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ABSTRACT

Recent simulations show the Epoch of Reionization (EoR) 21-cm signal to be inherently

non-Gaussian whereby the error covariance matrix Cij of the 21-cm power spectrum (PS)

contains a trispectrum contribution that would be absent if the signal were Gaussian. Using the

binned power spectrum and trispectrum from simulations, here we present a methodology for

incorporating these with the baseline distribution and system noise to make error predictions for

observations with any radio-interferometric array. Here we consider the upcoming SKA-Low.

Non-Gaussianity enhances the errors introducing a positive deviation � relative to the Gaussian

predictions. � increases with observation time tobs and saturates as the errors approach the

cosmic variance. Considering tobs = 1024 hours where a 5σ detection is possible at all redshifts

7 ≤ z ≤ 13, in the absence of foregrounds we find that the deviations are important at small k

where we have � ∼ 40–100 per cent at k ∼ 0.04 Mpc−1 for some of the redshifts and also at

intermediate k (∼ 0.4 Mpc−1) where we have � ∼ 200 per cent at z = 7. Non-Gaussianity also

introduces correlations between the errors in different k bins, and we find both correlations and

anticorrelations with the correlation coefficient value spanning −0.4 ≤ rij ≤ 0.8. Incorporating

the foreground wedge, � continues to be important (> 50 per cent) at z = 7. We conclude

that non-Gaussianity makes a significant contribution to the errors and this is important in the

context of the future instruments that aim to achieve high-sensitivity measurements of the EoR

21-cm PS.

Key words: large-scale structure of universe – first stars – cosmology: reionization – diffuse

radiation, methods: statistical, technique: interferometric.

1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) is an important but poorly

understood milestone in the cosmic history when the hydrogen in

the universe underwent a transition from neutral (H I) to ionized

(H II) phase. Our current knowledge of the EoR comes from

several indirect observations. The measurements of the Thomson

scattering optical depth τTh = 0.058 ± 0.012 (Planck Collaboration

2016a,b) of the cosmic microwave background radiation with the

free electrons in the intergalactic medium (IGM) suggests that the

universe was ionized at less than 10 per cent level at redshifts above

z ∼ 10. Measurements of the high-redshift quasar spectra (Becker

et al. 2001; Fan et al. 2002, 2006; Gallerani, Choudhury & Ferrara

2006; Becker et al. 2015) show a complete Gunn–Peterson trough

and also measurements of the Gunn–Peterson optical depth τGP

suggest that the reionization was over by z ∼ 6. Recent studies of the

⋆ E-mail: abinashkumarshaw@iitkgp.ac.in

Ly-α emitters (LAE) show a rapid decline in the luminosity function

at z ≥ 6 (Ouchi et al. 2010; Faisst et al. 2014; Jensen et al. 2014;

Konno et al. 2014; Santos, Sobral & Matthee 2016; Ota et al. 2017;

Zheng et al. 2017), which suggests a rapid increase in the H I density

in the IGM and a patchy H I distribution at those redshifts. These

indirect observations together suggest the reionization to occur

within a redshift range 6 ≤ z ≤ 12 (Mitra, Ferrara & Choudhury

2013; Robertson et al. 2013; Mitra, Choudhury & Ferrara 2015;

Robertson et al. 2015; Mondal, Bharadwaj & Majumdar 2016; Dai

et al. 2018). However such indirect observations are not adequate

to address many fundamental issues related to the EoR such as the

exact duration and timing, the properties of the ionizing sources and

the topology of H I distribution.

Observations of the redshifted 21-cm radiation due to the hy-

perfine transition of H I is a promising probe to study the high-

redshift universe (Sunyaev & Zeldovich 1972; Scott & Rees 1990).

The low-frequency radio interferometers will measure brightness

temperature fluctuations of the EoR 21-cm radiation (Bharad-

waj & Sethi 2001; Bharadwaj & Ali 2005). A substantial effort is
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currently underway to measure the EoR 21-cm signal using the

first-generation radio interferometers e.g. GMRT1 (Paciga et al.

2013), MWA2 (Jacobs et al. 2016), LOFAR3 (Yatawatta et al. 2013),

PAPER4 (Ali et al. 2015), and the second-generation interferometers

such as HERA5 (Pober et al. 2014; Ewall-Wice et al. 2016)

and the upcoming gigantic SKA6 (Koopmans et al. 2014). These

experiments aim to measure the EoR 21-cm power spectrum (PS)

(Bharadwaj & Ali 2004). The expected EoR 21-cm signal is

about 4–5 orders of magnitude weaker compared to the galactic

and extragalactic foregrounds (Ali, Bharadwaj & Chengalur 2008;

Bernardi et al. 2009, 2010; Ghosh et al. 2012; Paciga et al. 2013;

Beardsley et al. 2016). The foregrounds, together with the system

noise and other calibration errors, pose a huge challenge for the

measurement of the EoR 21-cm PS. Only weak upper limits on the

EoR 21-cm PS have been estimated till date (McGreer, Mesinger &

Fan 2011; Parsons et al. 2014; Pober, Greig & Mesinger 2016a). In

addition to the PS, various other statistics such as the variance (Patil

et al. 2014), bispectrum (Yoshiura et al. 2015; Shimabukuro et al.

2017; Majumdar et al. 2018), and the Minkowski Functional (Bag

et al. 2018; Kapahtia et al. 2018) have been proposed to quantify

the EoR 21-cm signal .

In the recent past, several works have made quantitative predic-

tions of the sensitivity for measuring the EoR 21-cm PS (Morales &

Hewitt 2004). McQuinn et al. (2006) have made predictions for

1000 hours of observations with the MWA, LOFAR, and the

upcoming SKA-Low. Beardsley et al. (2013) have estimated that

MWA is capable of detecting the EoR 21-cm signal at ∼14σ

level with ∼900 hours of observations. Zaroubi et al. (2012) have

made quantitative predictions for sensitivity of LOFAR consid-

ering 600 hours of observations, and Jensen et al. (2013) have

predicted that LOFAR will be able to detect the EoR 21-cm PS at

k ∼ 0.1 Mpc−1 with ∼1000 hours of observations. Parsons et al.

(2012) have predicted that the EoR 21-cm signal can be detected

at k ∼ 0.2h Mpc−1 with PAPER in 7 months of observations. The

results of Pober et al. (2014) suggest that the upcoming HERA

will be able to detect the EoR 21-cm PS at a level ∼30σ within

the k range 0.1 − 1 Mpc−1 assuming a moderate foreground model.

Ewall-Wice et al. (2016) have studied the prospects of detecting

the EoR 21-cm PS with HERA incorporating X-ray heating of

the IGM.

