented for pricing and determining the most common options 
sensitivity measures will be described in the following subparagraphs. 

2.1) Binomial stochastic trees 

The binomial method of Cox-Ross-Rubinstein represents one of the most widely used deterministic algorithms to evaluate options 
characterized by non-standard payoffs. The first formulation of the binomial method dates back to 1979 by John C. Cox, Stephen A. 
Ross and Mark E. Rubinstein (Cox J. C., Ross S. A. & Rubinstein M., 1979). They demonstrated how to build a binomial tree which 
could discretize and approximate a geometric Brownian motion, in such a way that, if a large number of time intervals were 
considered, the use of the binomial method to evaluate European options would be equivalent to using the continuously defined 
Black-Scholes-Merton formula (Hull, 2015). The most interesting aspect, however, is that the binomial model allows to evaluate 
American options and many exotic options, for which there is often no exact pricing formula. The analytical formulas of Black-
Scholes-Merton are, in fact, almost always unsuitable for providing a fair value for options with non-standard characteristics, such as 
the possibility of exercising them before maturity (Bermuda /American options) or with particularly complex payoffs (exotic options). 
In all of these cases, therefore, a numerical methodology has to be used for the valuation of the derivative. 
The technique essentially involves dividing the time between the option valuation date and its expiry date into numerous time 
intervals, assuming that during the intervals two possible changes may occur in the value of the underlying of the derivative. 
By way of example, it will be assumed that the underlying is a share but, this valuation methodology may be extended in a 
generalized form to numerous types of underlying (GBS - Generalized Black-Scholes pricing framework) (Haug, 2007).  
The value of the share in a binomial tree, after a time interval Δ𝑡, can increase by a fixed amount 𝑢 with a probability of 𝑝 or it can 
decrease by a fixed amount 𝑑 with a probability equal to 1 − 𝑝. 𝑁 corresponds to the number of time intervals into which the time 
between the option valuation date and its expiry has been divided. 
In order to distinctly identify each node of the binomial tree, the reference time interval is defined with the index 𝑗 and the possible 
value assumed by the financial instrument, moving from one node to the next, is defined with the index 𝑖. The first node in the tree is 
identified with the values (𝑗 = 0, 𝑖 = 0). If the price of the asset increases by the amount 𝑢 (such that  𝑆 ⋅ 𝑢 > 𝑆), the second node will 
be identified with the values (𝑗 = 1, 𝑖 = 1). If, on the other hand, the price of the asset decreases by the amount 𝑑 (such that 𝑆 ⋅ 𝑑 <𝑆), the position of the tree will be identified with the values (𝑗 = 1, 𝑖 = 0). This is shown in Figure 3, which shows, by way of 
example, a binomial tree with five time-intervals.  
 

 
 

Figure 3. Example of a stochastic tree with arborescence 𝑁 = 5 

 

The number of paths leading to a general node (𝑗, 𝑖) is equal to: 
𝑗!𝑖!(𝑗−𝑖)!. Starting from this discretization scheme of the underlying, the 

pay-off 𝑔(∙) is applied in the terminal nodes, and, proceeding backwards, the recombination of the tree is performed until the starting 
node (𝑗 = 0, 𝑖 = 0) is reached, in which the price of the derivative is determined. In order to obtain a matching with the stochastic 
dynamics postulated by the Black-Scholes framework, Cox, Ross and Rubinstein suggested to select the parameters 𝑢 and 𝑑 so that, 
for each discrete time interval Δ𝑡, the assumed future values of the asset be consistent with the mean and the theoretical variance of 
the continuous model (Di Franco, Polimeni & Proietti, 2002). To this end, Cox, Ross and Rubinstein set the parameters 𝑢 and 𝑑 as 

follows: 𝑢 = exp(𝜎√Δ𝑡) and 𝑑 = 1/𝑢 = exp(−𝜎√Δ𝑡), where Δ𝑡 = 𝑇/𝑁 is the length of each time interval (i.e. the time interval 
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between price movements), 𝑇 is the time to expiry of the option expressed in years,  𝜎 is the annualized volatility of the share price 
and 𝑁 is the number of time intervals. Under those hypotheses, the probability that the share price increases between one interval and 
the next is defined as risk-neutral probability and its value is equal to: 𝑝 = (exp(𝑏Δ𝑡) − 𝑑)/(𝑢 − 𝑑), where 𝑏 is the parameter known 
as cost-of-carry. 
Depending on the value assumed by this parameter, we reach a pricing framework that can be used for a large number of option 
underlyings. In particular (Haug, 2007):  
 
- if 𝑏 = 𝑟  the definition is suitable for pricing options written on shares that pay no dividend. 
- if 𝑏 = 𝑟 − 𝑞  the definition is suitable for pricing options written on shares or indices with a continuous dividend yield 𝑞. 
- if 𝑏 = 0   the definition is suitable for pricing options on futures. 
- if 𝑏 = 𝑟 − 𝑟𝐹𝑂𝑅  the definition is suitable for pricing currency options. 
 
The general formulation for pricing a European option is therefore: 
 𝑃𝑟𝑖𝑐𝑒 = exp(−𝑟𝑇)∑ 𝑁!𝑖!(𝑁−𝑖)!𝑝𝑖(1 − 𝑝)𝑁−𝑖𝑔(𝑆𝑢𝑖𝑑𝑁−𝑖 , 𝐾)𝑁𝑖=0  (5) 

 
The up and down jump factors (𝑢, 𝑑) and the respective probabilities (𝑝) of increasing/decreasing the price level of the underlying in 
the next step, 𝛥𝑡 = 𝑇/𝑁, depend on the model used. 
 
In the CRR (Cox-Ross-Rubinstein) Tree 𝑢, 𝑑, 𝛱 are chosen to match the first two moments of the price level distribution, as discussed 
before (Cox J. C., Ross S. A. & Rubinstein M., 1979): 
 𝑢 = exp(𝜎√𝛥𝑡) (6) 𝑑 = exp(−𝜎√𝛥𝑡) (7) 𝛱 = exp(𝑏𝛥𝑡)−𝑑𝑢−𝑑  (8) 

 
There are other binomial methodologies in the literature, which allow the matching with the mean and the theoretical variance of the 
continuous Black-Scholes-Merton model. These are called alternative stochastic binomial trees. The most popular are: 
 

In the JR (Jarrow-Rudd) Tree 𝑢 and 𝑑 are chosen in order to have a probability of 
12 (Jarrow & Rudd, 1993): 𝑢 = exp[(𝑏 − 𝜎2/2)𝛥𝑡 + 𝜎√𝛥𝑇] (9) 𝑑 = exp[(𝑏 − 𝜎2/2)𝛥𝑡 − 𝜎√𝛥𝑇] (10) 𝛱 = 12 (11) 

 
The model proposed by Tian equals the first three moments of the log-normal distribution followed by the underlying (Tian, 1993): 
 𝑢 = 12 exp(𝑏𝛥𝑡)𝜐(𝜐 + 1 + √𝜐2 + 2𝜐 − 3) (12) 𝑑 = 12 exp(𝑏𝛥𝑡)𝜐(𝜐 + 1 − √𝜐2 + 2𝜐 − 3) (13) 𝛱 = exp(𝑏𝛥𝑡)−𝑑𝑢−𝑑  (14) 𝜐 = exp(𝜎2𝛥𝑡) (15) 
 
