
 Open access  Posted Content  DOI:10.1101/2020.11.13.381087

The impact of neuron morphology on cortical network architecture — Source link 

Daniel Udvary, Philipp Harth, Jakob H. Macke, Hans-Christian Hege ...+3 more authors

Institutions: Center of Advanced European Studies and Research, Zuse Institute Berlin, VU University Amsterdam,
Max Planck Society

Published on: 21 Jun 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 The impact of neuronal structure on cortical network architecture

 Reflections on the specificity of synaptic connections.

 Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism.

 
Independently outgrowing neurons and geometry-based synapse formation produce networks with realistic synaptic
connectivity.

 Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits.

Share this paper:    

View more about this paper here: https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-
m5bi573du7

https://typeset.io/
https://www.doi.org/10.1101/2020.11.13.381087
https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7
https://typeset.io/authors/daniel-udvary-1hp3yowij1
https://typeset.io/authors/philipp-harth-3ukx5v8w4r
https://typeset.io/authors/jakob-h-macke-53a8vu69jz
https://typeset.io/authors/hans-christian-hege-30uw1fonzo
https://typeset.io/institutions/center-of-advanced-european-studies-and-research-27bzex64
https://typeset.io/institutions/zuse-institute-berlin-1fnuq2tz
https://typeset.io/institutions/vu-university-amsterdam-2i0ocm9k
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/the-impact-of-neuronal-structure-on-cortical-network-49cd2klx5e
https://typeset.io/papers/reflections-on-the-specificity-of-synaptic-connections-3eii6dpff9
https://typeset.io/papers/parallel-development-of-chromatin-patterns-neuron-morphology-36kxsbvhbm
https://typeset.io/papers/independently-outgrowing-neurons-and-geometry-based-synapse-31mm05wpt3
https://typeset.io/papers/distinct-molecular-programs-regulate-synapse-specificity-in-3onfe89edp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7
https://twitter.com/intent/tweet?text=The%20impact%20of%20neuron%20morphology%20on%20cortical%20network%20architecture&url=https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7
https://typeset.io/papers/the-impact-of-neuron-morphology-on-cortical-network-m5bi573du7


 
 

1 
 

A Theory for the Emergence of Neocortical Network Architecture 

 

Daniel Udvary1, Philipp Harth2, Jakob H. Macke3, Hans-Christian Hege2, Christiaan P.J. de 
Kock4, Bert Sakmann5, Marcel Oberlaender1,* 

 

1Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and 
Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. 2Department of Visualization 

and Data Analysis, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany. 3Machine 
Learning in Science, Tübingen University, Maria-von-Linden-Straße 6, 72076 Tübingen, 
Germany. 4Department of Integrative Neurophysiology, Center for Neurogenomics and 

Cognitive Research, VU Amsterdam, De Boelelaan 1085, 1081 Amsterdam, the Netherlands. 
5Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany. 

 

* Editorial correspondence: Max Planck Group: In Silico Brain Sciences, Center of Advanced 
European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn, 53175 Germany, 

marcel.oberlaender@caesar.de 

 

Developmental programs that guide neurons and their neurites into specific subvolumes 
of the mammalian neocortex give rise to lifelong constraints for the formation of synaptic 
connections. To what degree do these constraints affect cortical wiring diagrams? Here 
we introduce an inverse modeling approach to show how cortical networks would appear 
if they were solely due to the spatial distributions of neurons and neurites. We find that 
neurite packing density and morphological diversity will inevitably translate into non-
random pairwise and higher-order connectivity statistics. More importantly, we show that 
these non-random wiring properties are not arbitrary, but instead reflect the specific 
structural organization of the underlying neuropil. Our predictions are consistent with the 
empirically observed wiring specificity from subcellular to network scales. Thus, 
independent from learning and genetically encoded wiring rules, many of the properties 
that define the neocortex’ characteristic network architecture may emerge as a result of 
neuron and neurite development. 

 

Introduction 

The structural organization of the mammalian neocortex is more complex than that of other 
biological tissues. Each cubic millimeter of the cortical neuropil contains hundreds of meters of 
dendritic and several kilometers of axonal path lengths (1). These neurites originate from 
hundreds of thousands of neurons with diverse structural, functional and/or genetic properties. 
Characteristic for the neocortex, this extremely dense and diversely structured neuropil is the 
result of genetically induced programs with different critical periods during embryonic and 
postnatal development (Fig. 1A). Neurogenesis and radial migration (2, 3), in combination with 
several neurite growth mechanisms (4, 5) guide the neurons’ cell bodies (somata), dendrites and 
axons into specific subvolumes of the cortical sheet (6). As a result, the cellular organization into 
cytoarchitectonic layers and vertical functional columns is highly specific for each area and 
species (7, 8). Depending on the cell type, dendrites and axons develop morphological properties 
that correlate with different features of the areas’ specific laminar (9) and columnar layout (10, 
11). 
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Once developed, soma distributions, as well as dendrite and axon morphologies remain largely 
stable throughout life (12). Thus, developmental programs that shape the specific structural 
composition of each cortical area essentially result in a set of lifelong constraints for where 
neurites – and of which neurons – can in principle form synaptic connections with one another. 
To what degree neuron and neurite distributions might contribute to the complex wiring 
architecture of cortical networks remains however unknown. Particular open questions are 
whether structural constraints for synapse formation are preserved across animals, and whether 
area-specific properties of cortical wiring diagrams – in the following referred to as “structural 
scaffoldings” – could thereby be a result of neuron and neurite development (Fig. 1B). 
 

 

Figure 1. Potential impact of neuron development on cortical wiring. (A) Left: Schematic of 
cortex development (see also (14)). Right: By shaping the structural composition of the neocortex, 
genetically induced developmental programs provide constraints for where neurites – and of 
which neurons – can in principle form connections with one another. (B) Strategy for testing the 
impact of development on wiring. Reconstructing the structural composition allows computing 
how cortical wiring diagrams would appear in the absence of synapse formation mechanisms that 
rely on activity and cellular identity. 

Here we quantitatively address these questions to reveal structural scaffoldings in the networks 
of the vibrissae-related part of the rat primary somatosensory cortex – i.e., the barrel cortex (13). 
For this, we introduce an inverse modeling approach that can predict all dense wiring diagrams – 
and their respective likelihoods – that could arise from neuron and neurite distributions. We find 
that whatever features may drive neuron and neurite development, structural scaffoldings with 
non-random properties will inevitably emerge in cortical wiring diagrams. These non-random 
properties are not arbitrary. Instead, we show that neurite packing density and morphological 
diversity translate into the shapes and correlations of connection probability distributions, and that 
the network’s specific non-random topology reflects these parameters of the underlying pairwise 
statistics. The theory is consistent with wiring specificity observed empirically from subcellular to 
network scales, and provides quantitative predictions for future connectivity measurements. Thus, 
despite wiring mechanisms that rely on activity and/or cellular identity, emergent properties that 
characterize structural scaffoldings in cortical networks may largely persist throughout life. 
 

Results 
To reveal how neuron and neurite distributions affect cortical wiring diagrams, we had to 
overcome several major challenges. First, in parallel to neurite development (4), and to a lesser 
extent throughout life (15, 16), the neocortex is constantly remodeled via mechanisms that form, 
eliminate and replace synaptic connections in an activity dependent manner. Activity can also be 
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part of genetically induced developmental programs. For example, mechanisms that guide 
thalamocortical axons require spontaneous and periphery-driven activity (17, 18). Moreover, 
synapses can form based on genetically encoded wiring rules (19, 20), where molecular 
recognition between specific pre- and postsynaptic compartments results in connections that 
depend on subcellular, cellular and/or cell type identity (21, 22). This plethora of simultaneously 
active mechanisms involved in the generation and remodeling of connections constitutes a major 
obstacle when trying to infer the origin of wiring patterns that are observed empirically via post 
hoc reconstructions: which patterns reflect neuron and neurite distributions, which ones reflect 
learning or genetically defined cellular identity – or combinations thereof? 

To overcome this obstacle, we developed an inverse modeling approach that allows predicting 
dense wiring diagrams from distributions of neurons and neurites, and comparing the predictions 
with available empirical connectivity data. We introduce the quantity dense structural composition 
(𝐷𝐷𝐷𝐷𝐷𝐷) as the product of the numbers of pre- and postsynaptic structures that neurons 𝒂𝒂 and 𝒃𝒃 
contribute to a subvolume 𝒙𝒙�, relative to the total number of postsynaptic structures contributed by 
all neurons, here indexed with 𝑵𝑵. 𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝑏𝑏,𝑥𝑥�) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎,𝑥𝑥�)  ∙  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑏𝑏,𝑥𝑥�)∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁,𝑥𝑥�)𝑁𝑁                             Equation (1) 

Based on this quantity, we formulate two assumptions about synapse formation mathematically. 
Any presynaptic structure can form a connection with any of the available postsynaptic structures. 
The probability 𝑝𝑝 for the presence of 𝑛𝑛 connections between neurons 𝒂𝒂 and 𝒃𝒃 within a subvolume 𝒙𝒙� is therefore given by a Poisson distribution with parameter 𝑛𝑛: 𝑝𝑝(𝑎𝑎,𝑏𝑏,𝑥𝑥�,𝑛𝑛) =  

𝐷𝐷𝑃𝑃𝐷𝐷(𝑎𝑎,𝑏𝑏,𝑥𝑥�)
𝑛𝑛𝑛𝑛!