The upcoming SKA-Low, to be located in Australia, will be the

most sensitive radio telescope to be built. It will have 512 stations,

each of which combines the signal from several constituent log

periodic dipole antennas. Each of these station is planned to be

∼35 m in diameter. The telescope will operate within a frequency

band of 50–350 MHz and it will have ∼20 deg2 field of view. The

interferometer will have a compact core and 3 spiral arms, which

will extend up to a large distance such that maximum antenna

separation is ∼60 km. A recent study by Mellema et al. (2013)

has quantified the prospects of detecting the EoR 21-cm PS with

SKA-Low. The authors have predicted the errors in the measured

EoR 21-cm PS at three different redshifts 8, 10, and 12. In this

analysis they have varied the number of core antennas and also the

core radius. The analysis incorporates the system noise assuming

1http://www.gmrt.ncra.tifr.res.in
2http://www.haystack.mit.edu/ast/arrays/mwa
3http://www.lofar.org
4http://eor.berkeley.edu
5http://reionization.org
6http://www.skatelescope.org

1000 hours of observation with a bandwidth of 10 MHz. They

find that it will be possible to achieve a maximum SNR of ∼100

at k ∼ 0.4 Mpc−1 for all the three redshifts. They also find that

the predictions for SKA-Low show a significant improvement in

comparison with other precursor telescopes such as MWA, LOFAR,

and PAPER (figs 21 and 22 of Mellema et al. 2013).

All the existing predictions for detecting the EoR 21-cm PS have

assumed the signal to be a Gaussian random field. This assumption

plays a crucial role in making the predictions. The PS completely

specifies the statistical properties of the signal for a Gaussian

random field, and this assumption allows the signal in each Fourier

mode to be treated as being independent. Gaussianity is possibly

a good assumption during the early stages of EoR, and also when

one observes very large length-scales. However, the growth and

subsequent overlapping of the H II regions make the signal highly

non-Gaussian as reionization progresses (Bharadwaj & Pandey

2005). The PS no longer quantifies the entire statistical properties

of the signal as the signal in different Fourier modes are correlated.

Higher order statistics like the bispectrum (Majumdar et al. 2018)

and trispectrum are needed to quantify these correlations. This also

affects the error predictions for the PS. Considering only cosmic

variance (CV) that is inherent to the signal, Mondal et al. (2015)

have studied the effects of non-Gaussianity on the error predictions

for the EoR 21-cm PS. For a Gaussian random field, the SNR for the

21-cm PS is expected to increase as the square root of the number

of independent Fourier modes. However, Mondal et al. (2015) find

that as a consequence of the non-Gaussianity the SNR saturates at a

limiting value [SNR]l beyond which it does not increase any further.

The value of [SNR]l was also found to decreases with the progress of

reionization that corresponds to an increase in the non-Gaussianity.

Two subsequent papers (Mondal et al. 2016; Mondal, Bharadwaj &

Majumdar 2017) have quantified the error covariance for the binned

PS, which now has an extra contribution from the trispectrum as

compared to the Gaussian situation where the error covariance can

be expressed entirely in terms of the PS. In these papers they have

developed a unique statistical technique for estimating the bin-

averaged trispectrum from the PS error covariance. They have used

an ensemble of seminumerical EoR simulations to estimate the

error covariance and the trispectrum at several redshifts in the range

7 ≤ z ≤ 13. The trispectrum contribution is found to increase

significantly as reionization progresses. The non-Gaussianity is

found to result in larger error estimates compared to the Gaussian

predictions. Non-Gaussianity also introduces correlations between

the PS error estimates at different bins.

In this paper, we predict the prospects of measuring the EoR

21-cm PS using observations with the upcoming SKA-Low. To this

end we study the error covariance of the EoR 21-cm PS that will be

measured by SKA-Low. Unlike the previous works (e.g. Mellema

et al. 2013), our analysis incorporates the inherent non-Gaussian

nature of the signal. We have used the EoR 21-cm PS and trispectrum

from the simulations of Mondal et al. (2017). We include the system

noise contribution to calculate the full PS error covariance for

the current proposed configuration of SKA-Low.7 The analysis in

this paper also incorporates the impact of foregrounds considering

the EoR 21-cm signal to be free of other possible calibration

errors.

The structure of this paper is as follows. Section 2 briefly

describes the simulations and the techniques used in Mondal et al.

(2017) to obtain the EoR 21-cm PS and trispectrum. Section 3 briefly

7SKA1 LowConfigurationCoordinates-1.pdf
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presents the SKA-Low configuration and discusses how to combine

the observed visibility data for an optimal estimate of the EoR 21-

cm PS. We also present a framework to compute the EoR 21-cm

PS error covariance. Section 4 presents the results considering no

foregrounds. In Section 5 we study the effects of foregrounds and

finally summarize and discuss our findings in Section 6. In keeping

with the simulations of Mondal et al. (2017), we have used the

Planck + WP (Planck Collaboration 2014) best-fitting cosmological

parameters throughout this paper.

2 SI M U L AT I N G TH E E O R 2 1 - C M S I G NA L

We have simulated the EoR 21-cm signal at six different redshifts

z = 13, 11, 10, 9, 8, and 7 using a seminumerical technique

(Majumdar, Bharadwaj & Choudhury 2013; Mondal et al. 2015)

that comprises three major steps. First, we generate the dark

matter distributions at the aforementioned redshifts using a publicly

available particle mesh N-body code8 (Bharadwaj & Srikant 2004).

We have simulated the dark matter distributions within a cube of

comoving volume V = [215.04 Mpc]3 with a grid size of 0.07 Mpc

and a mass resolution of 1.09 × 108 M⊙. Next, we identify the dark

matter halos within the matter distribution using a publicly available

halo finder9 based on the Friends-of-Friend (FoF) algorithm (Davis

et al. 1985) with a linking length 0.2 times the mean inter-particle

spacing and a minimum halo mass of 1.09 × 109 M⊙, which

corresponds to 10 simulation particles. In the final step we generate

the reionization map using a publicly available seminumerical

code10 following the formalism adopted by Choudhury, Haehnelt &

Regan (2009). We assume that the hydrogen traces the dark matter,

and the haloes with masses exceeding a minimum halo mass Mmin

(M ≥ Mmin) host the ionizing sources, the number of ionizing

photons Nγ emitted by a source being proportional to the host halo

mass M through a dimensionless constant of proportionality Nion,

which incorporates a large number of unknown parameters like the

star formation efficiency and the UV photon escape fraction.

The hydrogen and photon densities are, respectively, smoothed

over spheres of radius R. Any grid point within the simulation is

considered to be completely ionized if the smoothed photon density

exceeds the smoothed hydrogen density, the smoothing radius is

allowed to vary from one grid spacing to a maximum value of Rmfp.