The Leisen and Reimer tree sets the 𝑢 and 𝑑 factors so that the tree is centered around the strike price. This makes the convergence 
tend to the option value more smoothly and with a better performance (Leisen & Reimer, 1996). The parameters characterizing the 
chain are: 
 𝛱 = ℎ𝑃𝑃(𝑑2) (16) 𝑢 = exp(𝑏𝛥𝑡) ℎ𝑃𝑃(𝑑1)ℎ𝑃𝑃(𝑑2) (17) 𝑑 = exp(𝑏𝛥𝑡)−𝑝𝑢1−𝑝  (18) 𝑑1 = ln(𝑆𝐾)+(𝑏+𝜎2/2)𝑇𝜎√𝑇  (19) 𝑑2 = 𝑑1 − 𝜎√𝑇 (20) 
 
Preizer-Pratt suggest two methods for the ℎ𝑃𝑃(𝑥) calculation (Giribone & Ligato, 2016). 
 
The first inversion method (LR1 Tree) sets: 
 ℎ𝑃𝑃1(𝑥) = 12 + 𝜂 {14 − 14 exp [−( 𝑥𝑁+13)2 (𝑁 + 16)]}12 (21) 

 
While the second inversion method (LR2 Tree) estimates: 
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ℎ𝑃𝑃2(𝑥) = 12 + 𝜂 {14 − 14 exp [−( 𝑥𝑁+13+ 0.1𝑁+1)2 (𝑁 + 16)]}12 (22) 

 

Where: {𝜂 = +1, 𝑥 ≥ 0𝜂 = −1, 𝑥 < 0 (23) 

 
Up to now we have shown the procedure to be used to value a European option, characterized by the fact that it can only and 
exclusively be exercised at maturity. It is therefore necessary to introduce the so-called early exercise feature into the model, which is 
the characteristic that distinguishes an American option: the possibility to exercise it at any time, from instant 0 to expiry 𝑇. Such 
peculiarity translates into the fact that, instead of valuating the pay-off only at maturity, and proceeding backwards through the 
backwardation algorithm, the pay-off also has to be determined in each discrete time interval, in order to verify whether it is 
convenient to exercise the option early or whether to bring it to maturity: the option price will be the higher of the values defined in 
the two respective scenarios (Hull, 2015). We can therefore infer that, in each node of the binomial tree, the value of the American 
call option is: 
 𝐶𝑡 = max[𝐶𝐷𝑒𝑎𝑑 ; 𝐶𝐴𝑙𝑖𝑣𝑒] = max [𝑆𝑡 − 𝐾; 𝐶𝑢𝛱+𝐶𝑑(1−𝛱)1+𝑟 ] (24) 

 
While for an American put option it is: 
 𝑃𝑡 = max[𝑃𝐷𝑒𝑎𝑑; 𝑃𝐴𝑙𝑖𝑣𝑒] = max [𝐾 − 𝑆𝑡; 𝑃𝑢𝛱+𝑃𝑑(1−𝛱)1+𝑟 ] (25) 

 
In order to generalize the procedure for a multi-step tree, two distinct indices have to be introduced: 𝑖 which identifies the time-step 
and 𝑗 which identifies the expected price: the equation which considers the right to early exercise in a general node of the binomial 
tree is the following (Haug, 2007): 
 
- for the call option: 𝐶𝑖,𝑗 = max [𝑆 ⋅ 𝑢𝑖 ⋅ 𝑑𝑗−1 − 𝐾; 𝐶𝑗+1,𝑖+1𝛱+𝐶𝑗+1,𝑖(1−𝛱)1+𝑟 ] (26) 

 
- for the put option: 

 𝑃𝑖,𝑗 = max [𝐾 − 𝑆 ⋅ 𝑢𝑖 ⋅ 𝑑𝑗−1; 𝑃𝑗+1,𝑖+1𝛱+𝑃𝑗+1,𝑖(1−𝛱)1+𝑟 ] (27) 

 
The principle to be applied to valuate an option, taking the early exercise into account, is the same in all types of lattice models 
(Giribone & Raviola, 2019). In implementing the backwardation algorithm, the potential convenience of bringing the option to 
maturity has to be considered. 
 
2.2) Trinomial stochastic trees 

The construction of a trinomial tree is very similar to the procedure followed for developing a multi-step binomial tree (Boyle, 1986). 
Generally, the construction of the trinomial tree that represents the evolution of the price of the underlying occurs by using stochastic 
differential equations (SDE). The first step is to build the price chain of the underlying until maturity. The following step is to 
calculate the option price, starting from the pay-off function at maturity, and discounting the future expected values (backwards 
induction phase). Firstly, it is necessary to introduce the stochastic differential equation of a Brownian geometric motion, which 
describes the evolution of the price of the underlying (Hull, 2015): 
 𝑑𝑆 = (𝑟 − 𝑞)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊𝑡 (28) 
 
- 𝜇 = 𝑟 − 𝑞  is the annualized expected return earned by an investor over the time period 𝑑𝑡. 
- 𝜎   is the annualized volatility of the asset. 
- 𝑑𝑊𝑡  is a Wiener process. 
 
The variable 𝑥 = ln (𝑆) is defined by obtaining the modified stochastic differential equation: 
 𝑑𝑥 = 𝑣𝑑𝑡 + 𝜎𝑑𝑊    with     𝑣 = 𝑟 − 𝑞 − 12 𝜎2 (29) 

 
Now let us consider what happens to the variable 𝑥 in a time interval 𝛥𝑡. The model supposes that it can assume three different 
values: it can increase (up) or decrease (down) by an amount equal to 𝛥𝑥 or remain unchanged (no change). A probability is 
associated with each of the potential changes in the price of the underlying. To find the values of such probabilities, and obtain 
convergence with the Black-Scholes model, it is necessary to equal the mean and the variance in the interval 𝛥𝑥, and also impose the 
sum of the three probabilities equal to 1: 

 𝐸[𝛥𝑥] = 𝑝𝑢(𝛥𝑥) + 𝑝𝑚(0) + 𝑝𝑑(−𝛥𝑥) = 𝑣𝛥𝑡 (30) 𝐸[𝛥𝑥2] = 𝑝𝑢(𝛥𝑥2) + 𝑝𝑚(0) + 𝑝𝑑(+𝛥𝑥2) = 𝜎2𝛥𝑡 + 𝑣2𝛥𝑡2 (31) 𝑝𝑢 + 𝑝𝑚 + 𝑝𝑑 = 1 (32) 
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Defining 𝛼 = 𝑣𝛥𝑡𝛥𝑥  e  𝛽 = 𝜎2𝛥𝑡+𝑣2𝛥𝑡𝛥𝑥2 , the values of the probabilities become as follows: 𝑝𝑢 = 𝛼+𝛽2 , 𝑝𝑑 = 𝛽−𝛼2  e 𝑝𝑚 = 1 −  𝛽. 