 ∙  𝑒𝑒−𝐷𝐷𝑃𝑃𝐷𝐷(𝑎𝑎,𝑏𝑏,𝑥𝑥�)                                       Equation (2) 

The formation of a connection does not affect synapse formation elsewhere. Thus, the probability 𝑃𝑃 that neurons 𝒂𝒂 and 𝒃𝒃 are connected by at least one synapse is given by:  𝑃𝑃(𝑎𝑎,𝑏𝑏) =  1− 𝑒𝑒−∑ 𝐷𝐷𝑃𝑃𝐷𝐷(𝑎𝑎,𝑏𝑏,𝑥𝑥�)𝑥𝑥� = 1−  ∏ 𝑒𝑒−𝐷𝐷𝑃𝑃𝐷𝐷(𝑎𝑎,𝑏𝑏,𝑥𝑥�)𝑥𝑥�                        Equation (3) 

where the index 𝒙𝒙�  runs over all subvolumes that cover neurons 𝒂𝒂 and 𝒃𝒃. These equations do not 
reflect any particular wiring mechanisms at the molecular level. However, they capture stochastic 
(i.e., random) processes of synapse formation, elimination and replacement that are independent 
of (sub)cellular identity, including those shaped by competition or stochastic waves of activity as 
observed during development (23). These equations are also consistent with the synaptotropic 
hypothesis, which states that synaptic inputs control the fine-scale elaboration of dendritic and 
axonal arbors (24). Purposefully, these equations neglect any wiring mechanisms that rely on 
periphery-driven activity and/or genetically defined cellular identity. Parameterizing neuron and 
neurite distributions by the quantity 𝐷𝐷𝐷𝐷𝐷𝐷 , followed by application of these equations, thereby 
allows calculating all wiring diagrams, as well as their respective likelihoods, that could originate 
from these specific underlying distributions. Our inverse modeling approach thus results in 
probability distributions of dense wiring diagrams – here referred to as ‘statistical connectomes’ 
(25) – that represent the structural scaffoldings for any given distributions of neurons and neurites. 
 

Model captures the characteristic cellular organization of the barrel cortex 

The second challenge was that electron microscopic approaches that could provide the 
distributions of neurons and neurites that are necessary for calculating statistical connectomes, 
remain limited to small volumes – currently to cubes with up to 100 µm edge lengths (26). 
However, developmental programs shape the cellular and morphological organization of the 
neocortex at scales of several hundreds of micrometers, and even millimeters (11). Thus, we 
decided to generate an anatomically detailed digital model of the neuron and neurite distributions 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.13.381087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381087


 
 

4 
 

across the cortical volume that represents the 24 major facial whiskers along the animals’ snout 
(A1-E4, α-δ). This model is based on anatomical data that we have systematically collected during 
the past two decades for the rat barrel cortex and primary thalamus of the whisker system (Fig. 
2A) – the ventral posterior medial nucleus (VPM). To minimize sources that could potentially 
increase structural variability across animals, all data originated from rats of the same strain, 
housed in standard laboratory environments, and sacrificed at similar time points following the 
critical periods of neuron and neurite development. 
 

 

Figure 2. Cellular organization of rat barrel cortex. (A) The ventral posterior medial nucleus 
(VPM) in thalamus relays whisker input to the barrel cortex. (B) Whisker map of barrels in layer 4 
(L4). Panel modified from Ref. (27). (C) Excitatory (EXC) and inhibitory (INH) somata across barrel 
cortex and VPM. Panel modified from Ref. (28). (D) Standard deviations (STDs, N=12 rats) of 
somatotopy (left), and STDs of cytoarchitecture (center) and coefficients of variations (CVs, N=4 
rats) of neuron numbers (right). (E) Model of the barrel map, layers, pia and white matter at 50 
µm resolution (WM). (F) Model of the cellular organization of barrel cortex and VPM (insert).  

For the model to capture the characteristic cellular organization of the barrel cortex, we 
reconstructed precise 3D maps of ‘cortical barrel columns’ (Fig. 2B) (27) and quantified the 
locations of all excitatory and inhibitory neuron somata for this volume (28). These data revealed 
relationships between the somatotopic map and cytoarchitecture (Fig. 2C) that result in neuron 
numbers per barrel column, and per layer therein, that are highly specific for each whisker. 
Variability of these whisker-specific features is, however, small across animals. The position of 
each barrel within the map, as well as layer borders within each barrel column, vary by less than 
100 µm (Fig. 2D), neuron densities across the barrel cortex by less than 5%. Given this precision 
of the columnar and laminar layout (±50 µm), we combined the reconstructions of the barrel maps 
with surface reconstructions of the layer borders, pia and white matter (Fig. 2E), and subdivided 
the resultant volume into cubes with 50 µm edge length. Each cube was populated with the 
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measured average number of excitatory and inhibitory neuron somata, and assigned to one of 
the 24 barrel columns and one of the six layers therein (Fig. 2F) – or to the nearest column if 
located in the septum between barrels. The model captures 82% of the inter-animal-variability 
with respect to the whisker-specific cellular organization of the rat barrel cortex (Fig. S1). 
 

 

Figure 3. Cell type-specific morphologies in rat barrel cortex. (A) Left: Dendrites (red) and 
axon (blue) of exemplary in vivo labeled neuron reconstructed across sections from pia to WM. 
Top-right: Projection image of section containing the soma. Bottom-right: boutons and spines 
along biocytin labeled axon and dendrite. (B) Dendrites (black) and axons that represent the 
cortex’ major excitatory cell types. Pyramidal neurons in layers 2-4: L2PY (n=16), L3PY (n=30), 
L4PY (n=7), star pyramids (L4sp, n=15), spiny stellates (L4ss, n=22); slender-tufted 
intratelencephalic (L5IT, n=18), thick-tufted pyramidal tract (L5PT, n=16), corticocortical neurons 
in upper (L6ACC, n=14) and deep layer 6 (L6BCC, n=5), corticothalamic (L6CT, n=13), and VPM 
(n=14). (C) Dendrite innervation volumes of L5PTs vs. number of reconstructed neurons. Insert 
shows CVs of dendrite densities within each 50 µm cube. (D) Innervation volumes and CVs of 
dendrite densities therein for the maximal sample of reconstructions per cell type. (E) Robustness 
of estimates for dendrite (red) and axon (blue) innervation volumes for each cell type. 

For the model to capture the barrel cortex’ cell type-specific morphological organization, we 
reconstructed a sample of in vivo labeled morphologies (Fig. 3A) that represents ~1% of the 
excitatory neurons located within a barrel column across layers 2 to 6 (n=154) (11). Similarly, we 
reconstructed a sample that represents ~5% of the neurons located within a VPM barreloid (n=14) 
(29). The sample includes morphologies for all major excitatory cell types of the neocortex (Fig. 
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3B). Complementing the morphological themes that are common across cortical areas and 
species (9), each cell type develops specific variations in its dendritic and axonal patterns that 
reflect different features of the barrel cortex’ specific laminar and columnar layout. Most 
noticeably, neurons project the majority of their axons far beyond the dimensions of a single barrel 
column, either along the whisker row, arc or both. To investigate how representative these 
morphologies are, we calculated dendrite and axon innervation volumes for each cell type at the 
resolution of 50 µm, while increasing the number of reconstructed morphologies (Fig. 3C). For 
example, the volume innervated by dendrites of layer 5 pyramidal tract neurons (L5PTs) will 
change by less than 3% even if additional morphologies are reconstructed. The dendritic path 
length within each 50 µm cube of this volume would change by less than 20%. Similar results are 
obtained for all cell types (Fig. 3D). At the resolution of the model, our sample of morphologies 
thus captures 96% of the inter-animal-variability with respect to cell type-specific dendrite 
distributions, and 88% with respect to axon distributions (Fig. 3E). 
 

 
Figure 4. Structural composition of rat barrel cortex. (A) Estimates of packing density and 
diversity distributions of somata (left), dendrites (center), and axons (right) at a resolution of 50 
µm cubes. (B) Zoom-ins to panel A show eight exemplary 50 µm cubes at the L4/5 border. Colors 
denote cell types and VPM axons (black). (C) Histograms of density distributions for somata, 
dendrites and axons per 50 µm cube. Diversity distributions reflect the numbers of cell types that 
neurons or neurites represent per cube (e.g. all types = 11). (D) Dendrite (left) and axon (right) 
packing densities, as well as cell type diversity of these neurites (bottom) within each 50 µm cube 
depending on the number of morphologies per cell type used to generate the model. (E) Predicted 
ratios of dendrite/axon branchlets per 50 µm cube vs. electron microscopy data (36). (F) Predicted 
bouton densities per layer vs. synapse densities measured via electron microscopy (26, 36, 37). 