The resulting H I distribution is mapped to redshift space using

the prescription of Majumdar et al. (2013) to generate the final

21-cm brightness temperature distribution on a grid eight times

coarser than the N-body simulation. The simulations used here are

exactly the same as those that were used in Mondal et al. (2016,

2017) and the reader is referred to there for further details. There

simulations have three free parameters namely Mmin the minimum

halo mass, Nion the ionizing efficiency, and Rmfp the mean free

path of the ionizing photons. We have used the values Mmin =
1.09 × 109 M⊙, Nion = 23.21, and Rmfp = 20 Mpc (Songaila &

Cowie 2010) to obtain a reionization history where the mean mass

averaged neutral fraction has a value x̄H I = 0.5 at z = 8 and is

over by z ∼ 6. The integrated Thomson scattering optical depth

obtained using these parameter values, τ = 0.057, is also con-

sistent with the observations (Planck Collaboration 2016a) where

τ = 0.058 ± 0.012.

8https://github.com/rajeshmondal18/N-body
9https://github.com/rajeshmondal18/FoF-Halo-finder
10https://github.com/rajeshmondal18/ReionYuga

3 POW ER SPECTRUM ERRO R C OVARI ANCE

We quantify the statistics of the EoR 21-cm brightness temperature

fluctuations using the power spectrum (PS) which is defined as

P (k) = V −1〈T̃b(k)T̃b(−k)〉. Here V is the simulation (observational)

volume, T̃b(k) is the Fourier transform of the brightness temperature

fluctuations δTb(x) and k is a wave vector. In the absence of fore-

grounds and calibration errors, the brightness temperature fluctua-

tions recorded by a radio interferometer is T̃t(k) = T̃b(k) + T̃N(k),

which is a sum of the 21-cm signal T̃b(k) and the system noise

contribution T̃N(k). The PS corresponding to T̃t(k) therefore is a

sum of P(k) and PN(k), which is the system noise PS i.e. Pt(k) =
[P(k) + PN(k)]. We have used the simulations described in Section 2

to predict the EoR 21-cm PS P(k). In this work we make predictions

for the upcoming SKA-Low7, and we have used the specification

described in the subsequent paragraph to compute the noise PS

PN(k). We have considered the upcoming SKA-Low to be an array

of 512 stations7, each of which is a station of diameter D = 35 m. The

instrument will operate within a frequency range of 50–350 MHz,

which will probe the H I 21-cm signal between z = 27 and z =
3. The EoR 21-cm signal evolves significantly along the line of

sight (LoS) and observations at different redshifts will probe the

signal at different stages of reionization due to the light-cone effect

(Datta et al. 2012, 2014). As a consequence, the signal no longer

remains ergodic along the LoS and there is a significant loss of

information if the entire frequency band is used to estimate the PS

(Mondal, Bharadwaj & Datta 2018; Mondal et al. 2019). In the

present work we have avoided this by restricting the analysis to

six different redshift slices each of width �z = 0.75 centred at

redshifts z = 13, 11, 10, 9, 8, and 7. We have also assumed that the

entire frequency bandwidth is divided into frequency channels of

width �νc = 0.1 MHz. Note that the antenna layout, the number

of antennas, and the channel width �νc assumed here are only

representative values, and may change in the final implementation

of the telescope.

The analysis in this paper considers an observation tracking a

field at declination Dec. = −30
◦

using SKA-Low for 8 hours with

60-second integration time. The 60-second integration time has

been chosen here to keep the simulated baseline data volume small.

However, the purpose of simulating the array baseline configuration

here is to primarily estimate PN(k), and we find that the noise predic-

tions do not show any noticeable change even when the integration

time is reduced to 30 seconds or to 15 seconds. Considering d to be

the projection of the antenna separation on the plane perpendicular

to the LoS, we use U = d/λc with λc being the wavelength that

corresponds to the central frequency νc of a slice. The subsequent

analysis is restricted to the baselines U corresponding to the antenna

separations |d| ≤ 19 km as the baseline distribution falls off rapidly

at larger values of d. The simulated observations provide us the

baselines Ui and frequency channels νn at which the signal will be

measured. We use k⊥i = (2πUi)/rc and k‖m = (2πm)/(r ′
cB) with

0 ≤ m ≤ Nc/2 where rc is the comoving distance to the centre of

a redshift slice, r ′
c = ∂r/∂ν

∣

∣

ν=νc
, B is the frequency bandwidth of

the redshift slice and Nc = B/�νc. Note that k�m is the Fourier

conjugate of r ′
c(νn − νc). The simulations provide us with a set

of comoving vectors (k⊥i, k‖m) at which we will obtain measure-

ments of the brightness temperature fluctuations T̃b(k⊥i, k‖m). Two

different baselines having separation less than D/λc do not have

independent information due to overlap of the antenna beam pattern

(Bharadwaj & Ali 2005). We grid the comoving wave vectors with

a grid of size �kx = �ky = (2πD)/(λcrc) and �kz = (2π )/(r ′
cB).

Considering a grid point kg , we define τ (kg) to be the number of

MNRAS 487, 4951–4964 (2019)
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measurements that lie within a voxel centred at kg . We use τ (kg)

to estimate the noise PS PN (kg) at each grid point kg using the

following expression (Chatterjee & Bharadwaj 2018):

PN(kg) =
r2
c r ′

c T 2
sys λ2

c

Np Nt �t χ Ag τ (kg)
=

8 hours

tobs

×
P0

τ (kg)
. (1)

Here Tsys is the system temperature, Np is the number of polariza-

tions, Nt is the number of observed nights with 8 hours per night,

�t is the integration time, Ag = (πD2)/4 is the geometric area of

a single antenna. It is convenient to quantify the total duration of

the observations using tobs = Nt × 8 hours instead of Nt, and we

have used tobs through the subsequent discussion of this paper. The

system temperature Tsys = Tsky + Trec is a sum of the sky temperature

Tsky = 60λ2.55 K (Fixsen et al. 2011) and the receiver temperature

Trec = 100 K. Here χ is defined using

1

χ
=

Ag

λ2
c

[
∫

d�A(θ )]2

[
∫

d�A2(θ )]
(2)

where A(θ ) is the telescope’s primary beam pattern (Sarkar &

Bharadwaj 2013; Parsons et al. 2014). We have approximated the

beam pattern with a Gaussian e−(θ/θ0)2
(Choudhuri et al. 2014) and

evaluated the solid angle integral in the flat sky approximation to

obtain χ = 0.53. Note that PN(kg) is infinitely large at the grid

points where τ (kg) = 0 i.e. the grid points that are not sampled by

the telescope baseline distribution.