 
We then proceed with the creation of the trinomial tree. Two indices are defined, 𝑛, which represents time, and 𝑗, which represents the 
price of the underlying. If 𝑆 is the price of the underlying at 𝑛 = 0, then the 𝑗-th price level is equal to 𝑆𝑗𝑛 = 𝑆 exp(𝑗𝛥𝑥). 
We can therefore define the vector 𝑆 as: 
 𝑆[−𝑁] = 𝑆exp (−𝑁𝛥𝑥) (33) 
 𝑆[𝑗] = 𝑆[𝑗 − 1] exp(𝛥𝑥)     with    𝑗 = −𝑁 + 1,… , 𝑁 (34) 
 
Where 𝑁 is the number of sub-periods in the interval (0, 𝑇), 𝑇 is the time to maturity, or 𝑁𝛥𝑡 = 𝑇. 
Similarly to the development of the price of the underlying, the discretized values relating to the development of the price of the call 
option 𝐶 are represented by the variable 𝐶𝑗𝑛. 

 
The value of the call option at maturity is known, and its possible variants, respectively under the two different assumptions of 
continuous and discrete time, respectively, are given by: 
 𝐶(𝑆, 𝑇) = max (𝑆 − 𝐾, 0) (35) 
 𝐶𝑗𝑁 = max (𝑆𝑗𝑁 − 𝐾, 0) (36) 

 
Finally, the price of the call option is determined at the 𝑛-th time interval as a discounted expectation under the hypothesis of risk 
neutrality, based on the value of the call option in the interval 𝑛 + 1: 
 𝐶𝑗𝑛 = exp(−𝑟𝛥𝑡) (𝑝𝑢𝐶𝑗+1𝑛+1 + 𝑝𝑚𝐶𝑗𝑛+1 + 𝑝𝑑𝐶𝑗−1𝑛+1)  (37) 

 
In short, the logical sequence of the steps to follow is: 
 
1. The structure of the trinomial tree is created. 
2. The value of the call option is initialized in the tree using the default probability values. 
3. The pay-off vector 𝐶𝑗𝑁 is calculated. 

4. The values of the call options in the previous intervals are calculated 𝐶𝑗𝑛. 

 
The first two steps represent the forward induction, while the second two steps implement the backward induction. 
A very similar reasoning can be done to valuate a put option and to verify the convenience of early exercise during the backwardation 
phase. 
 
2.3) The finite difference method 

The finite difference method (FDM) is a numerical scheme that can be applied in quantitative finance for valuating options. The 
solution scheme of the explicit finite difference method for the fundamental Black-Scholes-Merton PDE (partial difference equation) 
is equivalent to the discounted expectations procedure of a trinomial tree (Duffy, 2006). Let us consider the PDE: 
 − 𝜕𝐶𝜕𝑡 = 12𝜎2 𝜕2𝐶 𝜕𝑥2 + 𝑣 𝜕𝐶 𝜕𝑥 − 𝑟𝐶 (38) 

 
We proceed from the expiry of the option backwards until the initial instant and the approximation of the explicit finite differences is 
constructed as follows:   
 − 𝐶𝑗𝑛+1−𝐶𝑗𝑛𝛥t = 12  𝜎2 𝐶𝑗+1𝑛+1−2𝐶𝑗𝑛+1+𝐶𝑗−1𝑛+1𝛥𝑥2 + 𝑣(𝐶𝑗+1𝑛+1−𝐶𝑗−1𝑛+1)2𝛥𝑥 − 𝑟𝐶𝑗𝑛+1 (39) 

 
Rearranging the terms of the equation we obtain:  
 𝐶𝑗𝑛 = 𝑝𝑢𝐶𝑗+1𝑛+1 + 𝑝𝑚𝐶𝑗𝑛+1 + 𝑝𝑑𝐶𝑗−1𝑛+1 (40) 

 
It is interesting to underline the fact that such equation, which represents the value of the call option in the interval 𝑛 as the average, 
weighted by the probabilities of the three possible "states of the world" in the subsequent interval 𝑛 + 1, is the same which also 
describes the call option value in the pricing framework of a trinomial model, apart from the discount factor. 
 
The values of the probabilities 𝑝𝑢, 𝑝𝑚 e 𝑝𝑑 are defined as follows: 
 𝑝𝑢 = 𝛥𝑡𝜎22𝛥𝑥2 + 𝛥𝑡𝑣2𝛥𝑥 (41),  𝑝𝑚 = 1 − 2 𝛥𝑡𝜎22𝛥𝑥2 − 𝑟𝛥𝑡 (42) and 𝑝𝑑 = 𝛥𝑡𝜎22𝛥𝑥2 − 𝛥𝑡𝑣2𝛥𝑥 (43) 

 
The probability values must be positive, and this entails certain restrictions on the amplitude of the step 𝛥t. In general, the relationship 

between the time-steps and the spot price is as follows: 𝛥𝑥 = 𝜎√3𝛥𝑡 (Clewelow & Strickland, 1998). 
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The ways in which early exercise can be taken into account for the FDM method are discussed below. An American option with a 
maturity 𝑇 and with a function 𝑓 for pay-offs can be exercised at any time until maturity. Let us define 𝑃(𝑆𝑡 , 𝑡) as the option pay-off 
function, and 𝑉(𝑆𝑡 , 𝑡) as the early exercise function, where  𝑉: (0,∞) × [0, 𝑇] →  ℝ. 
 𝑉(𝑆𝑡 , 𝑡) represents the price of the instrument at time 𝑡, which means that it values the future payoffs of the instrument, therefore 𝑃(𝑆𝑡 , 𝑡) is the pay-off of the instrument if it were exercised at time 𝑡. This means that upon maturity: 
 𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡)  with  𝑆 > 0 (44) 
 
Furthermore, based on the principle of non-arbitrage 
 𝑉(𝑆, 𝑡) ≥ 𝑃(𝑆, 𝑡)   with  (𝑆, 𝑡) ∈ (0,∞) × [0, 𝑇] (45) 
 
If the sign of the inequality would be strictly greater, it would not be convenient for the option holder to exercise it, since it would be 
more profitable to sell it at a price equal to 𝑉(𝑆, 𝑡), rather than exercise it for a value of 𝑃(𝑆, 𝑡). If, on the other hand, 𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡), the optimal choice is to immediately exercise the option since by holding it till maturity, the holder risks losing money. 
Taking the above consideration into account, the general rule can be determined: the option holder must exercise it as soon as 𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡). Up to the optimal exercise value, the relationship that dominates the dynamics of the option price is given by the 
fundamental Black-Scholes-Merton PDE (Hull, 2015): 
 𝑟𝑆 𝜕𝑉(𝑆,𝑡)𝜕𝑆 + 12  𝜎2𝑆2 𝜕2𝑉(𝑆,𝑡)𝜕𝑆2 − 𝑟𝑉(𝑆, 𝑡) + 𝜕𝑉(𝑆,𝑡)𝜕𝑡 = 0  (46) 

 
Where 𝑉(𝑆, 𝑡) > 𝑃(𝑆, 𝑡). 
 