Model captures >90% of the dense structural organization preserved across animals 

The third challenge was that proximity is only necessary, but not sufficient for the formation of 
synaptic connections. More specifically, a longstanding hypothesis states that the presence of 
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axons and dendrites within the same subvolume (i.e., axo-dendritic overlap) is predictive of 
synaptic connections between them (30). This hypothesis is commonly referred to as Peters’ Rule 
(31) and it can be simply restated as: “proximity predicts connectivity”. Even though the issue of 
how best to define Peters’ Rule remains controversial (32), tests of this hypothesis at a number 
of spatial resolutions, and in several areas of the mammalian brain including the neocortex have 
failed to support it (26, 33-36). Proximity between two neurites hence does in general not provide 
sufficient information to account for properties of cortical wiring diagrams – neither at subcellular, 
cellular, nor at cell type levels. Consequently, the barrel cortex model needed to provide 
anatomically realistic and robust estimates for soma, dendrite and axon packing density 
distributions across the entire model volume to ensure that constraints for synapse formation 
reflect proximity between all neuronal structures that share a particular subvolume.  

For this, we replaced each soma in the model with a morphology (25) from the sample of in vivo 
labeled neurons (Fig. 4A). Morphologies were registered to model locations within ±50 µm of their 
‘true’ soma depths, and by preserving their respective orientations within columns and relative 
path length distributions across layers (25, 27). Similarly, thalamocortical axons were placed by 
matching the respective numbers of neurons per VPM barreloid. This up-scaled model provides 
quantitative estimates for the dendritic and axonal path lengths that each neuron, depending on 
its soma location, cell type and morphology, can contribute to a particular cortical subvolume (Fig. 
4B). The predicted dense structural composition of the model depends strongly on the specific 
laminar and columnar location of each 50 µm cube (Fig. 4C). However, dendrite and axon packing 
densities within each subvolume will not change by more than 8% and 7%, respectively – their 
cell type diversity by no more than 6% and 5% – even if the model is based on a larger sample of 
neuron morphologies (Fig. 4D). At the resolution defined by the columnar and laminar layout of 
the barrel cortex (i.e., 50 µm), the estimated packing density distributions thus capture more than 
90% of the structural composition for this cortical volume that is preserved across animals. 
Further, the estimated ratios of axon/dendrite branchlets per subvolume are consistent with 
empirical data (Fig. 4E) from dense electron microscopy reconstructions (36). 
 

Model predicts all wiring diagrams that the barrel cortex’ structure could in principle form  

The model provides robust and realistic estimates of the cell type-specific soma, dendrite and 
axon packing density distributions across a volume that is large enough to capture the barrel 
cortex’ specific cellular and morphological organization. To calculate the statistical connectome 
for this model, we parameterized its neuron and neurite packing density distributions in 
accordance with Equation 1. For this, we quantified boutons along the axons of the in vivo labeled 
morphologies with respect to cell type and target layer (11), and converted the axon (and dendrite) 
packing densities into bouton (and spine) densities (25). The resultant density distributions of 
synaptic structures were consistent with those of layer-specific synapse density measurements 
(Fig. 4F) reported from electron tomography (37).  

Application of Equations 2-3 hence resulted in a statistical connectome, which predicts the 
structural scaffoldings for the entire rat barrel cortex. More specifically, the statistical connectome 
provides the probabilities that neurons are connected to one another (Fig. 5A), based on their 
respective contributions to the structural composition of the model volume. The anatomically 
realistic nature of the model allows grouping of neurons by their soma locations and/or cell types 
(Fig. 5B). Thus, the statistical connectome provides connection probability distributions for 
arbitrarily defined subpopulations (Fig. 5C), information about which neurons could be connected 
to one another (Fig. 5D), as well as likelihoods where along the dendrites – i.e., in which of the 
50 µm cubes – these connections could occur (Fig. 5E). Even at this level of detail, describing 
the complexity of wiring in the barrel cortex requires more than 1016 connection probability values. 
To facilitate comprehensive analyses of this extensive dataset, we developed a web-based 
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framework, which provides online access to the statistical connectome, the barrel cortex model, 
as well as to the anatomical data and computational routines that were used to generate it (see 
Materials and Methods). 
 

 

Figure 5. Statistical connectome of rat barrel cortex. (A) Matrix of connection probabilities 
between all excitatory neurons in the model sorted by the somatotopic location and cell type. (B) 
Zoom-in to panel A. (C) Connection probability distribution between L3PYs and L5PTs (blue 
rectangle in panel B). (D) Somata (blue; 50% shown) among all neurons (grey; 10% shown) that 
could connect to exemplary L5PT (blue dashed line in panel B). Dendrites (black) and axon (light 
blue) of one exemplary L3PY that could connect to the L5PT’s dendrites (red). (E) Morphologies 
in the model are represented as density distributions (left), resulting in connection probabilities 
per pair (white arrow in panel B) and 50 µm cube (right). 
 

Model predicts structural scaffoldings of non-random connectivity statistics 

Here we restrict analyses to connections between excitatory populations (see Materials and 
Methods and Discussion for inhibitory neurons), and illustrate the results on neurons whose 
somata are located within layer 5 of the barrel column representing the C2 whisker. For all pairs 
of neurons from this exemplary volume (Fig. 6A), we extracted the respective connection 
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probability values between them from the statistical connectome, and approximated the resultant 
connection probability distribution by the best fit with one of seven functions (Gaussian, Half-
Normal, Exponential, Gamma, Binomial, zero-inflated Poisson, zero-inflated Negative Binomial). 
The shape of the distribution was further quantified by its mean, standard deviation (STD), 
coefficient of variation (CV) and skewness. Subdividing the selected neurons into different groups 
depending on their cell types, soma positions within the column or septum, inter-somatic 
distances, and combinations thereof, yields connection probability distributions that vary 
substantially (Fig. 6B) – i.e., the distributions have different means, CVs, and their shapes cannot 
be fitted consistently with one of the seven functions. These observations generalize to all 
possible groupings of neurons across layers and cell types (Fig. S2). Irrespective of the grouping, 
the mean connection probabilities are, however, in general small (mean ± STD across n=110 
groupings: 0.17 ± 0.11), whereas the CVs are large (1.18 ± 0.94). Less than 5% of the connection 
probability distributions are approximated best by a Gaussian – a common assumption for 
describing pairwise connectivity statistics between neurons. 
 

Figure 6. Structural scaffoldings of rat barrel cortex. (A) Exemplary selection of neurons from 
the model, comprising L5ITs, L5PTs and L6ACCs. Zoom-in to the matrix in Fig. 5A, representing 
the selected neurons (bottom-right). (B) Connection probability distributions representing the best 
fits to connection probability histograms derived from the matrix in panel A for different groupings. 
Bottom-right: Means and CVs of connection probability distributions for all groupings (n=110). (C) 
Correlations between in-degrees for three of the groupings in panel B. Bottom-right: In-degree 
correlation coefficients for all groupings. (D) Wiring diagrams generated from the barrel cortex 
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model for 50 exemplary L5 neurons from panel A. The underlying pairwise statistics reflect either 
those predicted as structural scaffoldings in panels B/C (top-left) or by randomly connecting the 
neurons (bottom-left). Ratio between motif occurrences in the model and random network (1: 
equally abundant; >1: overrepresented in the model; <1: underrepresented). (E) First (top-left) 
and second order statistics (center-left) underlying the wiring diagram between L5ITs and L5PTs 
in the model and random network in panel D. Random permutation of connection probabilities in 
the barrel cortex model results in topologies that are indistinguishable from those of random 
networks (bottom-left). Right: Deviations in the occurrences for three exemplary motifs between 
the model and random networks vs. the means and CVs of connection probability distributions, 
and in-degree correlations for all groupings (see also Fig. S6).  

Next, we quantified the number of connections that each neuron is predicted to receive from all 
other neurons in the exemplary volume. These ‘in-degree’ distributions are in general broad, and 
have shapes that depend on the grouping of neurons with respect to cell type, soma position, 
inter-somatic distance, and combinations thereof (Fig. S3). Moreover, we found substantial 
correlations between in-degree distributions (Fig. 6C). For example, the more connections L5PTs 
receive from one another, the more connections these neurons are predicted to receive from 
corticocortical neurons (L6ACCs) that are located around the layer 5/6 border (38). In contrast, 
the more connections L6ACCs receive from intratelencephalic neurons (L5ITs), the less 
connections these neurons are predicted to receive from one another, in particular when their 
somata are located in the septum. These observations generalize to all groupings, where 
correlation coefficients (Pearson’s R) between in-degree distributions range from −0.46 to 0.87 
(Fig. 6C). In-degree correlations are biased towards positive values (mean ± STD: 0.40 ± 0.27, 
n=550 groupings). 

Finally, we investigated the topologies of networks that could arise from the statistical 
connectome. For this, we calculated the respective occurrences of the fifteen wiring patterns by 
which three neurons can be interconnected – commonly referred to as triplet motifs (Fig. 6D). 
Depending on how the layer 5 neurons are grouped, the respective occurrence of each motif 
differs, but in general deviates from those of networks where neurons are interconnected 
randomly according to the mean of the underlying connection probability distribution. For 
example, compared to these random networks, unidirectionally connected chains of layer 5 
neurons – the feed-forward motif – are predicted to be less frequent in the barrel cortex model 
(i.e., underrepresented). In contrast, bidirectionally connected loops – the fully recurrent motif – 
are overrepresented. Such deviations from the topology of random networks generalize to all 
groupings (Fig. S4). Beyond triplet motifs, high recurrence characterizes the barrel cortex model, 
as overrepresentation increases with the number of bidirectional connections per motif, and with 
the number of neurons per motif (Fig. S5). Conversely, underrepresentation of feed-forward 
motifs increases with the number of neurons per motif. 