Considering a typical SKA-Low observation spanning an angular

extent of ∼3
◦ × 3

◦
on the sky with an angular resolution ∼1

′

and a frequency bandwidth of ∼64 MHz with frequency resolution

∼0.1 MHz, this corresponds to Nk = [180 × 180 × 640] ≃ 2 × 107

different grid points at which the EoR 21-cm PS will be measured.

The dimension of the resulting PS error covariance matrix is ∼107 ×
107, which renders further computations prohibitively expensive if

not impossible. In order to overcome the intractability of such a

large covariance matrix, we bin the k space and use the binned PS

estimator that, for the i-th bin, is defined as

P̂t(ki) = V −1
∑

g

wg T̃t(kg)T̃t(−kg) , (3)

where the sum is over the kg modes within the i-th bin and wg is

the normalized weight associated with each mode with
∑

gwg =
1. Here ki =

∑

gwgkg is the average k value corresponding to the

i-th bin. The weights wg have been introduced to account for the

fact that the ratio P (kg)/PN (kg) varies across the different grid

points, and as discussed later, the weights have been chosen so as to

maximize the SNR of the bin-averaged PS. For the present analysis

we have divided the available k space into 10 logarithmic spherical

bins. The ensemble average of P̂t(ki) gives the bin-averaged PS

P̄t(ki) = 〈P̂t(ki)〉 = P̄ (ki) + P̄N(ki). Note that the resulting estimate

has a noise bias P̄N(ki), this however can be eliminated by suitably

modifying the estimator (Choudhuri et al. 2016b). In the subsequent

analysis we assume that the noise bias has been eliminated and

we have an unbiased estimate of the bin-averaged power spectrum

P̄ (ki). The noise contribution to the PS error covariance Cij =
〈[P̂t(ki) − P̄t(ki)][P̂t(kj ) − P̄t(kj )] 〉, however, cannot be eliminated

and following the calculation presented in Mondal et al. (2016), we

have

Cij =
∑

gi

w2
gi

[P (kgi
) + PN(kgi

)]2 δij

+ V −1
∑

gi

∑

gj

wgi
wgj

T (kgi
,−kgi

, kgj
,−kgj

) , (4)

where the sum is over the grids points kgi
and kgj

in the i-th

and the j-th bins, respectively. The trispectrum T (k1,−k2, k3, −k4)

originates due to non-Gaussianity of the EoR 21-cm signal, the

quantity that appears here is the weighted bin-averaged trispectrum.

For the diagonal terms of the covariance matrix Cij the trispectrum

quantifies the excess with respect to the Gaussian predictions. The

off-diagonal terms of Cij are predicted to be zero if the EoR 21-

cm signal were a Gaussian random field. The trispectrum arising

due to the non-Gaussianity introduce non-zero off-diagonal terms

corresponding to correlations (and anticorrelations) between the

errors in the PS estimates in the different k bins (Mondal et al.

2016, 2017). The system noise has been considered to be outcome

of a Gaussian random process and this does not contribute to the

non-Gaussianity through the trispectrum.

3.1 Computing the error covariance from the simulations

The PS error covariance Cij consists of two components: (1)

the CV and (2) the system noise. According to equation (4),

we need the EoR 21-cm PS P (kg), the EoR 21-cm trispectrum

T (kgi
, −kgi

, kgj
, −kgj

), the noise PS PN(kg), and appropriate

weights wg to compute the Cij . The reionization simulations of

Mondal et al. (2017) provide us the bin-averaged EoR 21-cm PS

P̄ (ki) = N−1
ki

∑

gi

P (kgi
) (5)

and the bin-averaged trispectrum

T̄ (ki, kj ) = (Nki
Nkj

)−1
∑

gi

∑

gj

T (kgi
, −kgi

, kgj
, −kgj

) , (6)

where the sum in equation (6) is over the grid points (kg modes) in

the i-th and j-th bins, and the Nki
and Nkj

are numbers of grid points

in the respective bins. The bins that we have chosen to analyse the

simulated SKA-Low observations have exactly the same boundaries

as the bins used to analyse the EoR simulations in Mondal et al.

(2017), however we cannot directly use the P̄ (ki) and T̄ (ki, kj ) from

Mondal et al. (2017) in equations (3) and (4) to predict the PS error

covariance for the SKA-Low observations. First, equations (5) and

(6) assume uniform weights, whereas it is necessary to consider

the variation of wg across the grid points to account for the non-

uniform sampling when considering the simulated observations

(equations 3 and 4). Further, the resolution of the simulations and

the observations will, in general, be different and consequently the

k grid spacing will also differ.

One can attempt to estimate the ensemble averages of P (kg) at

every individual grid point and T (kgi
, −kgi

, kgj
, −kgj

) at every pair

of grid points, however these estimates will be extremely noisy due

to the limited number of statistically independent realizations in

the EoR 21-cm signal ensemble (e.g. 50 in Mondal et al. 2017).

Further, we have an enormous volume of the trispectrum data that

renders this approach unfeasible. The issue now is to predict the

bin-averaged PS (equation 3) and its error covariance (equation 4)

for the SKA-Low observations using the results (equations 5 and 6)

from the simulations of Mondal et al. (2017).

Here we have assumed that the EoR 21-cm PS does not vary

much across the grid points kgi
within a bin (say the i-th bin), and in

equations (3) and (4) we have used the simulated P̄ (ki) from Mondal

et al. (2017) to calculate P (kgi
) = P̄ (ki) for all the grid points in

the i-th bin. The value of T (kgi
, −kgi

, kgj
, −kgj

) in equation (4)

depends on the magnitude and direction of the two vectors kgi
and

kgj
, and both of these can vary widely even when the two vectors

MNRAS 487, 4951–4964 (2019)
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EoR 21-cm power spectrum error covariance 4955

are in the same bin (i = j). An even wider variation is possible when

the two vectors are in two different bins i and j. Unfortunately this

information is not available in T̄ (ki, kj ) (equation 6) evaluated from

the simulation of Mondal et al. (2017). Here we have considered

two different assumptions regarding the trispectrum at two different

modes k1 and k2. These two assumptions correspond to two extreme

cases. Case I: we assume that all the modes within a bin are equally

correlated i.e. T (k1, −k1, k2, −k2) = Tc(ki, ki), when both k1 and

k2 are in the i-th bin, and the correlation between modes in two

different bins does not depend on the magnitude or orientation of the

individual vectors i.e. T (k1, −k1, k2, −k2) = Tc(ki, kj ), when k1

and k2 are in the i-th and j-th bins, respectively. Case II: we assume

that the signal in two different Fourier modes is uncorrelated unless

k1 = k2 i.e. T (k1, −k1, k2, −k2) = δk1, k2
Tu(ki, ki) when the mode

ki is in the i-th bin. Case I corresponds to the situation in which we

have the maximum possible correlation between different modes

whereas Case II corresponds to the situation in which we have

the minimum possible correlation between two different modes. In

reality we expect the correlation between two modes to vary with

the separation between the two modes, and the result is expected

to lie within the two extreme cases considered here. Considering

equation (6), we obtain Tc(ki, kj ) = T̄ (ki, kj ) for Case I whereas it

predicts Tu(ki) = Nki
T̄ (ki, ki) for Case II. Note that Case II predicts

the error covariance to be completely diagonal with all the off-

diagonal terms being zero which is inconsistent with the findings of

Mondal et al. (2016). While Case II is unrealistic for the off-diagonal

elements of the covariance matrix, we still consider its predictions

for the diagonal elements in order to illustrate the effect of partial

decorrelation in the value of the trispectrum across different modes.