At the optimal moment for exercise, the following equation applies: 
 𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡) (47) 
 
These relations can be represented by the following free-boundary problem (Duffy, 2006): 
 

{   
   𝑉(𝑆, 𝑡) ≥ 𝑃(𝑆, 𝑡)𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡)  or  𝑟𝑆 𝜕𝑉(𝑆,𝑡)𝜕𝑆 + 12  𝜎2𝑆2 𝜕2𝑉(𝑆,𝑡)𝜕𝑆2 − 𝑟𝑉(𝑆, 𝑡) + 𝜕𝑉(𝑆,𝑡)𝜕𝑡 = 0  𝑉(𝑆, 𝑇) = (𝐾 − 𝑆)+   Terminal Condition      𝑙𝑖𝑚𝑆→0 𝑉(𝑆, 𝑡) = 𝐾           Left boundary condition 𝑙𝑖𝑚𝑆→∞ 𝑉(𝑆, 𝑡) = 0           Right boundary condition

 (48) 

 
With  𝑆 > 0 and 𝑡 ∈ [0, 𝑇]. 
 
The system describes the locus of points where 𝑉(𝑆, 𝑡) = 𝑃(𝑆, 𝑡). In those points the system is not governed by the partial differential 
equation and the option holder of the option should exercise the option. In order to calculate the price of the American put option, the 
problem has to be transformed into a standard scheme for PDE. To do this, the traditional coordinate transformation has to be used 
(Giribone & Ligato, 2015). The established parabolic PDE is thus obtained from which the canonical resolution methods can be used. 
 

3) The Monte Carlo methodology and the Longstaff-Schwartz algorithm   

This stochastic pricing methodology, originally introduced by Boyle in 1977 (Boyle, 1977), can be used to value most options, but 
above all, thanks to its flexibility, it is mostly useful for pricing highly exotic derivatives or structured products. Since the value of a 
derivative is closely linked to the pattern of the price of the underlying financial asset 𝑆(𝑡) in the time period between the drafting of 
the contract and the maturity 𝑡 ∈ [0, 𝑇], it is necessary to mathematically describe a dynamic that represents the potential future 
trajectories of the asset on which the option is written. In this regard, the Monte Carlo method can be used to simulate a wide range of 
stochastic processes. The most common stochastic process and consistent with the Black-Scholes pricing framework is called 
Geometric Brownian motion and it is represented by the well-known Stochastic Differential Equation (SDE): 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 +𝜎𝑆(𝑡)𝑑𝑊𝑡. The SDE which identifies the Brownian geometric motion can be integrated through the Eulero-Maruyama numerical 
scheme and then implemented in a numerical processing software as follows (Kloeden & Platen, 1992): 
 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊𝑡 → Δ𝑆 = 𝜇𝑆Δ𝑡 + 𝜎𝑆Δ𝑊 → 𝑆𝑡 = 𝑆𝑡−1 + 𝜇𝑆𝑡−1Δ𝑡 + 𝜎𝑆𝑡−1𝜀√Δ𝑡 (49) 
 
Stochastic calculus allows to formulate an analytical expression for the simulation of 𝑆(𝑡 = 𝑇). Such result is considered extremely 
important for practical purposes, since it allows direct simulations of the asset to be performed at a general future time 𝑡 = 𝑇, without 
needing to know the values assumed by the asset in the previous times 𝑆(𝑡 < 𝑇). Starting from the hypothesis that the variable 

follows a stochastic process such as: 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊𝑡, given Ito’s lemma, we can state that there is a function 𝐺(𝑆(𝑡)) 
that follows the dynamics (Hull, 2015): 
 𝑑𝐺(𝑆, 𝑡) = (𝜕𝐺(𝑆,𝑡)𝜕𝑆 𝜇𝑆 + 𝜕𝐺(𝑆,𝑡)𝜕𝑡 + 12 𝜕2𝐺(𝑆,𝑡)𝜕𝑆2 𝜎2𝑆2) 𝑑𝑡 + 𝜕𝐺(𝑆,𝑡)𝜕𝑆 𝜎𝑆𝑑𝑊𝑡 (50) 

 



 

 

RISK MANAGEMENT MAGAZINE – Volume 17, Issue 3 – Page - 33 - 

We define 𝐺 = ln(𝑆): 𝑑𝐺 = (𝜇 − 𝜎22 ) 𝑑𝑡 + 𝜎𝑑𝑊𝑡, 𝑑 ln(𝑆(𝑡)) = (𝜇 − 𝜎22 ) 𝑑𝑡 + 𝜎𝑑𝑊𝑡, and by integrating the expression over time, 

we obtain:  
 ∫ 𝑑 ln(𝑆(𝑡))𝑇

0 = ∫ (𝜇 − 𝜎22 )𝑑𝑡𝑇
0 +∫ 𝜎𝑑𝑊𝑡𝑇

0 → ln(𝑆(𝑇)𝑆(0)) = (𝜇 − 𝜎22 )𝑇 + 𝜎𝑑𝑊𝑇 → 

 𝑆(𝑇) = 𝑆(0) exp [(𝜇 − 𝜎22 ) 𝑇 + 𝜎𝑑𝑊𝑇] (51) 

 
The above expression can be easily implemented in a vectorized way in a numerical processing software, such as R, for example. 
 𝑆(𝑇) = 𝑆(0) exp [(𝜇 − 𝜎22 ) 𝑇 + 𝜎𝑑𝑊𝑇] → 𝑆(𝑇) = 𝑆(0) exp [(𝜇 − 𝜎22 )𝑇 + 𝜎𝜀√Δ𝑇] (52) 

 
The formula allows to simulate, in a manner consistent with the BS framework, the value of the asset underlying an option at any 
point in time and in an efficient way in terms of computer time. This modeling methodology allows maximum flexibility in the 
definition of the pay-off 𝑔(∙) even in the presence of exotic derivatives. As mentioned before, the problem with American option 
pricing is that such options can be exercised at any time until maturity, unlike a European option that can only be exercised at 
maturity. In this section we will use the following notation for the pay-off function: 𝑃(𝑆(𝑡)) = max(𝐾 − 𝑆(𝑡), 0) and 𝑃(𝑆(𝑡)) =max(𝑆(𝑡) − 𝐾, 0) respectively for a put and for a call option. According to the Black-Scholes-Merton pricing framework, the 
underlying is modelled using the Geometric Brownian Motion (52). 
For ease of notation, we consider the price of a put option, but the results can be extended to call options as well. The value at time 0 
of a European option can be described as: 
 𝑢(𝑆, 0) = 𝐸[exp (−𝑟𝑇)𝑃(𝑆(𝑇))] (53) 
 
That is, the expected value of the discounted payoff at time 𝑇. In a similar way, the value of an American option at time 0 is given by: 
 𝑢(𝑆, 0) = sup𝑡 ∈[0,𝑇] 𝐸[exp (−𝑟𝑇)𝑃(𝑆(𝑇))]  (54) 

 
i.e., the expected value of the discounted payoff at the time of exercise that yields the greatest payoff. This corresponds to the 
optimization problem of finding the optimal stopping time 
 𝑡∗ = inf{𝑡 ≥ 0|𝑆(𝑡) ≤ 𝑏∗(𝑡)} (55) 
 
for some a-priori unknown exercise boundary 𝑏∗ (Brandimarte, 2006). Thus, in order to price an American option, we need to find the 
optimal stopping time 𝑡∗ and then estimate the expected value: 
 𝑢(𝑆, 0) = 𝐸[exp (−𝑟𝑡∗)𝑃(𝑆(𝑡∗))] (56) 
 