Both the random networks and those based on the barrel cortex model have the same mean 
connection probability values. However, variance in connection probability and degree 
distributions, as well as correlations, are absent in the random networks. To assess the impact of 
these differences on topology, we shuffled the connection probability values of the statistical 
connectome, which removes all correlations from the barrel cortex model, while maintaining the 
shapes of the connection probability distributions. The occurrences of motifs in the shuffled barrel 
cortex model are indistinguishable from those of random networks (Fig. 6E). Thus, in the absence 
of correlations, the shapes of connection probability distributions have no impact on network 
topology, which will be random. The opposite is true in the presence of correlations. To illustrate 
this finding, we plotted how motif occurrences deviate from those in random networks against the 
connection probabilities’ means and CVs, and in-degree correlation coefficients, for all groupings 
in the barrel cortex model (Fig. S6). This analysis reveals that the shapes of connection probability 
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distributions in general affect the occurrences of motifs. Pairwise statistics can even affect 
network topology qualitatively, as motif occurrences transition between over- and 
underrepresentation, for example depending on the mean connection probability (Fig. 6E). 
 

Theory for the emergence of structural scaffoldings in cortical networks 

We conceptualize the results of the statistical connectome analyses by formulating a general 
theory for how structural scaffoldings emerge from the underlying neuron and neurite distributions. 
First, the higher neurite packing densities within and across cortical subvolumes, the smaller the 
respective contributions of any particular neuron, and hence the smaller the probability that its 
neurites are connected to any one of the neurites in its vicinity. Thus, neurite packing density 
translates into the means of connection probability distributions, and thereby defines a networks’ 
‘sparsity’ (Fig. 7A). Second, the higher the diversity of neurites within and across subvolumes – 
for example with respect to the cell types of the neurons that these neurites belong to – the 
broader the shapes of connection probability distributions when neurons are grouped by these 
cellular features. Thus, neurite diversity translates into the widths of connection probability 
distributions, and thereby defines a networks’ ‘heterogeneity’. Third, the more similar neurons 
contribute to the packing density and diversity distributions, the stronger are correlations between 
the resultant connection probability and/or degree distributions. Thus, neurite patterns that reflect 
similarities in the locations and morphologies of neurons translate into network correlations. 
 

Figure 7. Theory for the emergence of structural scaffoldings. (A) Theory that conceptualizes 
the findings shown in Fig. 6. Top-left: By shaping the specific distributions of neurons and neurites 
within cortical areas, developmental programs give rise to structural constraints for synapse 
formation. Top-right: Neurite packing density defines a network’s sparsity (means of connection 
probability distributions). Center-right: Morphological diversity of the neurites’ cellular origins 
defines a network’s heterogeneity (width of connection probability distributions). Bottom-right: 
Similarities between the neurons’ locations and morphologies translate into patterns within neurite 
density and diversity distributions that define correlations in connection probability and degree 
distributions. Bottom-left: These properties of the underlying pairwise statistics define area-
specific non-random topologies in wiring diagrams. For example, network architectures become 
increasingly recurrent or feed-forward with increasing or decreasing sparsity, heterogeneity and 
correlations. (B) Mathematical model shows for three exemplary triplet motifs (see also Fig. S7) 
that the shapes and correlations of the underlying connection probability distributions define the 
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specific non-random topology of networks (see Materials and Methods for a definition of 𝜆𝜆). The 
dashed box reflects that range of sparsity and heterogeneity and correlations (i.e., 𝜆𝜆) across all 
layer and/or cell type groupings in the barrel cortex model, as shown in the corresponding panels 
on the right. The colored circles represent the example groupings shown in Fig. 6A. (C) 
Occurrences of motifs for all groupings in the barrel cortex model vs. the respective predictions 
by the mathematical model. 

In the Materials and Methods we provide mathematical evidence that these three properties of 
the underlying pairwise statistics define a network’s topology. More specifically, in the presence 
of correlations, motif occurrences will deviate in general from those of random networks. These 
deviations are however not arbitrary (Fig. S7), but instead reflect the degrees of sparsity and 
heterogeneity of the underlying pairwise connectivity statistics. For example, recurrent motifs 
become increasingly overrepresented the sparser and the more heterogeneous a network is 
interconnected (Fig. 7B). Conversely, feed-forward motifs become increasingly overrepresented 
the denser and the more homogeneous the network is. The mathematical model was sufficient to 
account qualitatively for the non-random topology of the barrel cortex model (Fig. 7C), validating 
that indeed sparsity, heterogeneity and correlations represent its defining sources. 
 

Model predicts structural scaffoldings consistent with the available empirical data 

We tested the theory by comparing the predicted properties of structural scaffoldings with the 
wealth of empirical data acquired for the barrel cortex during the past decades. First, we tested 
the degree of sparsity predicted to emerge from the structural composition at subcellular scales 
(Fig. 8A). Across the model volume, only 1.1 ± 0.3% – and never more than 2% – of the neuron 
pairs whose dendrites and axons share the same 50 µm cube can be synaptically connected. 
This prediction is a direct consequence of the extremely high packing densities, which lead to a 
combination of axonal and dendritic branches that exceeds the number of synaptic connections 
in the corresponding volume by two orders of magnitude. Reflecting a general limit for the validity 
of Peters’ Rule, this observation reveals one of the major reasons why empirically the vast majority 
of close-by neurites are found unconnected. However, if connected, the probability that an axon 
forms more than one synapse along the same dendrite is larger than zero, and the occurrences 
of such synaptic clusters per 50 µm cube are predicted to decrease with the number of synapses 
per cluster (Fig. 8B). Recently, occurrences of clusters with two, three or four synaptic contacts 
between the same branches were reported from dense reconstructions of layer 4 in mouse barrel 
that are consistent, even quantitatively, with these predictions (26). 

Next, we tested the degree of sparsity predicted to emerge from the structural composition at 
cellular scales. Pairwise connectivity between virtually all major neuronal populations of the barrel 
cortex have been assessed empirically. These studies employed somatic recordings for detecting 
postsynaptic potentials in response to action potentials that were induced in individual putatively 
presynaptic neurons either in vivo via sensory stimulation (e.g. (39)), or in acute brain slices in 
vitro via somatic current injections (e.g. (40)) or optical stimulations (e.g. (41)). Because the issue 
of space-clamping can hamper the detection of synaptic connections at distal dendrites (44), 
these empirical data are likely biased towards connections relatively close to the soma. Moreover, 
truncation of dendrites, and in particular of axons, is likely to introduce unsystematic biases when 
probing the fractions of connected neuron pairs in vitro. To compare the predictions of the 
statistical connectome with these empirical data, we therefore needed to mimic the respective 
experimental conditions of each empirical study (Fig. 8C). For this, we grouped neurons in the 
barrel cortex model analogously to eighty-nine layer, cell type and/or distance dependent 
samplings, reported across a set of twenty-nine studies (Tables S1-3). For in vitro studies, we 
generated slices from the model, truncated the neurites accordingly, sampled neurons in these 
virtual slices according to the respectively reported recording depths, and by restricting 
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connections to those along proximal dendrites (Fig. S8). The means of the hence predicted 
connection probability distributions correlate significantly with the empirical data (R=0.75, 
p<10−16). Even quantitatively, the predictions are remarkably consistent with the empirical data. 
About 2/3 of the empirically determined connectivity values deviate from the prediction by less 
than half a standard deviation of the respective connection probability distribution, 94% by less 
than one standard deviation. Only two studies, which reported unusually high connection 
probabilities, were inconsistent with the respective predictions (Fig. 8D). 
 

 

Figure 8. Structural scaffoldings vs. empirical data. (A) Axo-dendritic overlap (i.e., Peters’ 
Rule) is insufficient to account for sparsity in the barrel cortex model at subcellular scales. (B) The 
occurrences of synaptic clusters in the barrel cortex model depends on the cluster size, which is 
consistent with electron microscopy data in L4 of the barrel cortex (26, 36). (C) Connection 
probability distributions predicted in the barrel cortex model for groupings that match those of four 
exemplary empirical studies (39-42). (D) Empirical connection probabilities for 89 layer and/or cell 
type groupings vs. those predicted in the barrel cortex model (Tables S1-3). Grey-shaded area 
represents 95% prediction interval. Asterisks denote inconsistencies between empirical data and 
barrel cortex model. (E) Occurrences of triplet motifs between L5PTs in the barrel cortex model 
are consistent with empirical data (43). (F) Overrepresentation of L5PT motifs increases with the 
number of connected edges empirically (42) (top) and in the barrel cortex model (bottom). 