We calculate the weights separately for both the cases by

extremizing the SNR= P̄ (ki)/
√
Cii with respect to wg. Considering

Case I, the unnormalized weights that extremizes the SNR are

w̃gi
=

1

[P̄ (ki) + PN(kgi
)]2

, (7)

which have PN(kg) in the denominator, i.e. the grid points with

higher noise contribute less to the bin averaged quantities. The grid

points kg , which are unsampled during observations, i.e. τ (kg) = 0,

have PN(kg) = ∞ (equation 1). The weight w̃g = 0 (equation 7)

for the unsampled grid points and they do not contribute to the bin

averaged quantities. Using equation (7) in equation (4), we obtain

the corresponding PS error covariance matrix

Cij =
1

∑

gi
w̃gi

δij +
T̄ (ki, kj )

V
. (8)

For comparison we consider the error covariance for a situation

where the signal is a Gaussian random field for which the trispec-

trum is zero. The weights w̃gi
here are unchanged and these are

given by equation (7), and we have the PS error covariance matrix

C
G
ij =

1
∑

gi
w̃gi

δij . (9)

The diagonal terms of the covariance matrices (equations 8 and

9) predict the error variance in the measured EoR 21-cm PS,

i.e. Cii = 〈[�P̂ (ki)]
2〉. Equations (8) and (9) indicate that the

Gaussian consideration underestimates the variance of the measured

PS. The off-diagonal terms of the covariance matrix (i �= j)

predict the correlation between the errors at the i-th and j-th bins

Cij = 〈[�P̂ (ki)�P̂ (kj )]〉. The off-diagonal terms are zero for a

Gaussian random field, and the errors in the different bins are

uncorrelated. Non-Gaussianity however may introduce correlations

between the different bins through the off-diagonal components of

the trispectrum.

We first discuss the diagonal terms Cii , i.e. the variance. This has

contributions from the CV as well as the system noise. The noise

PS PN(kgi
) scales as t−1

obs (equation 1) and this has a large value for

small observation times. Considering the behaviour ofCii , for small

observation times this is governed by the system noise contribution

and we have

Cii ≃
(

8 hours

tobs

)2

×
P 2

0
∑

gi
[τ (kgi

)]2
. (10)

Equation (10) shows that Cii ∝ t−2
obs and consequently SNR ∝ tobs

for small observation times. The observations with very large tobs

elucidate another extreme of the error estimates (equation 8) where

PN(kg) ≃ 0, and Cii converges to the ‘CV’ that is given by

Cii =
P̄ 2(ki)

Ngi

+
T̄ (ki, ki)

V
. (11)

where Ngi
is the number of sampled grid points in the i-th bin. The

CV represents the lower limit for the PS error variance. This arises

due to the inherent statistical uncertainty in the EoR 21-cm signal.

The actual predicted error variance for a finite observing time will

typically be larger than this due to the system noise contribution.

The corresponding CV for a Gaussian random field (equation 9)

is given by

Cii =
P̄ 2(ki)

Ngi

. (12)

A comparison of equations (11) and (12) illustrates an important

difference between the Gaussian and non-Gaussian situations. We

see that it is possible to reduce the CV with no lower bound by

combining the signal from a larger number of k modes in the bin,

i.e. increasing Ngi
. In contrast, the presence of the trispectrum in

equation (11) sets a lower limit to the value of Cii , and it is not

possible to lower the variance any further by increasing the number

of k modes (Mondal et al. 2015).

Next considering the off-diagonal terms Cij = T̄ (ki, kj )/V

(equation 8), which quantify the correlation between different bins,

we see that this only depends on the trispectrum. This is intrinsic

to the signal, and therefore is independent of the system noise and

observation time.

Considering Case II, the unnormalized weights are given by

w̃gi
=

1

[P̄ (ki) + PN(kgi
)]2 + Nki

V −1 T̄ (ki, ki)
, (13)

which differ from the weight in Case I (equation 7). The weights

now include a contribution from the trispectra for the non-Gaussian

signal. Here also the weights are zero for the grid points that are not

sampled by the baseline distribution. The weights for Case II match

those for Case I (equation 7) if the signal were a Gaussian random

field. The PS error covariance (using equations 4 and 13) in Case II

is given by

Cij =
1

∑

gi
w̃gi

δij . (14)

Note that Case II does not take into account the correlation between

the different k grid points that makes the off-diagonal terms of the

covariance matrix to be zero. The error covariance Cii for Cases I

and II match for small observation times, and they have very similar

forms for very long observation times (CV) where for Case II we
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Figure 1. This shows the mean squared 21-cm brightness temperature fluctuations �2
b(k) and the corresponding 5σ error estimates for different tobs for six

different redshifts considering Case I. The solid lines represent the non-Gaussian errors and the dashed lines represent the corresponding Gaussian errors. We

also show the CV that is the lowest limit of the error estimates (thin lines).

have

Cii =
P̄ 2(ki)

Ngi

+
Nki

Ngi

T̄ (ki, ki)

V
. (15)

This differs from the predictions for Case I (equation 11) by the

factor f = Nki
/Ngi

, which appears in equation (15). In our analysis

we find that f has values in the range 0.1 ≤ f ≤ 0.3 for k < 3 Mpc−1

and f ≤ 1.0 over the rest of the k range considered here. We see that

the error predictions for Case II are smaller than those for Case I.

The error predictions for Case II are expected to lie somewhere in

between the Gaussian predictions and Case I which assumes that

all the k modes in a bin are equally correlated.

We have used the resulting covariance matrices (equations 8, 9,

and 14) to predict the errors for PS measurements in the different

redshift slices introduced earlier in this section.