One of the most popular methods to solve this problem is called LSM, developed by Longstaff and Schwartz (Longstaff & Schwartz, 
2001). This approach uses a dynamic programming approach to find the optimal stopping time and the Monte Carlo (i.e., numerical 
integration of Stochastic Differential Equation - SDE) to approximate the expected value. Dynamic programming is a general method 
for solving optimization problems by dividing them into smaller subproblems and combining their solution to solve the main problem 
(Kamien & Schwartz, 2012). In this case, this means that we divide the interval [0, 𝑇] into a finite set of time points {0, 𝑡1, 𝑡2, . . . , 𝑡𝑁}  
and, for each of these points, we decide if it is better to exercise than to hold on to the option. Starting from time 𝑇 and working 
backwards to time 0, we update the stopping time each time we find a time where it is better to exercise, until we find the smallest 

time where exercise is better. Let 𝐶(𝑆(𝑡𝑖)) denote the value of holding on to the option at time 𝑡𝑖 i.e., the continuation value, and let 

the exercise value at time 𝑡𝑖 be the payoff 𝑃(𝑆(𝑡𝑖)). Then the dynamic programming algorithm to find the optimal stopping time can 
be summarized in the following pseudo-code: 
 
> 𝑡∗ ← 𝑡𝑁  
> for 𝑡 from 𝑡𝑁−1 to 𝑡1 do  

> > if 𝐶(𝑆(𝑡)) < 𝑃(𝑆(𝑡)) then 

> > > 𝑡∗ ← 𝑡  
> > else  
> > > 𝑡∗ ← 𝑡∗  
> > end if 
> end for 
 
Using the same argument as in Equation (54), the continuation value at time 𝑡𝑖 can be described in terms of conditional expectation: 
 𝐶(𝑆(𝑡𝑖)) = 𝐸[exp (−𝑟(𝑡∗ − 𝑡𝑖))𝑃(𝑆(𝑡∗))|𝑆(𝑡𝑖)] (57) 
 

Where 𝑡∗ is the optimal stopping time in {𝑡𝑖+1, . . . , 𝑡𝑁}. For ease of notation, we define the current payoff 𝒫 as: 
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> for 𝑡 = 𝑡𝑁: 
> 𝒫 = 𝑃(𝑆(𝑡))  
> from 𝑡 = 𝑡𝑁−1 to 𝑡 = 𝑡1: 
> if 𝐶(𝑆(𝑡)) < 𝑃(𝑆(𝑡)) then 𝒫 = 𝑃(𝑆(𝑡)), otherwise  𝒫 = exp(−𝑟Δ𝑡) 𝒫 
 
Where 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖.  
 

Given this notation, Equation (57) becomes: 
 𝐶(𝑆𝑖(𝑡)) = 𝐸[exp (−𝑟Δ𝑡)𝒫|𝑆(𝑡𝑖)]  (58) 
 
To estimate this conditional expectation, the LSM method uses regular least squares regression (Huynh, Lai & Soumare, 2008). 
This can be done since the conditional expectation is an element in 𝐿2 space, which has an infinite countable orthonormal basis and 
thus all elements can be represented as a linear combination of a suitable set of basis functions. 
So, to estimate this we need to choose a finite set of orthogonal basis functions, and project the discounted payoffs onto the space 
spanned by them. In the proposed implementation, the basis function chosen is the Laguerre polynomials, where the first four are 
defined as follows (Koornwinder, 2013): 
 

{  
  𝐿0 = 1𝐿1 = 1 − 𝑋𝐿2 = 12 (2 − 4𝑋 + 𝑋2)𝐿3 = 16 (6 − 18𝑋 + 9𝑋2−𝑋3)(59) 

 

Given a set of realized paths 𝑆𝑖(𝑡), 𝑖 = 1, . . . , 𝑛 that are in-the-money at time 𝑡, i.e. 𝑃(𝑆𝑖(𝑡)) > 0, and the payoffs 𝒫𝑖 = 𝒫(𝑆𝑖(𝑡)), the 
conditional expectation in Equation (58) can be estimated as: 
 �̂�(𝑆𝑖(𝑡)) = ∑ �̂�𝑗𝑘𝑗=0 𝐿𝑗(𝑆𝑖(𝑡)) (60) 

 

Where 𝐿0, . . . , 𝐿𝑘 are the first 𝑘 Laguerre polynomials and �̂�0, . . . , �̂�𝑘 are the estimated regression coefficients. The regression 
coefficients are obtained by regressing the discounted payoffs 𝑦𝑖 = exp(−𝑟Δ𝑡)𝒫𝑖  against the current values 𝑥𝑖 = 𝑆𝑖(𝑡) by regular 
least squares: 
 (�̂�0, . . . , �̂�𝑘)𝑇 = (𝑳𝑇𝑳)−1𝑳𝑇(𝑦1, . . . , 𝑦𝑛)𝑇 (61) 
 

Where 𝑳𝑖,𝑗 = 𝐿𝑗(𝑥𝑖), 𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , 𝑘. 

 
By approximating Equation (58) with Equation (60), we introduce an error in our estimation. In (Clement, Lamberton & Protter, 

2002) it is shown that lim𝑘→∞ �̂�(𝑆(𝑡)) = 𝐶(𝑆(𝑡)). 
Now that we have a method to estimate the continuation value, we can simulate a set of 𝑀 realized paths 𝑆𝑖(𝑡), 𝑡 = 0, 𝑡1, 𝑡2, … , 𝑡𝑁 and 𝑖 = 1,2, . . . , 𝑀 and use the previous pseudo code to find the optimal stopping times 𝑡𝑖∗ for all paths, and then estimate the expected 
value in Equation (56) using Monte Carlo: 
 �̂� = 1𝑀∑ exp (−𝑟𝑡𝑖∗)𝑃(𝑆(𝑡𝑖∗))𝑀𝑖=1  (62) 

 

One way to speed up the algorithm is to use the discounted payoffs 𝒫𝑖  in the Monte Carlo step instead of the optimal stopping times. 
Since they are constructed and updated recursively in the same way as the stopping times, by the time we have gone from time 𝑡 = 𝑡𝑁 
and 𝑡 = 𝑡1 they will be: 
 𝒫𝑖 = exp(−𝑟(𝑡𝑖∗ − 𝑡1))𝑃(𝑆(𝑡𝑖∗)) (63) 
 
Which means that: 
 exp(−𝑟Δ𝑡)𝒫𝑖 = exp(−𝑟𝑡𝑖∗)𝑃(𝑆(𝑡𝑖∗)) (64) 
 
Thus Equation (62) becomes: 
 �̂� = 1𝑀∑ exp (−𝑟Δ𝑡)𝒫𝑖𝑀𝑖=1  (65) 

 

A pseudo code for the LSM algorithm is provided. 
 
In each step only paths that are in-the-money are used since they are the only ones where the decision to exercise or continue is 
relevant. 
 