We performed several additional analyses to solidify these observations. First, without emulating 
in vitro conditions, the model predictions remain correlated with the empirical data. However 
quantitatively, consistency decreases the more the experimental conditions of the respective 
studies are neglected – no emulation of space-clamping: R=0.72; no emulation of slicing: R=0.70; 
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no emulation of both: R=0.64. Second, to test whether consistency with the empirical data is due 
to large heterogeneity, and thereby emerges by chance, we performed random permutations of 
the eighty-nine predicted connection probabilities. Permutations yielded correlations with the 
empirical data that were in general not significant (R=0.00 ± 0.11; range: −0.38 to 0.51), and never 
as high as the one predicted to emerge from the structural composition (i.e., R=0.75). Third, we 
tested whether definitions of Peters’ Rule at cellular scales (35) are sufficient to explain the model 
predictions (Fig. S9). For example, axo-dendritic overlap between L5PTs and L6ACCs is 1.44 
times larger than that between L6ACCs and L5PTs. Opposite to this relationship, the ratio between 
the means of the respectively predicted connection probability distributions is 0.72. This mismatch 
between overlap and connection probabilities generalizes to all groupings (F test that differences 
in axo-dendritic overlap results in the same differences of connection probabilities: F>23.2, 
degrees of freedom=1, p<10-5). Thus, both at subcellular and cellular levels, definitions of Peters’ 
Rule are insufficient to account for the properties of structural scaffoldings.  

Finally, we tested properties predicted to emerge from the structural composition at network 
scales. Empirical assessments of network topology remain, however, scarce and limited to small 
populations of neurons. Empirical data for heterogeneity and correlations in structural connectivity 
are lacking altogether. Fortunately for L5PTs, the occurrences of all triplet motifs and their 
respective deviations from a random network were systematically assessed (43). The statistical 
connectome predicts motif occurrences for neurons of this cell type that are remarkably consistent 
with these empirical data (Fig. 8E), with the notable exception of unidirectionally connected loops 
– the feed-forward loop motif (see Discussion). Moreover, probing the occurrences of motifs 
between up to eight L5PTs revealed that independent of their particular topology, motifs become 
increasingly overrepresented with increasing numbers of connected edges (42). This empirically 
determined relationship is qualitatively consistent with the model predictions (Fig. 8F). 
 

Discussion 

We present a comprehensive theory for the emergence of complex network architectures in the 
mammalian neocortex. Our data reveal that simply because proximity is a necessary condition 
for synapse formation, structural constraints of neurite packing density and diversity provide 
themselves a major source for the neocortex’ characteristic wiring properties from subcellular to 
network levels. Thus, whatever features may drive neuron migration and neurite guidance during 
development, non-random pairwise and higher-order connectivity statistics will inevitably emerge 
in the wiring diagrams of cortical networks, and thereby define structural scaffoldings that are 
specific for each area and species. Properties that characterize structural scaffoldings, as 
predicted here for the barrel cortex, can have significant qualitative impacts on cortical dynamics. 
Balance between excitation and inhibition depends for example critically on the network’s 
heterogeneity and correlations (45). Consequently, to ensure robustness of cortical dynamics 
throughout life, wiring mechanisms that depend on activity and/or cellular identity may thus 
constantly remodel wiring in the neocortex, while maintaining the properties of its structural 
scaffoldings. Such homeostasis of structural scaffoldings provides a likely explanation to resolve 
what may otherwise seem paradoxical: the model in which any activity and/or cellular identity 
dependent wiring mechanisms were purposefully neglected, predicts connectivity for the barrel 
cortex that is consistent with empirical data from animals in which such mechanisms were 
however involved in generating and remodeling synaptic connections. 
 

Structural scaffoldings beyond local excitatory connections 

Our attempts to falsify the theory remain limited to local connections between excitatory 
populations and their innervation by long-range axons from primary thalamus. Recent studies 
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however indicate that the theory is likely to extend to other excitatory long-range pathways. For 
example, depending on their respective subcortical target areas, somata of L5PTs form sublayers 
in mouse motor (46) and rat barrel cortex (47). Moreover, these neurons have dendrite 
distributions across layers that correlate with their respective downstream targets (47, 48). 
Consequently, L5PTs contribute to the soma, dendrite and (potentially) axon packing density 
distributions in a target related manner, which may at least in part explain the target-related 
differences of connection probabilities between them (35). Recent advances in reconstructing 
individual neurons throughout the rodent brain may allow testing the general validity of our theory 
for long-range connectivity (49). It is less likely that the theory for structural scaffoldings 
generalizes to inhibitory connections. Even though morphologies of inhibitory neurons adapt to 
the specific columnar and laminar layout of a cortical area (50, 51), developmental programs that 
shape their neuron and neurite distributions are fundamentally different from those of excitatory 
neurons (52, 53). Inhibitory axons preferentially target specific cell types and/or even specific 
subcellular compartments (54). At electron microscopic resolution, structural properties can 
hence be predictive for excitatory, but not for inhibitory connections (26). Whether developmental 
programs that shape inhibitory neuron and neurite distributions contribute to structural 
scaffoldings needs however further investigation. 
 

Evolutionary benefits of structural scaffoldings 

In simpler organisms such as c. elegans, genomes have in principle the capacity to specify every 
connection between every neuron to the minutes detail (55). This is arguably not possible for the 
mammalian neocortex, even if the entire genome would solely encode cortical connections. 
Because of this ‘genetic bottleneck’ (55), it is believed that the genome may instead specify a set 
of rules, which provide blueprints for wiring up the nervous system during development. However, 
we show that the neocortex’ characteristic network architecture does not necessarily rely on such 
explicitly encoded wiring rules. Instead, reflecting a result of genetically induced neuron and 
neurite development, wiring properties that emerge as structural scaffoldings are encoded 
implicitly in the genome – i.e., in the form of structural constraints that are consistent across 
animals. Moreover, periphery-driven activity can regulate guidance programs that shape the 
neocortex’ structural composition (56). Accordingly, sensory experience potentially alters the 
properties of structural scaffoldings. Compared to explicitly encoding wiring diagrams – or sets of 
wiring rules, implicit encoding could thus facilitate adaptation of network architectures to the 
environment. The emergence of structural scaffoldings as a result of neuron and neurite 
development may hence represent an evolutionary strategy for the neocortex to ensure robust 
function, while providing flexibility to organisms for invading new ecological niches within relatively 
few generations (57). 
 

Outlook 

The present theory reveals general limitations for interpreting connectivity data. For empirical 
observations that are consistent with the properties of structural scaffoldings – no matter whether 
they violate Peters’ Rule or deviate from a random network – it is not possible to infer 
unambiguously which wiring mechanisms may have formed these connections. Thus, 
disentangling the origins and relevance of cortical wiring patterns will become even more 
challenging, and will likely require combining structural with functional connectivity 
measurements. For example, estimating the strengths of connections revealed upper bounds for 
the fraction of synaptic clusters that could reflect Hebbian learning (26). Inconsistency with the 
present theory however allows concluding that such observations must reflect, at least in part, 
wiring mechanisms that rely on activity and/or cellular identity. For example, the particularly high 
density of excitatory synapses along specific dendritic compartments of L5PTs (58), as well as 
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overrepresentation of unidirectional loops between these neurons (43), cannot solely emerge 
from the structural composition (Fig. 8E). Such observations that deviate qualitatively from the 
theory are hence prime candidates to reflect structural correlates of learning or genetically 
encoded wiring rules. To facilitate identification of such candidates, we developed CortexInSilico. 
Beside access to all data reported here, this framework provides web-based interfaces to 
contribute empirical data for comparison with the theory, to formulate alternative wiring strategies 
mathematically, to compare predictions across strategies, and to test the predictions’ effect on 
cortex function by downloading connectivity constraints for neuron (38) and network simulations 
(45). 
 

Materials and Methods 

All relevant data and codes are available from the authors. The model, including detailed 
documentation of all data and analyses will be publically available online via CortexInSilico. We 
used custom-written routines in C++, Python, or MATLAB 2019b software (Mathworks, Natick, 
MA, USA) for analysis. Amira software (FEI) was used for visualization. Boxplots were generated 
with the Matlab built-in boxplot where the bottom and top of the box represents the 25th and 75th 
percentiles, and the line within the box the median. The lines extend to the adjacent values. 
Outliers are all values more than 1.5 times the interquartile range away from the top or bottom of 
the box.  

NeuroNet: We used NeuroNet, a custom-designed extension package for Amira software, to 
model an entire neocortical area and to predict the area’s structural scaffoldings. NeuroNet has 
been described in detail previously (25). Briefly, NeuroNet requires (i) a reference frame for a 
neocortical volume of interest (e.g., area-specific pial and white matter surfaces), (ii) the 3D soma 
density distribution within the volume, (iii) a sample of cell type-specific axon and dendrite 
morphologies and (iv) their respective distributions of pre- and postsynaptic structures along their 
axons and dendrites. NeuroNet generates a digital model of the respective volume by up-scaling 
the sample of neuron morphologies to all neuron somata in the volume, i.e., each neuron soma 
is represented by one axon and dendrite morphology from the sample of morphologies. Using 
Equations 1-3 NeuroNet generates the ‘statistical connectome’, the likelihoods of all possible 
wiring diagrams between all neuron morphologies in the model. Hence, connectivity between 
neuron pairs is not binary. Instead, for each neuron pair NeuroNet outputs the pair’s probabilities 
of forming n synapses in any subvolume as defined by the resolution limit of the reference frame. 
Note that based on these pair- and subvolume-wise probability statistics an unlimited amount of 
realizations of wiring diagrams can be generated.  