4 R ESULTS

Fig. 1 shows the dimensionless EoR 21-cm PS �2
b(k) =

k3P̄ (k)/2π2 (solid purple line) and the corresponding 5σ error

estimates for Case I. The solid lines represent the non-Gaussian

error predictions Eb(k) = 5 ×
√
Cii (equations 8) and the dashed

lines represent the corresponding Gaussian error predictions EbG(k)

(equation 9), both of these have been multiplied with k3/2π2 to

make them dimensionless. The error estimates have contributions

from both the CV and the system noise. There are broadly two

main features visible in Fig. 1. (1) We see that the system noise

contribution dominates the errors at large k. These errors come down

as tobs is increased. The errors also come down at lower z where the

system noise contribution is smaller (Tsky increases with redshift).

For each tobs and z we can identify a largest mode (km) below

which (k ≤ km) a 5σ detection of the 21-cm power spectrum will

be possible. A larger k range becomes accessible for a 5σ detection

(km increases) as tobs is increased or we move to a lower z. This is

studied in more detail in Fig. 2, which we discuss later. (2) We see

noticeable differences between Eb(k) and EbG(k). These differences

are most prominent for the CV predictions that correspond to the

limit tobs → ∞, where the system noise becomes insignificant. The

system noise contribution is inherently Gaussian, whereas the 21-cm

signal is non-Gaussian. We find that the values of Eb(k) and EbG(k)

match for small tobs when the system noise dominates the errors. The

differences between Eb(k) and EbG(k) become noticeable as tobs is

increased. The differences are primarily noticeable at small k where

there is a relatively smaller system noise contribution as compared

to large k. The differences also become more pronounced as we

move to lower z, where there is a smaller system noise contribution.

The differences between Eb(k) and EbG(k) are studied in detail in

Fig. 3, which we discuss later.

Considering Fig. 1, we see that the predicted error estimates Eb(k)

all increase with k mainly due to the system noise contribution

in contrast to the expected signal �2
b(k), which is relatively flat

across the relevant k range. This implies that for any given tobs a

detection of the signal will only be possible at small k whereas

the errors in the power spectrum will dominate at large k. Fig. 2

shows the largest k mode km, below which SKA-Low will be able

to measure the EoR 21-cm PS at ≥5σ confidence. We show this as

a function of z for the four representative values of tobs indicated

in the figure. We see that the value of km increases as z decreases

MNRAS 487, 4951–4964 (2019)
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EoR 21-cm power spectrum error covariance 4957

Figure 2. This shows the variation of the maximum Fourier mode km, which

will be detected at a 5σ level as a function of z for the four tobs indicated in

the figure.

i.e. for a fixed observation time, we will progressively be able to

probe a larger range of length-scales as reionization progresses.

This is primarily a consequence of the fact that the system noise

comes down at lower z, further the amplitude of the 21-cm PS also

increases as reionization progresses. However, the amplitude peaks

at ∼50 per cent reionization and drops beyond this, causing km to

fall at z = 7. Considering tobs = 128 hours we find that there is

a limited k range across which a 5σ detection of the 21-cm PS is

possible. This is restricted to k ≤ 0.2 Mpc−1 at high z (= 11, 13)

and increases somewhat to k ≤ 0.8 Mpc−1 at z = 7 and 8. There is

a significant increase in the values of km (by a factor of ∼2.5–5) if

tobs is increased to 1024 hours. We see that with tobs = 1024 hours

a 5σ detection will be possible in the range k ≤ 1 Mpc−1 at z ≤ 11.

The value of km increases gradually if tobs is increased beyond 1024

hours. However, we see an exception at z = 13 where there is a

significant increase in km if tobs is increased beyond 1024 hours.

The values of km increases very slowly for tobs ≥ 10 000 hours and

km values are in the range 2 − 4 Mpc−1 for tobs = 50 000 hours.

Fig. 3 shows the deviation � = (Eb − EbG)/EbG of the non-

Gaussian error estimates with respect to the corresponding Gaussian

estimates. These deviations arise due to the contribution from

the trispectrum (equation 8). Earlier studies (Mondal et al. 2016,

2017) show that the trispectrum increases at larger k (smaller

length-scales), and it also increases as reionization proceeds i.e.

z decreases. These effects are reflected in the behaviour of the CV,

which ignores the system noise. Considering the CV, we see that

the deviations are minimum at around kmin ∼ 0.1 − 0.3 Mpc−1, and

the deviations increase monotonically at both smaller and larger k

values. At the smallest k bin (0.04 Mpc−1) we find � ≥ 100 per cent

at z = 7 and 9, whereas � ∼ 20 per cent to 50 per cent for the other

redshifts. The values of � increase significantly at k > kmin with

deviations of order ∼100 per cent or larger at k ≈ 4 Mpc−1 for the

entire z range. Considering the redshift evolution of CV, we see that

at large k the deviations from the Gaussian predictions increase as

reionization proceeds.

We see that for k < kmin the values of � approach the CV limit

within tobs = 1024 hours for z ≥ 9 and within tobs = 128 hours

for lower redshifts. We find that the bins at k > kmin are largely

system noise dominated, and the deviations at these bins are small

for z ≤ 9 even for an observing time of 50 000 hours. However, at

z = 8 we find that � also increases at large k (>kmin) for tobs ≥
10 000 hours and we have � ∼ 40 per cent at k ∼ 0.5 Mpc−1 for

tobs = 50 000 hours. These deviations increase significantly at z =
7, where � ≥ 100 per cent at k ∼ 0.2 − 0.5 Mpc−1 for tobs = 1024

Figure 3. This shows the per cent deviation of Eb(k) with respect to the Gaussian predictions EbG(k) considering Case I.

MNRAS 487, 4951–4964 (2019)
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4958 A. K. Shaw, S. Bharadwaj, and R. Mondal

Figure 4. This shows the SNR (left axis) as a function of the observing time tobs for k = 0.04 Mpc−1, which is representative of large length-scales. Results

are shown for Case I, Case II and the Gaussian predictions, while the two shaded regions demarcate the CV limits for Case I and the Gaussian predictions,

respectively. The dashed line (green) shows � (right axis) as a function of tobs. The different panels, each of which corresponds to a different redshift, are

arranged the same way as in Fig. 3.

hours. The k range where � ≥ 100 per cent increases further to

k ∼ 0.2 − 1 Mpc−1 if tobs is increased further to 10 000 hours.

We next consider how the SNR for the 21-cm PS grows with

increasing observation time tobs. Figs 4–6 show the results for

three representative k bins located at 0.04 Mpc−1 (large scales),

0.57 Mpc−1 (intermediate scales), and 1.63 Mpc−1 (small scales),

respectively. The SNR values are shown for both Case I (purple

solid line) and Case II (blue solid line), as well as the Gaussian

predictions (dotted black line). The CV limits (tobs → ∞) are shown

as shaded regions for both the non-Gaussian (Case I) and Gaussian

predictions. We find that the differences between Case I, II and the

Gaussian predictions are noticeable only when the SNR approaches

the CV limit. The Gaussian predictions are the most optimistic of

the three, and the SNR values for Case II are typically between those

for Case I and the Gaussian predictions. The figure also shows how

� increases with tobs at the specified values of k.