> Initiate paths 𝑆𝑖(𝑡), 𝑡 = 0, 𝑡1, 𝑡2, … , 𝑡𝑁 , 𝑖 = 1,2, … ,𝑀   
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> Set 𝒫𝑖  ← 𝑃(𝑆𝑖(𝑡𝑁)) for all 𝑖  
> for 𝑡 from 𝑡𝑁−1 to 𝑡1do 

> > Find paths {𝑖1, 𝑖2, … , 𝑖𝑛} that are in the money: 𝑃(𝑆𝑖(𝑡)) > 0  
> > Set 𝐼𝑇𝑀 𝑝𝑎𝑡ℎ𝑠 ← {𝑖1, 𝑖2, … , 𝑖𝑛} 
> > Set 𝑥𝑖  ← 𝑆𝑖(𝑡) and 𝑦𝑖  ← exp(−𝑟Δ𝑡) 𝒫𝑖  for  𝑖 ∈ 𝐼𝑇𝑀 𝑝𝑎𝑡ℎ𝑠  
> > Perform regression on 𝑥, 𝑦 to obtain coefficients �̂�0, … , �̂�𝑘 

> > Estimate the continuation value �̂�(𝑆𝑖(𝑡)) 
> > Calculate the value of immediate exercise 𝑃(𝑆𝑖(𝑡)) for 𝑖 ∈ 𝐼𝑇𝑀 𝑝𝑎𝑡ℎ𝑠 

> > for 𝑖 from 1 to 𝑀 do 

> > > if (𝑖 ∈ 𝐼𝑇𝑀 𝑝𝑎𝑡ℎ𝑠) and (𝑃(𝑆𝑖(𝑡)) > �̂�(𝑆𝑖(𝑡)))  then 

> > > > 𝒫𝑖 ← 𝑃(𝑆𝑖(𝑡)) 
> > > else 
> > > > 𝒫𝑖 ← exp(−𝑟Δ𝑡)𝒫𝑖   
> > > end if 
> > end for 
> end for 
> 𝑃𝑟𝑖𝑐𝑒 ← 1𝑀∑ exp(−𝑟Δ𝑡)𝒫𝑖𝑀𝑖=1   

 

4) Choice of the deterministic valuation model as a benchmark for the Monte Carlo method 

The purpose of this paragraph is to select the best deterministic method to be compared with the results calculated with the Monte 
Carlo method. In order to carry out such validation of the methodologies described in paragraph 3, with the consequent selection of 
the best pricing approach, two different scenarios are considered: 
 
CASE A – “Theoretical Case” 
The entry parameters for the theoretical case are characteristic of a non-stressed market, as the risk-free rate is positive and equal to 
6%, and in addition the option underlying pays a dividend, with a continuous dividend yield, or a rate of return calculated on a 
continuous basis, equal to 1%. Furthermore, the put option is ITM (in the money) as the strike price is greater than the spot. The 
parameters are as follows: 𝑆 =  40  Spot price; 𝐾 =  50  Strike price; 𝑇 =  2  Time to maturity (years); 𝑟 =  6%  Risk-

free rate; 𝑞 =  1%  Continuous dividend yield; 𝑏 =  𝑟 –  𝑞  Cost of carry; 𝜎 =  25%  Annualized volatility for the underlying 
 
CASE B – “Market Case” 
The second case, which we call "market case" for simplicity, deals with an American put option written on the S&P500 index. As in 
the previous case, the parameters for pricing the option are characteristic of a normal market condition, in which the risk-free rate is 
positive and equal to 1.949%, and the rate of return calculated on a continuous basis is equal to 1.466%. The ATM put option (At The 
Money) is valued with the market data as of 30/03/2022 (Source: Bloomberg®): 𝑆 =  4617.09, 𝐾 =  4617.09, 𝑇 =  1, 𝑟 = 1.949%, 𝑞 =  1.466%, and 𝜎 =  20.526%. 
Before testing the Monte Carlo method in a stressed market scenario, a benchmark deterministic model has to be identified to 
compare the results obtained between the deterministic and the stochastic techniques. To do this, it is necessary to determine which of 
the deterministic models has returned the best performance in terms of convergence level to the Black-Scholes model. The adopted 
approach for this purpose was to implement the closed Black-Scholes formula for pricing the European put option in the theoretical 
case, determining its price and sensitivity measures (Hull, 2015). The second step consisted in building a ranking model based on the 
magnitude of the percentage error regarding the prices, and on the mean and the standard deviation of the Greeks error, all of this 
compared to the results obtained with the B&S closed formula, for each of the deterministic models that have been implemented. The 
results obtained are reported in Table 1: 
 

Price B&S Delta B&S Vega B&S Rho B&S Theta B&S Gamma B&S 

8.778847 -0.5568458 21.79769 -62.10536 0.2780668 0.02724711 

 

Table 1. Price and Greeks of the European put option obtained with the Black-Scholes formula in the theoretical case 

 
Where the price of the put option was calculated with the closed Generalized Black-Scholes formula (Black & Scholes, 1973), (Haug, 
2007): 
 𝑃 = 𝐾 𝑒−𝑟𝑇 𝑁(−𝑑2) − 𝑆𝑒(𝑏−𝑟)𝑇𝑁(−𝑑1) (66) 𝑑1 = ln(𝑆𝐾)+(𝑏+𝜎22 )𝑇𝜎√𝑇 ;  𝑑2 = 𝑑1 −  𝜎√𝑇 (67) 

 
While the sensitivity measures were calculated with the exact formulas illustrated below (Haug, 2007): 
 𝐷𝑒𝑙𝑡𝑎 = 𝑒(𝑏−𝑟)𝑇(𝑁(𝑑1) − 1) (68) 𝑉𝑒𝑔𝑎 = 𝑆𝑒(𝑏−𝑟)𝑇𝑛(𝑑1)√𝑇 (69) 𝑅ℎ𝑜 = −𝑇𝐾𝑒−𝑟𝑇𝑁(−𝑑2) (70)  
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 𝑇ℎ𝑒𝑡𝑎 = − (𝑆𝑒(𝑏−𝑟)𝑇)𝑛(𝑑1)𝜎2√𝑇 + (𝑏 − 𝑟)𝑆𝑒(𝑏−𝑟)𝑇𝑁(−𝑑1) + 𝑟𝐾𝑒−𝑟𝑇𝑁(−𝑑2) (71) 𝐺𝑎𝑚𝑚𝑎 = 𝑛(𝑑1)𝑒(𝑏−𝑟)𝑇𝑆𝜎√𝑇  (72) 

 
Once the price and the Greeks values of the European put option were determined with the Black-Scholes pricing framework, a 
dataset was drawn up with the differences, in absolute value and percentage value, between the price values calculated with the 
different deterministic methods. All the scenarios presented thereafter were conducted using 5,000 steps for the lattice models, the 
grid for the FDM is 5,000 by 5,000 in the underlying value/time to maturity discretization dimensions. 
 