Anatomical data: As input to NeuroNet we used averages of the empirically determined rat barrel 
cortex’ geometry (Wistar, male/female, postnatal day 28; n=12 (27)) and 3D distributions of all 
excitatory and inhibitory neuron somata in rat barrel cortex and in the VPM (Wistar, male, 
postnatal day 28; n=4 for barrel cortex, n=3 for VPM (28)). The precision of the barrel map was 
defined as the standard deviation (STD) of the positions of the barrel top and bottom along the 
arc and row across twelve rats (27). The layer precision was defined as the mean of the STDs of 
each layer border across four rats (28). The cellular precision was defined as the coefficient of 
variation (CV) of the number of somata per barrel column across four rats (28). Given the precision 
of the barrel field map the resolution limit of the resultant digital model was defined by cubes of 
50 µm edge length.  

The model was populated with reconstructions of in vivo labeled excitatory neuron morphologies 
(Wistar, male/female, postnatal day 25-45; n=153 dendrite reconstructions, n=74 dendrite/axon 
reconstructions (11)) and the intracortical part of in vivo labeled VPM axon morphologies (Wistar, 
male/female, postnatal day 25-170; n=14 neurons (29)). For space filling purposes we 
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incorporated reconstructions of inhibitory neurons into the model (Wistar, male/female, postnatal 
day 18-35; 203 morphologies were labeled in vitro in layers (Ls) 2 to 6 (59-61), 10 were labeled 
in vivo in L1 (62)). In vitro labeled dendrite morphologies were curated by assuming radial 
symmetry of their axons and dendrites. Inhibitory neurons were not further analyzed and 
integrated using the same procedure as for the excitatory morphologies.  

To test how representative the sample of excitatory axon and dendrite morphologies was, we 
performed the following analysis: First, the dendrite morphologies of each excitatory cell type 
registered to the D2 barrel column were aligned by their lateral soma position and their dendrite 
innervation volume per 50 µm cube was calculated. For each cell type, we determined all possible 
combinations of subsamples of dendrite morphologies. If there were more than 500 possible 
combinations for a given subsample size of morphologies, a random sample of 500 combinations 
was used. For each combination of morphologies the change of their total innervation volume to 
the volume innervated by all morphologies was calculated, i.e., one minus the ratio between the 
number of cubes innervated by the respective combination of morphologies and those innervated 
by all morphologies. Second, for each combination of morphologies their respective dendrite 
length contribution per cube was determined. For each subsample size of morphologies, the CV 
of the dendrite length per cube across all possible combinations of morphologies was calculated. 
We repeated the same analysis for the axon morphologies of each cell type but without aligning 
the axon morphologies by their somata.  

We created multiple barrel cortex models where subsamples of excitatory morphologies were 
used for up-scaling, i.e., models based on only one morphology per cell type, two morphologies 
per cell type, and so on. Specifically, we determined all possible combinations of subsamples of 
morphologies per cell type. If there were more than 500 possible combinations for a given number 
of morphologies per cell type, a random sample of 500 combinations was used. Up-scaled 
versions of morphologies that were not in the selected combination were removed from the model. 
To compensate for the removed morphologies, the remaining morphologies in the model were 
duplicated to match the overall number of neurons in the model in a cell type and column-specific 
manner. If the number of morphologies per cell type equaled or exceeded the number of 
morphologies of a particular cell type, no morphologies of the respective cell type were removed. 

Across L2 to L6 of the C2 barrel column we determined the mean, SD, and CV of the length 
density and diversity of axon and dendrites within each 50 µm cube depending on the number of 
morphologies per cell type used for up-scaling in the model. The resultant barrel cortex model 
used here comprised 477,537 excitatory and 69,810 inhibitory neurons in barrel cortex, and 6,225 
in the VPM. For each 50 µm cube in a subvolume spanning L2 to L6 of the C2 barrel column, we 
calculated the number of axon and dendrite branchlets and compared their ratio to empirical data 
for validation (36). The color maps for visualizing the distribution of somata, dendrites and axons 
are adapted from www.ColorBrewer2.org, by Cynthia A. Brewer, Penn State. 

Conversion of morphologies into pre- and postsynaptic densities: Axons and dendrites are 
not represented by their respective trajectories. Instead, morphologies are converted into 
densities per 50 µm cube of pre- and postsynaptic structures. As reported in (25), the densities of 
presynaptic structures (i.e., axonal boutons) were derived by multiplying the axon length that each 
neuron contributes to a particular 50 µm cube with the number of boutons per length, as measured 
for the respective cell type and target layer (11). We compared the resultant presynaptic density 
distributions to empirical data: We calculated the number of excitatory boutons per 50 µm cube 
for the D2 barrel column, and grouped the 50 µm cubes by their respective laminar positions 
within L1 to L6. Layer borders were defined by the excitatory somata density profile along the 
cortical depth, as reported previously (28). The border between L2 and L3 was defined by the 
inhibitory somata density profile along the cortical depth, as reported previously (63, 64). Due to 
the consistency of the presynaptic density distribution with empirical data and the difficulties in 
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measuring densities of postsynaptic structures (i.e., spines), we scaled the total number of 
postsynaptic structures in the barrel cortex model to match the empirically validated number of 
presynaptic structures along the cortical depth. Specifically, the number of postsynaptic structures 
along excitatory dendrites (i.e., spines) was derived by assuming that spine densities are 
proportional to dendritic length. The number of postsynaptic structures along inhibitory dendrites 
and somata was derived by assuming proportionality to their respective surface areas. The 
derived density of postsynaptic structures for excitatory neurons ranged from 1.04 to 1.68 spines 
per µm dendritic length, depending on the subcellular compartment and cell type. The derived 
density of postsynaptic structures for inhibitory neurons was 0.74 per µm² of dendritic or somatic 
surface. The derived densities are consistent with empirical spine density measurements (65, 66) 
and with empirical synapse density measurements on inhibitory somata (67, 68).  

Statistical connectome 

We applied Equations 1-3 to the neuron and neurite distributions of the barrel cortex model 
yielding a barrel cortex’ statistical connectome. In Equation 1, ∑ 𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃(𝑁𝑁,𝑥𝑥�)𝑁𝑁  refers to the total 
number of postsynaptic structures contributed to subvolume 𝒙𝒙� by both, excitatory and inhibitory, 
neurons. All analysis was performed on the predicted pairwise connection probability statistics 
between excitatory neurons unless otherwise noted. Realizations of wiring diagrams derived from 
these statistics were only used for illustration. The color map for the matrix representation was 
mapped on the respective percentiles of the connection probability distribution; the color map for 
the zoom-in of the matrix representation was limited to 95% of the connection probability values. 
We computed the mean, STD, CV, and Pearson mode skewness (mode was defined as the most 
frequent connection probability value when rounded four digits to the right of the decimal point) of 
the connection probabilities between all cell type groupings of the C2 barrel column. We 
determined which of seven functions (Gaussian, Half-Normal, Exponential, Gamma, Binomial, 
zero-inflated Poisson, zero-inflated Negative Binomial) best approximated the underlying 
connection probability distribution. For this, we converted the distribution of the connection 
probabilities into probability mass functions ppmf. For discrete mass functions (i.e., zero-inflated 
Negative Binomial, zero-inflated Poisson, and Binomial), we mapped each bin (from 0% to 100%) 
of ppmf on discrete values from 0 to 100. In the case of the gamma function, all zero connection 
probabilities were replaced with epsilon (2-52). Each function was fitted by maximum likelihood 
estimation (MLE) either using the Matlab built-in fitdist or in case of the zero-inflated models using 
the Python libraries statsmodels 0.10.1 and NumPy 1.16.5. The best-fitting function was the one 
resulting in the lowest area difference between the fits and ppmf or the mapped ppmf.  

We assessed correlations between neurons by calculating the quantity 𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵) between all 
presynaptic neurons 𝐴𝐴 and VPM thalamus and all postsynaptic cells 𝐵𝐵 in the C2 barrel column:  𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵) =  � 𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵,𝑥𝑥�)𝑥𝑥�  Equation (4) 

We grouped all pre- and postsynaptic neurons by their cell type identity, and summed the 𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴,𝐵𝐵)  values across each presynaptic population. This resulted in the mean number of 
connections (i.e., in-degree) each postsynaptic neuron 𝐵𝐵  receives from this population. We 
computed a linear regression fit and Pearson's linear correlation coefficient between the in-
degrees of two different presynaptic populations onto all neurons per postsynaptic cell type. We 
repeated this computation for all possible combinations of presynaptic cell types, resulting in the 
distribution of 55 correlation coefficients per postsynaptic cell type.  

We used the Matlab built-in digraph to illustrate one possible realization of the statistical 
connectome for a network of 50 neurons located within L5 of the C2 barrel column as a graph. 
Edges between each neuron pair in the model were realized based on their predicted connection 
probability. In the random graph, edges were realized based on the mean connection probabilities 
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across all 50 neurons. To analyze network topologies, we calculated the (occurrence) probability 
of each of the 15 motifs for a given set of 10,000 randomly selected neuron triplets. Each neuron 
triplet is represented only once per set. The neuron triplets were sampled such that each neuron 
was from one of the ten cell types or a neuron from L2/3, L4, L5, or L6, and located closest to the 
C2 barrel column. We repeated this step 10 times and calculated the mean of each motif 
probability. We compared the motif probabilities predicted by the statistical connectome with those 
expected in a random network. First, we calculated the mean connection probabilities for each of 
the six edges between all three neuron populations. Second, we used these mean connection 
probabilities to compute the probability of each motif. Third, the predicted motif (occurrence) 
probabilities were divided by their respective expected (occurrence) probabilities in the random 
network. We computed the deviation of motif occurrences of all 15 motifs for all 210 cell type-
specific triplet combinations with at least two different cell types. For each triplet combination, we 
calculated the mean and CV of their connection probability distribution across all six edges and 
their mean correlation of in-degrees (i.e., mean across all in-degree correlation coefficients 
involving the cell types of the respective triplet combination).  