Considering the lowest k bin (k = 0.04 Mpc−1; Fig. 4), the SNR

is largely constrained by the CV with a relatively small system

noise contribution. The SNR saturates to the CV limit within a few

hundred hours of observations at z ≤ 10 and within tobs ∼ 3000

hours for z > 10. Considering Case I, a ≥5σ measurement of the

EoR 21-cm PS will be possible with tobs ≥ 128 hours at redshifts

z = 13, 11, 8, and with tobs ≥ 3000 hours at z = 10, whereas a 5σ

detection is limited by the CV at z = 7 and 9. However, the Case II

predictions are more optimistic and they predict a 5σ detection to be

possible. The deviations between the non-Gaussian and Gaussian

predictions are found to become important (� ≥ 50 per cent) within

a few hundred hours of observations at redshifts z = 10, 9, and 7.

Considering k = 0.57 Mpc−1 (Fig. 5), the limiting SNR (CV)

increases to values >100 at z ≥ 8 and ∼40 at z = 7, implying that

a high-precision measurement of the EoR 21-cm PS is possible at

these length-scales provided that tobs is adequately large. The tobs

needed for a 5σ detection is ∼1000 hours at z = 13 and it comes

down at lower z to ∼128 hours at z = 8 and 7. The SNR is highest

at z = 8 and we have SNR ≈ 100 in ∼4000 hours of observations.

The non-Gaussian effects make a relatively small contribution to

the error predictions at this length-scale with � ≤ 20 per cent in

the range z ≥ 8 for tobs ≤ 104 hours. The non-Gaussian effects

increase somewhat at z = 7, where we have � ≈ 250 per cent for

tobs ≈ 104 hours.

Considering the bin at k = 1.63 Mpc−1 (Fig. 6) the SNR is largely

system noise dominated. The SNR is well below the CV limit

and increases with tobs for the range shown in the figure except

for the Case I at z = 7. A 5σ detection will be possible with

tobs ≈ 20000, 40000, 2000, 1000 and 600 hours at z = 13, 11, 10,

9, and 8, respectively. The value of the 21-cm PS falls at z =
7 and the minimum observation time required for a 5σ detection

increases to 1000 hours. The inherent non-Gaussianity of the 21-cm

signal is important only at z = 7, where we have 10 per cent ≤ � ≤
100 per cent for 104 hours ≤ tobs < 105 hours.

We now discuss the off-diagonal elements of the covariance

matrix Cij , which is a measure of the correlation between error

estimates at different k bins. The off-diagonal terms of the co-

variance Cij do not change with the observation time as we see

in equation (8). It is convenient to consider the dimensionless

correlation coefficients rij = Cij/
√

CiiCjj . The value rij = 1

indicates a perfect correlation between the errors at the two bins,

whereas rij = −1 implies a complete anticorrelation. The errors in

the two bins are completely uncorrelated if rij = 0 i.e. the two PS

measurements are independent. Values rij > 0 and rij < 0 indicate

partial correlation and anticorrelation, respectively. An earlier work

(Mondal et al. 2017) presents a detailed analysis of the correlations

MNRAS 487, 4951–4964 (2019)
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EoR 21-cm power spectrum error covariance 4959

Figure 5. Same as Fig. 4 for k = 0.57 Mpc−1.

Figure 6. Same as Fig. 4 for k = 1.63 Mpc−1.

rij evaluated from simulations. It was found that the non-Gaussianity

inherent in the EoR 21-cm signal introduces a complex pattern of

correlations and anticorrelations between the different k bins. It was

further found that these correlations (and anticorrelations) were

statistically significant, i.e. they were in excess of the statistical

fluctuations expected if the signal were purely a Gaussian random

field. However, the earlier work did not include the effects of the

baseline sampling and system noise corresponding to observations

MNRAS 487, 4951–4964 (2019)
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4960 A. K. Shaw, S. Bharadwaj, and R. Mondal

Figure 7. This shows the correlation coefficient rij for the errors at different k bins for 1024 hours of observations. The different panels, each of which

corresponds to a different redshift, are arranged the same way as in Fig. 3.

with a radio-interferometric array. For an array like SKA-Low,

the correlation coefficient rij is dependent on the observation time

through the diagonal elementsCii , which appear in the denominator.

As discussed earlier, the values of Cii are typically large for

small tobs where they are system noise dominated. The relative

significance of the correlations between the errors in different k

bins is small for small tobs where rij has small values. The relative

significance of these correlations increases as Cii approaches the

CV and we have considered tobs = 1024 hours for our analysis.

The values of rij will increase if we consider a larger observation

time.

Considering Fig. 7, we see that in addition to rii = 1 (by definition)

for all the diagonal elements, we have both positive and negative

values of rij. The redshifts z = 13, 11, and 10 show very similar

features with a positive correlation (rij ∼ 0.1–0.3) between the two

smallest k bins (0.04, 0.07 Mpc−1), and the third bin (0.12 Mpc−1)

is anticorrelated (rij ∼ −0.4 to −0.1) with the two smaller k bins

and one larger k bin (0.20 Mpc−1). The nature of these correlations

changes at z = 9, where the first five k bins (k ≤ 0.34 Mpc−1) are

correlated. Of these, the four largest k bins are strongly correlated

(0.2 ≤ rij < 0.7) among themselves whereas the smallest k bin is

only mildly correlated (rij < 0.2) with the other bins. At z = 8,

the first three k bins are correlated (rij ≤ 0.3) whereas the fifth

bin shows anticorrelations (rij > −0.3) with the second and third

bins. Considering z = 7, the first two k bins are anticorrelated

(rij ≥ −0.3) with the other bins while the next five k bins show

strong correlations (0.15 ≤ rij ≤ 0.85). We thus see that there are

noticeable correlations and anticorrelations between the errors in the

estimated 21-cm PS in different k bins at all stages of reionization.

These correlations span a wide range of k modes depending on the

redshift.

5 EF F E C T S O F FO R E G RO U N D S

Foregrounds, which are almost 4–5 order magnitude larger than the

EoR 21-cm signal (e.g. Ghosh et al. 2012), are a major challenge

for measuring the EoR 21-cm PS. There are several approaches

that have been proposed to handle the foreground problem, one of

these being foreground removal (e.g. Morales, Bowman & Hewitt

2006; Ali et al. 2008; Harker et al. 2009; Parsons et al. 2012;

Bonaldi & Brown 2015; Chapman et al. 2015; Pober et al. 2016b).