Ranking Pricing Model Price Absolute Error Error % 

1° Leisen-Reimer (LR) 8.778846 8.418940e-07 9.590029e-08 

2° Explict Finite Difference (FDM) 8.778863 1.612288e-05 1.836560e-06 

3° Tian (TIAN) 8.778895 4.806051e-05 5.474582e-06 

4° Trinomial (TRI) 8.778932 8.528244e-05 9.714538e-06 

5° Cox-Ross-Rubinstein (CRR) 8.778950 1.027063e-04 1.169929e-05 

6° Jarrow-Rudd (JR) 8.779062 2.153926e-04 2.453541e-05 

 

Table 2.  Ranking of deterministic models for the pricing of the European put option in the theoretical case 
 

Subsequently, a further dataset was drawn up which contains the values of the mean and the standard deviation of the differences 
between the results obtained for the sensitivity measurements, calculated with the exact B&S formulas and those obtained with 
deterministic models, using the following numerical formulas: 2-sided finite difference for Delta, Vega and Rho, 1-sided finite 
difference for Theta, and Finite Central Difference for Gamma (Duffy, 2006). 
 

Rank Model Delta Error Vega Error Rho Error Theta Error Gamma Error 

1° LR 0.16791 % 1.0335e-04 % 1.2587 e-06 % 0.025862 % 0.006015 % 

2° TRI 2.47082 % 1.9697e-04 % 1.0927 e-03 % 0.453552 % 8.595987 % 

3° JR 0. 13030 % 3.1874e-04 % 9.07064 e-02 % 0.795114 % 0.077334 % 

4° CRR 0.11538 % 2.6884e-04 % 2.27259 e-03 % 1.522928 % 0.174636 % 

5° FDM 6.07082 % 6.1439e-05 % 2.02134 e-03 % 2.11055 % 1.949889 % 

6° TIAN 0.223363% 1.5530e-04 % 4.41009 e-01 % 5.817020 % 0.327921% 

 

Table 3.  Ranking of deterministic models for estimating the Greeks of the European put option in the theoretical case 
 

The results obtained from the comparison of the deterministic models with the Black-Scholes model have pinpointed the Leisen-
Reimer binomial model as the most performing model, since the discrepancies generated by this pricing technique are significantly 
lower compared to the other implemented models. Given the outcome of the ranking model, the following tables show the comparison 
between the benchmark model and the LSM method for pricing the American put option in the theoretical case and in the market case. 
The number of paths simulated through the Monte Carlo technique is equal to 50,000 for the theoretical case and 100,000 for the 
market case. Price convergence was tested with 200 replications for both cases. 
 

Theoretical Case Price Delta Vega 

LR 10.55684 -0.7526719 14.4264 

LSM 10.54429 -0.7780889 13.9426 

 

Table 4.  Comparison of the price and the main Greeks between the LR Tree and the MC method - theoretical case. 
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Market Case Price Delta Vega 

LR 362.8773 -0.4482972 1805.850 

LSM 362.2143 -0.4511456 1798.989 

 

Table 5.  Comparison of the price and the main Greeks between the LR Tree and the MC method - market case. 

The standard deviation of the expected fair value for LSM is 0.005555 in the theoretical case and 0.5237 in the market case. 
 

5) Definition of the price surfaces of a call option and of the Greeks under stressed market conditions  

This paragraph shows the experimental results that define the valuation gap between a European call option and the corresponding 
American option written on equity with a zero pay-out and in the presence of negative interest rates, thus demonstrating the violation 
of the property of options according to which, under the assumption that the underlying equity pays no dividend, it will never be 
convenient to exercise an American call option prematurely, so such option will be priced like the European one (Hull, 2015). As 
already mentioned in the previous paragraph, the two pricing models involved in the stress-test are the binomial Leisen-Reimer 
technique, as a deterministic technique that has proved to be the most performing, and the Monte Carlo method of Longstaff-
Schwartz, a stochastic technique whose simulation error is monitored based on the results of the LR model. This experimental phase 
was carried out according to the following scheme: 
- Change of the option type in the two case studies, from put option to call option. 
- Change in the scenario: the dividend yield parameter is equalized to zero and the risk-free interest rate is set as a parameter, covering 
values ranging from strongly negative to above zero values. 
- Definition of the valuation gap surfaces and of the error of the estimation of the Greeks between the European call option and the 
corresponding American option with the Leisen-Reimer model. 
- Definition of the price surfaces of the American call option with the Longstaff-Schwartz Monte Carlo method. 
- Definition of the surfaces of the Greeks of the American call option with the Longstaff-Schwartz Monte Carlo method. 
- Comparison between the methodological error introduced by the LR model and the experimental error of the LSM stochastic 
method. 
The surfaces were calculated on the one hand, by setting the risk-free interest rate as a parameter, and on the other hand by setting the 
four fundamental input parameters for pricing the option. In particular, the following ranges of variation have been defined: 
Risk-free rate  𝑟 ∈  [−10% ;  2%] 
Spot price  𝑆 ∈  [ 𝑆 − 50% 𝑆 ;  𝑆 + 50% 𝑆] 
Strike price  𝐾 ∈  [ 𝐾 − 50% 𝐾 ;  𝐾 + 50% 𝐾] 
Annualized volatility  𝜎 ∈  [1% ;  70%] 
Time to maturity  𝑇 ∈  [ 1360  ;  𝑇] 
Regarding the granularity applied to the ranges of parameters used for calculating the different surfaces, the scheme was as follows: 
For price surfaces: 

- 𝑟 step  25 𝑏𝑎𝑠𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 = 2510000 
- 𝑆 step  

𝑆100 
- 𝐾 step  

𝐾100 
- σ step   1% 

- 𝑇 step  𝑇 ∗ 7360 for the theoretical case and 𝑇 ∗ 3.5360 for the market case. 

For Greeks surfaces: 

- 𝑟 step 50 𝑏𝑎𝑠𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 = 5010000 
- 𝑆 step  

𝑆50 
- 𝐾 step  

𝐾50 
- σ step 2% 

- 𝑇 step  𝑇 ∗ 14360 for the theoretical case and 𝑇 ∗ 7360 for the market case. 

The granularity applied to the ranges of parameters for calculating the Greeks surfaces is reduced compared to that relating to the 
price surfaces. This choice is aimed at obtaining a suitable trade-off between the experimental test grid and the computational time, 
which is systematically greater for estimating the sensitivity measures, since it is calculated with numerical formulas, and the 
individual option pricing procedure is implemented at least twice for each measure. 
 