We extended our analysis to motifs between more than three neurons. We computed the 
probabilities of two exemplary motifs for up to ten neurons located closest to the C2 barrel column. 
The first motif represented ‘full recurrence’, i.e., all neurons are connected via bi-directional 
edges. We randomly sampled 10,000,000 sets of neurons per motif size (i.e., 3 to 10) from the 
model, and computed the probability of the fully bi-directional motif, respectively. The respective 
probabilities in the random network were computed based on the mean connection probability 
across all neurons of the sample. The second motif represented a feed-forward chain of neurons 
(i.e., neurons except for two have exactly one incoming and one outgoing unidirectional edge, 
and the two remaining neurons have either only one incoming or one outgoing unidirectional 
edge). We randomly sampled 10,000 sets of neurons per motif size (i.e., 3 to 10) from the model, 
computed the probability of 1,000 randomly sampled synaptic chain motif per neuron set, 
respectively.  

Comparison with empirical data 

The probabilities that two neurons 𝑎𝑎 and 𝑏𝑏 form zero, one, two, three and (at least) four synapses 
was calculated for all excitatory pairs and 50 µm cubes of the C2 barrel column, and multiplied by 
the number of neuron pairs that innervate each cube, respectively. The predicted median, 
minimum and maximum synapses per neuron pair were compared with saturated reconstructions 
(26, 36) that determined occurrences of the respective number of synapses between the same 
branches empirically, by scaling the respectively reconstructed volumes (1.5 x 10-6 mm3 and 5 x 
10-4 mm3) to a 50 µm cube. We repeated the analysis for 50 µm cubes located in L4 of the C2 
barrel column. 

We compared 89 empirical measurements of connection probabilities from 29 studies (35, 39-43, 
69-91) with the predicted mean connection probability by mimicking the respective experimental 
conditions and neuron groupings. To emulate the respective experimental conditions in the model, 
we created ten virtual slices of 300 µm thickness through the model. Each slice contained either 
the entire C2 barrel column or parts of it. The slices were shifted by 20 µm with respect to one 
another along the rostro-caudal axis. Neurites of all neurons whose somata were located within 
a slice were truncated, i.e., branches were cut at their intersection with the slice surface, and 
branches that became disconnected from the soma were removed from the model. We computed 
the connection probabilities between each neuron pair in the virtual slices as defined by 
Equations 1-3 with the quantity 𝐷𝐷𝐷𝐷𝐷𝐷 being the contribution of pre- and postsynaptic structures by 
the truncated neuron pairs’ morphologies with respect to the total number of postsynaptic 
structures contributed by all neurons. We grouped the neurons as described in the respective 
studies (35, 39-43, 69-91) (Table S1); i.e., by their laminar soma location and – if reported – by 
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their cell type. Layer borders were defined as reported previously (28). The borders between L2 
and L3, L5A and L5B, and L6A and L6B were set to the center location of L2/3, L5 and L6, 
respectively. If the recording depth was not reported, we restricted the comparison to neuron pairs 
within the mean reported range of recording depths (31 µm to 130 µm). To assess the predictions, 
we computed the Pearson’s linear correlation coefficient between the empirical and predicted 
connection probabilities and the 95% confidence bounds for new observations based on a linear 
regression with no intercept using the Matlab built-ins fitlm and predict. We performed a random 
permutation test on the correlation coefficient by shuffling the empirical and the predicted 
connection probabilities and re-computing their correlation coefficient. We repeated this step 
100,000 times.  

We tested to what degree connections from excitatory onto inhibitory neurons affect structural 
scaffoldings between excitatory populations. For this, we removed the inhibitory neurons from the 
model, thus altering the quantity 𝐷𝐷𝐷𝐷𝐷𝐷  (Equation 1) and the derived connection probabilities 
(Equations 2-3). The removal had no qualitative impact on the structural scaffoldings between 
excitatory neurons. The resultant correlation coefficient between the predicted and the empirical 
average connection probabilities was the same as with inhibitory neurons (R=0.75). We compared 
the model predictions with two empirical studies that performed connectivity measurements in 
vitro as a function of inter-somatic distance (42, 69) (Tables S2-3). Here, we grouped neurons 
additionally by their inter-somatic distance along the lateral axis (i.e., the axis running parallel to 
the slicing surface).  

We tested Peters’ Rule at cellular scales. As defined previously (35) we aligned all neuron 
morphologies registered to the D2 barrel column by their somata in the horizontal plane (i.e., 
preserving their cortical depth). We transformed each axon and dendrite morphology in a 3D axon 
or dendrite length density with a resolution of 50 µm cubes and multiplied each axon length 
density with each dendrite length density. For each neuron pair we summed the resulting axo-
dendritic overlap across all cubes. We calculated the mean and STD across all cell-to-cell 
overlaps for each cell type combination. To compare these values to the respective connection 
probabilities predicted by the barrel cortex model we performed the following analysis: First, we 
calculated the correlation coefficient between the mean of the connection probability and of the 
axo-dendritic overlap. Second, we calculated the ratios between all axo-dendritic overlaps across 
all cell type combinations and the ratios between all connection probabilities across all cell type 
combinations. We assessed whether these ratios are linearly related with a slope of one, i.e., 
whether an increase of the axo-dendritic overlap between two cell type combinations is reflected 
in the same increase of the respective connection probabilities. Specifically, we performed 100 
trials of 1,000 randomly sampled ratios, fitted a linear model with an intercept and tested whether 
the fitted slope was significantly different from a slope of one using the Matlab built-in coefTest.  

We compared the predicted deviations of motif occurrences across 10 sets of 10,000 L5PT triplets 
with empirical observations (43). We compared the motif probabilities across the number of edges 
in motifs of eight neurons in the barrel cortex model and a random network to empirical 
observations (42). Therefore, we randomly sampled 10,000 sets of eight L5PTs. For each set of 
neurons and each number of possible edges (ranging from 0 to 56 possible edges), we computed 
the number of possible edge combinations (e.g., 1 possible combination of 0 or 56 edges, but 
3.6x1010 possible combinations of 10 edges). If the number of edge combinations was less than 
5,000, we iterated over all possible combinations. If the number of combinations was larger than 
5,000, we randomly generated 5,000 motifs that matched the number of edges. We calculated 
the respective (occurrence) probability of each edge motif in the barrel cortex model and a random 
network constraint by the predicted mean connection probability between L5PT neurons. 
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Mathematical foundation of the theory for the emergence of structural scaffoldings  

We investigated how properties of the mean and STD of the connection probability distributions 
in the absence of correlations relate to their motif occurrences. Suppose that 𝐾𝐾  connection 
probabilities 𝑝𝑝𝑖𝑖 are drawn from any generating distribution 𝑄𝑄(𝑝𝑝|𝜇𝜇,𝜎𝜎), which is parameterized by 
its mean 𝜇𝜇 (i.e., sparsity) and variance 𝜎𝜎 (i.e., heterogeneity). Each of the 𝐾𝐾 connections 𝑥𝑥𝑖𝑖  is 
drawn independently with probability  𝑃𝑃(𝑥𝑥𝑖𝑖 = 1|𝑝𝑝𝑖𝑖) = 𝑝𝑝𝑖𝑖 . The probability of observing a fully 
recurrent motif is accordingly  𝑃𝑃�𝑥𝑥1 = 𝑥𝑥2 = ⋯  𝑥𝑥𝐾𝐾 = 1�𝑝𝑝1,𝑝𝑝2, …𝑝𝑝𝐾𝐾� = ∏ 𝑝𝑝𝑖𝑖𝐾𝐾𝑖𝑖=1 . The occurrence of 
such motifs in a network is hence the expected value of the underlying distribution 𝑄𝑄(𝑝𝑝|𝜇𝜇,𝜎𝜎): 

𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑃𝑃𝑄𝑄 ��𝑝𝑝𝑖𝑖𝐾𝐾
𝑖𝑖=1 � = �𝑃𝑃𝑄𝑄(𝑝𝑝𝑖𝑖) =  𝜇𝜇𝐾𝐾𝐾𝐾

𝑖𝑖=1  Equation (5) 

Thus, in the absence of correlations, motif occurrences are independent from the network’s 
heterogeneity and only depend on the mean of the underlying distribution.  

Now suppose that the connection probabilities between any two edges are correlated. We 
therefore developed a simplified mathematical model of a network with correlated connectivity 
that allows investigating how properties of the connection probability distributions, such as their 
mean, STD, and correlation, relate to their motif occurrences. The model is closely related to a 
model studied in (92). In the following, 𝒩𝒩(𝜇𝜇, 𝜆𝜆) denotes a Gaussian distribution with mean 𝜇𝜇 and 
variance 𝜆𝜆, 𝜑𝜑(𝑚𝑚, 𝜇𝜇, 𝜆𝜆) denotes the respective Gaussian probability density function evaluated at t, Φ(𝑠𝑠, 𝜇𝜇, 𝜆𝜆) denotes the respective cumulative probability density function evaluated at s, and the 
complementary cumulative probability density function is defined by 𝐿𝐿(𝑠𝑠, 𝜇𝜇, 𝜆𝜆) = 1−Φ(𝑠𝑠, 𝜇𝜇, 𝜆𝜆). For 
simplicity, the model assumes that whether there is an i-th edge between two nodes (denoted by 
Xi = 1, otherwise Xi = 0) is the result of a combination of only one ‘private’ source Ti, and one 
‘shared’ source S. The bigger the shared source S is relative to the private one Ti, the more 
correlated the resultant connection probabilities are. Note the model can be easily generalized by 
incorporating more shared sources (e.g. per cell type combination). The mathematical model has 
two parameters: 𝜆𝜆, bounded between 0 and 1, and representing the magnitude of the shared 
source, and thus the degree of correlation in the sources. As we will demonstrate in the following, 𝜆𝜆  also determines the heterogeneity of connection probabilities - the bigger 𝜆𝜆  is, the more 
heterogeneous the connection probabilities are. The second parameter, 𝛾𝛾, represents the degree 
of connectivity - the greater 𝛾𝛾 is, the bigger connection probabilities are.  

We define that the i-th edge exists (i.e., Xi = 1) whenever the joint input of Ti and S, denoted by 
Zi, is larger than 0:  𝑋𝑋𝑖𝑖 =  1 whenever 𝑍𝑍𝑖𝑖 > 0 where Equation (6) 𝑍𝑍𝑖𝑖 =  𝛾𝛾 + √𝜆𝜆𝐷𝐷 +  �𝜂𝜂𝑃𝑃𝑖𝑖 

where  𝜂𝜂 = 1− 𝜆𝜆 , 𝐷𝐷 ~ 𝒩𝒩(0,1), 𝑃𝑃𝑖𝑖 ~ 𝒩𝒩(0,1) 𝑍𝑍𝑖𝑖  ~ 𝒩𝒩(𝛾𝛾, 𝜂𝜂 + 𝜆𝜆) =  𝒩𝒩(𝛾𝛾, 1) 

 

Thus, 𝑐𝑐𝑚𝑚𝑐𝑐�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗� =  𝜆𝜆. If 𝜆𝜆 = 1, Xi is only determined by the shared source S, while if 𝜆𝜆 = 0, Xi is 
only determined by the private source Ti. Given this mathematical model, the connection 
probability pi for each edge Xi is given by: 𝑝𝑝𝑖𝑖(𝐷𝐷) = 𝑃𝑃(𝑋𝑋𝑖𝑖 = 1|𝐷𝐷) = 𝐿𝐿(0,𝛾𝛾 + √𝜆𝜆𝐷𝐷, 𝜂𝜂) Equation (7) 

And we likewise get 
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𝜇𝜇 = 𝑃𝑃𝑠𝑠(𝑝𝑝𝑖𝑖) = 𝐿𝐿(0, 𝛾𝛾, 1) 𝜎𝜎² = 𝑉𝑉𝑎𝑎𝑉𝑉𝑠𝑠(𝑝𝑝𝑖𝑖) 

= � 𝑃𝑃(𝑋𝑋𝑖𝑖 = 1|𝑠𝑠)2𝜑𝜑(𝑠𝑠, 0,1)𝑑𝑑𝑠𝑠∞
−∞ −  𝜇𝜇²  

= � 𝐿𝐿(0, 𝛾𝛾 + √𝜆𝜆𝑠𝑠, 𝜂𝜂)2𝜑𝜑(𝑠𝑠, 0,1)𝑑𝑑𝑠𝑠∞
−∞ −  𝜇𝜇² 

Equation (8) 

Equation (9) 

Deriving the covariance between any two connections Xi and Xj yields: 𝑐𝑐𝑚𝑚𝑐𝑐�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� = 𝑃𝑃�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� −  𝜇𝜇2 = 𝑃𝑃�𝑋𝑋𝑖𝑖 =  𝑋𝑋𝑗𝑗 = 1� − 𝜇𝜇2 

= � 𝑃𝑃(𝑋𝑋𝑖𝑖 = 1|𝑠𝑠)𝑃𝑃(𝑋𝑋𝑗𝑗 = 1|𝑠𝑠)𝜑𝜑(𝑠𝑠, 0,1)𝑑𝑑𝑠𝑠∞
−∞ −  𝜇𝜇² 

= � 𝐿𝐿(0, 𝛾𝛾 + √𝜆𝜆𝑠𝑠, 𝜂𝜂)2𝜑𝜑(𝑠𝑠, 0,1)𝑑𝑑𝑠𝑠∞
−∞ −  𝜇𝜇² 

= 𝑉𝑉𝑎𝑎𝑉𝑉(𝑝𝑝𝑖𝑖) 

Equation (10) 

Thus, in the simplified mathematical model the covariance of the connections is equal to the 
variance of connection probabilities – the more strongly the connection probabilities vary, the 
more strongly the connections themselves are correlated. Hence, the parameter 𝜆𝜆 represents a 
measure of both, the degree of correlation and heterogeneity. To assess the impact of 𝜆𝜆 and the 
mean connection probability µ onto motif occurrences and deviations, the probability that k out of 
K connections of a motif are realized is given by: 

𝑃𝑃(|𝑋𝑋| = 𝑘𝑘) =  � �𝐾𝐾𝑘𝑘� 𝐿𝐿�0, 𝛾𝛾 + √𝜆𝜆𝑠𝑠, 𝜂𝜂�𝑘𝑘Φ(0,𝛾𝛾 + √𝜆𝜆𝑠𝑠, 𝜂𝜂)𝐾𝐾−𝑘𝑘𝜑𝜑(𝑠𝑠, 0,1)𝑑𝑑𝑠𝑠∞
−∞  Equation (11) 

This mathematical model was implemented as a numerical simulation in Matlab. We iterated over 
250 γ-values ranging from -2 to 2, and over 250 λ-values ranging from 0 to 1. Per combination of 
γ and λ values, 10 trials, each with 100,000 random samples, were generated. For each trial, the 
mean and variance across the connection probabilities pi, (i.e., µ and σ²), the probability of each 
triplet motif 𝑃𝑃(|𝑋𝑋| = 𝑘𝑘) with K=6 (i.e., maximal number of edges in a triplet), and the respective 
probability expected in random network based solely on µ was calculated.  

 

The details of the mathematical model for one trial are below: 

Algorithm 1: Mathematical model of correlated connectivity 

Input: simulator with degree of correlations and heterogeneity λ and degree of connectivity γ.  

randomly initialize shared source 𝐷𝐷 ~ 𝒩𝒩(0,1). 𝜂𝜂 ∶= 1− 𝜆𝜆 𝑝𝑝𝑖𝑖 ∶= 𝐿𝐿(0, 𝛾𝛾 + √𝜆𝜆𝐷𝐷, 𝜂𝜂)      // 𝑝𝑝𝑖𝑖 is a vector of connection probabilities 𝜇𝜇 ≔ 𝑃𝑃(𝑝𝑝𝑖𝑖)                       // 𝑃𝑃 denotes the expected value 𝜎𝜎2 ≔ 𝑉𝑉𝑎𝑎𝑉𝑉(𝑝𝑝𝑖𝑖)                  // 𝑉𝑉𝑎𝑎𝑉𝑉 denotes the variance 𝐾𝐾 ≔ 6                             // maximal number of edges in a triplet 
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for k = 0 to K do 𝑃𝑃(𝑘𝑘) ≔  �𝐾𝐾𝑘𝑘�𝑃𝑃(𝑝𝑝𝑖𝑖𝑘𝑘(1− 𝑝𝑝𝑖𝑖)𝐾𝐾−𝑘𝑘)     // probability of triplet motif with k edges 𝑃𝑃𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) ≔  �𝐾𝐾𝑘𝑘�𝜇𝜇𝑘𝑘(1− 𝜇𝜇)𝐾𝐾−𝑘𝑘   // probability of triplet motif with k edges in  

                                                    // random network 

return 𝑃𝑃, 𝑃𝑃𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟, 𝜇𝜇, 𝜎𝜎2 
 

The deviation of motif occurrences from a random network of each triplet motif was the ratio 
between the means of the motif probabilities across all trials. The deviations were mapped on a 
grid spanned by 20 µ-values (i.e., sparsity) and 20 λ-values (i.e., correlations & heterogeneity) 
and visualized by a log-space color map. Each of the 220 cell type-specific triplet combinations 
was mapped into the grid space. Specifically, for each combination its respective λ-value was 
inferred based on the variance and mean of the connection probabilities of each combination and 
a lookup table of µ, σ², and λ-values as determined by the numerical simulation. 

CortexInSilico 

The web-based interface CortexInSilico provides access to all data and analysis routines reported 
here, including the anatomical data used to generate the statistical connectome model. The 
interface allows the user to group neurons arbitrarily and to access their aggregated summary 
statistics as visualizations and for download. The user can contribute empirical connectivity 
measurements and compare them to the theory’s predictions. To explore the impact of alternative 
wiring strategies onto wiring diagrams, Equations 2-3 can be modified within the web-based 
interface. 
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