5.1) Surfaces of the valuation gap between the European and American call option with the Leisen-Reimer model 

 
In this sub-paragraph, the surfaces that determine the valuation gap between the European and the American call option are presented 
respectively, and those relating to the error in the estimation of sensitivity measures, both for the theoretical case and for the market 
case. The error is measured as a percentage according to the following formulas: 

For the price surfaces   % 𝑃𝑟𝑖𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 = 100 ∗ 𝑃𝐴𝑚 – 𝑃𝐸𝑢𝑃𝐴𝑚  
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For the Greeks surfaces  % 𝐺𝑟𝑒𝑒𝑘 𝐸𝑟𝑟𝑜𝑟 = 100 ∗ 𝐺𝑟𝑒𝑒𝑘𝐴𝑚 – 𝐺𝑟𝑒𝑒𝑘𝐸𝑢𝐺𝑟𝑒𝑒𝑘𝐴𝑚  

The surfaces are shown in a three-dimension box, based on the following orientation of the axes: 
Horizontal axis 1 (x)  parameter 𝑟 (risk-free rate) 
Horizontal axis 2 (y)  variable parameter (𝑆, 𝐾, 𝜎, 𝑇) 
Vertical axis (z)  Error (% 𝑃𝑟𝑖𝑐𝑒 𝐸𝑟𝑟𝑜𝑟,% 𝐺𝑟𝑒𝑒𝑘 𝐸𝑟𝑟𝑜𝑟) 
Furthermore, a surface coloring scheme is respected, based on the variable parameter used in the calculation: 𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒 (𝑆)  𝑅𝑒𝑑   𝑆𝑡𝑟𝑖𝑘𝑒 𝑃𝑟𝑖𝑐𝑒 (𝐾) 𝐿𝑖𝑔ℎ𝑡𝐵𝑙𝑢𝑒   𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 (𝜎)  𝑌𝑒𝑙𝑙𝑜𝑤    𝑇𝑖𝑚𝑒 𝑡𝑜 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 (𝑇)  𝐺𝑟𝑒𝑒𝑛    
In order not to burden the dissertation, all cases for the price of the considered derivative are reported, while for the surfaces of the 
Greeks, only those of the theoretical case are displayed. 
 

 
 

Figure 4.  Gap in the fair value of the American-European LR in the theoretical case 

 

 
 

Figure 5.  Gap in the fair value of the American-European LR in the market case 

 

 
 

Figure 6.  Gap in the estimate of the Delta of the American-European LR in the theoretical case 

 

 
 

Figure 7.  Gap in the estimate of the Theta of the American-European LR in the theoretical case 
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Figure 8.  Gap in the estimate of the Gamma of the American-European LR in the theoretical case 

 

5.2) Surfaces of the valuation gap between the European and the American call option with the Monte Carlo model.     

 

Following the grid and color conventions used for the LR case, only the surfaces related to the theoretical and the market case for 
pricing are shown, in order not to burden the dissertation. 
 
 

 

 
Figure 9.  Estimate of the fair value of the Monte Carlo of the American option in the theoretical case 

 

 

 
 

Figure 10.  Estimate of the fair value of the Monte Carlo of the American option in the market case 

 
5.3) Comparison between the methodological (LR) and the experimental error (LSM) in the pricing and estimation of the Greeks  

 

This paragraph illustrates the comparison surfaces between the methodological error of the Leisen-Reimer model and the 
experimental error produced by the simulations of the Longstaff-Schwartz Monte Carlo method. The last phase of the experiment 
involves the comparison between the valuation gap of the prices calculated using the LR model and the size of the experimental error 
of the stochastic method. The purpose of this comparison is to analyze the behavior of the experimental error produced by the Monte 
Carlo simulations, and the extent of the discrepancy produced by such error with respect to the values of the LR benchmark, in 
extreme market conditions. In order to represent the extent of the Monte Carlo simulation error, with respect to the valuation gap of 
the Leisen-Reimer binomial model, a mask has to be applied to the error matrix containing the differences between the values of the 
European and the American call option: if the simulation error, resulting from the absolute value of the difference between the price 
of the American option calculated with the LSM and with the LR, is greater than the valuation gap produced by the deterministic 
model, then the resulting matrix highlights the size of the experimental error in absolute value, otherwise, that is, if the valuation gap 
of the LR is smaller than the experimental error, the matrix does not show such discrepancy. It should be remembered that for the 
Monte Carlo method only the sensitivity measures were estimated, and for them, the combination of the sensitivity of the numerical 
formulas and the model randomness allow to valuate with a relatively low error margin. The Greeks for which it was possible to 
obtain an acceptable and reasonably robust estimate were the Delta and the Vega. In order not to overly burden the dissertation, the 
comparison surfaces between the LR methodological error and the experimental error are shown below only for the case of pricing. 
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Figure 11.  Comparison surface between methodological error (LR) and experimental error (LSM) for pricing the call option in the 

theoretical case 

 

 
 

Figure 12.  Comparison surface between methodological error (LR) and experimental error (LSM) for pricing the call option in the 

market case 

 

6) Conclusions 

The objective of the paper is to investigate the main problems that impact the pricing models and the sensitivity measures of 
American options written on shares that do not pay dividends, in the presence of negative interest rates. A literary review is conducted 
and the most popular lattice pricing methods are implemented as well as the Monte Carlo technique. The Leisen-Reimer binomial 
model proved to be the most performing deterministic methodology among those implemented in a non-stressed market context, this 
methodology was then tested in extreme market conditions, i.e., in the presence of negative interest rates and on a non-profitable 
underlying. Using the stress test, the valuation gap between the American and the European call option was determined. This 
discrepancy can be interpreted as the model risk deriving from the change in the valuation technique of the derivative, necessary it is 
impossible to use traditional techniques (quasi-closed formula), which are only applicable in ordinary market conditions (i.e. positive 
interest rates). The experimental results obtained with the Leisen-Reimer model were used as a benchmark for controlling the stability 
and performance of the Longstaff-Schwartz Monte Carlo in extreme scenarios. The concept underlying the Monte Carlo method is 
that being a stochastic methodology, by definition, it always produces different outputs, due to its random nature. The question which 
this work tries to answer is how the error generated by the Monte Carlo method "overlaps" the discrepancy relating to the model risk 
of the Leisen-Reimer. 
If the error produced by the Monte Carlo method is lower than the model risk, then the same observations apply as for the LR: in a 
certain range of pricing parameters, the Monte Carlo method is stable and gives similar results to the LR. On the contrary, when the 
error generated by the stochastic methodology is higher, the model risk discrepancy is not so significant, therefore the outputs 
generated by Monte Carlo are considered unstable, in relative terms. Ultimately, if we observe the comparison surfaces between the 
methodological error and the experimental error, we observe that in many cases, except for rare out-of-scale peaks for the most 
extreme regions of the surfaces, the Monte Carlo method is reasonably stable, since the ranges of the error generated by the 
simulations are lower than the benchmark values. From the analysis of the surfaces, certain regions can be identified where a Monte 
Carlo instability occurs, caused by the combination of the following factors: 
- for surfaces for which the spot price and the strike price are parameterized, extremely negative interest rate values, close to -10% 
and the deep in-the-money (ITM) option. 
- for surfaces for which volatility is parameterized, extremely negative interest rate values and very low volatility values. 
- for surfaces for which the time to maturity is parameterized, extremely negative interest rate values and the option close to maturity. 
It should be highlighted that the Monte Carlo method, in the region of positive interest rates, always returns the results of the LR upon 
convergence. To conclude, we can state that the performance of the Monte Carlo method is effective for the interest rate intervals 
around zero, except for an extreme stress-test on the parameters 𝑆 , 𝐾, 𝜎, 𝑇. However, the further we delve into the regions of 
extremely negative interest rates, the greater the instability of the model. Considering the dynamic of the Euribor historical series from 
2014 until today, and considering the negative values assumed by nominal interest rates, we can state that the Monte Carlo model 
ensures a reasonable reliability in the pricing of options written on equity, even in a context of moderately negative interest rates. 
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