The entire analysis until now has assumed that the foregrounds

have been perfectly modelled and removed, following Chatterjee &

Bharadwaj (2018) we refer to this as as the ‘Optimistic’ scenario in

the subsequent discussion.

The foreground contribution to the 21-cm PS is predicted to be

localized within a wedge in the (k⊥, k‖) plane (Datta, Bowman &

Carilli 2010), the boundary of this wedge being defined through

(Morales et al. 2012)

k‖ =
[

rc sin(θL)

r ′
c νc

]

k⊥ (16)

where θL is the maximum angular position in the sky (relative

to the telescope pointing) from which foregrounds contaminate

the signal. The k(k⊥, k‖) modes outside this foreground wedge

are expected to be free of foreground contamination, and the

‘foreground avoidance’ technique (e.g. Pober et al. 2013; Kerrigan

et al. 2018) proposes to utilize only these modes to estimate the EoR

21-cm PS. Typically θL = 90
◦

corresponding to the horizon that is

the maximum angle from which the foregrounds contaminate the

signal. However, it is possible to taper the telescope’s field of view

(Ghosh et al. 2011; Choudhuri et al. 2016a) and thereby restrict

θL to an angle smaller than the horizon. Here, in addition to θL =
90

◦
we also consider a situation in which we assume that tapering

MNRAS 487, 4951–4964 (2019)
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EoR 21-cm power spectrum error covariance 4961

Figure 8. This shows the predicted SNR (non-Gaussian Case I) as a function of k and z for the three different foreground scenarios. The top and bottom panels

show the results for 1024 hours and 10 000 hours of observations, respectively. Note that the color bars are different for the top and bottom panels.

is used whereby θL = 3 × FWHM/2 where FWHM is the Full

Width Half Maxima of the SKA-Low primary beam. Note that

FWHM changes with frequency and it is ∼6
◦

at z = 8. Following

Chatterjee & Bharadwaj (2018), we refer to the two cases θL = 3 ×
FWHM/2 and 90

◦
as the ‘Moderate’ and ‘Pessimistic’ scenarios,

respectively.

Fig. 8 shows the SNR for detecting the EoR 21-cm PS at different

k bins for various z values considering the non-Gaussian error

covariance for Case I. Starting from the left, the three columns

show the predictions for the Optimistic, Moderate, and Pessimistic

scenarios, respectively, while the upper and lower rows correspond

to tobs = 1024 and 10 000 hours, respectively. The first point to

note is that a few k bins for which all the k modes are within the

foreground wedge are excluded from the detection of the EoR 21-

cm PS. These excluded k bins occur at the two extremities (large k

and small k). Further in equation (16) the factor rc/(r ′
c νc) ∼

√
1 + z

causes the extent of the foreground wedge to increase with z (θL

also increases with z in the Moderate scenario) and we see that the

extent of the excluded k bins increases at higher redshifts.

In each k bin the number of k modes that can be used for measuring

the 21-cm PS decreases from the the Optimistic to the Moderate and

then the Pessimistic scenarios. This causes the SNR to decrease from

the Optimistic to the Moderate scenario, and the SNR decreases

even further for the Pessimistic scenario. The k range where the

SNR exceeds 5 does not change very much from the Optimistic

to Moderate scenario for both 1024 and 10 000 hours, except for a

small raising of the lower k limit. The lower k limit for a 5σ detection

increases significantly for the Pessimistic scenario, however the

upper k limit is not much affected outside the excluded bins. In all

cases the SNR peaks at z = 8. Considering the region where the SNR

exceeds 30, we see that for the Optimistic scenario with 1024 hours

this spans from z = 7–10 and k = 0.1 Mpc−1 to 0.8 Mpc−1. The

range shrinks to z = 7–9 and k = 0.2 − 0.8 Mpc−1 for the Moderate

scenario and shrinks even further to a very small region around z =
8 and k = 0.6 Mpc−1 for the Pessimistic scenario. The range where

the SNR exceeds 30 increases significantly if the observing time

is increased to 10 000 hours, this is particularly prominent for the

Pessimistic scenario where both the z and k ranges are considerably

increased compared to 1024 hours.

Fig. 9 shows the percentage deviation � of the non-Gaussian

error predictions (Case I) with respect to the Gaussian predictions.

Considering the Optimistic scenario discussed in the previous

section (Fig. 3), the deviations are prominent (� > 50 per cent)

at the smallest k bin for z = 7 and 9 and also in the k range

0.2 − 0.5 Mpc−1 at z = 7. The number of k modes in each k bin

gets reduced due to the foreground wedge, and consequently the

relative contribution to the error covariance (equation 11) from the

trispectrum is reduced. We therefore expect progressively smaller

values of � as we go from the Optimistic to the Moderate and

the Pessimistic scenarios. Considering the Moderate scenario, the

results are similar to the Optimistic ones, however the values of

� are somewhat smaller though they still exceed 50 per cent (and

100 per cent in some cases). For the Pessimistic scenario, however,

the values of � are considerably smaller and they do not exceed

50 per cent for 1024 hours whereas they exceed 50 per cent only in

the k range 0.3 − 1 Mpc−1 at z = 7 for 10 000 hours.

Fig. 10 shows the correlations between the different k bins

induced by the non-Gaussianity considering 10 000 hours. We have

restricted the analysis to z = 7, where we have prominent deviations

from the Gaussian predictions for all the three scenarios. Comparing

the Optimistic scenario with the lower left panel of Fig. 7, which

shows the same for tobs = 1024 hours we find that the extent of

the positive correlation increases by one k bin and the values of

the correlation coefficients rij also increase. Comparing the left and

MNRAS 487, 4951–4964 (2019)
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4962 A. K. Shaw, S. Bharadwaj, and R. Mondal

Figure 9. This shows � the percentage deviation of the non-Gaussian (Case I) error predictions from the Gaussian predictions as a function of k and z

considering the three different foreground scenarios. The top and bottom panels show the results for 1024 hours and 10 000 hours of observations, respectively.

Figure 10. This shows the correlation coefficients rij at z = 7 considering the three different foreground scenarios for tobs = 10 000 hours. In the Pessimistic

scenario the two largest k bins are excluded due to the Foreground wedge.

centre panels of Fig. 10, we see that the pattern of correlations

and anticorrelations has the same k extent for the Optimistic and

Moderate scenarios, however the magnitudes of rij decrease by

10–30 per cent. Considering the Pessimistic scenario, we find that

the anticorrelation between the two smallest k bins and the larger

k bins is not noticeable here. The extent of the k bins with positive

correlations is the same as the Optimistic scenario, but the values

of rij are 60–70 per cent smaller. Considering other redshifts for

which the results are not shown here, we find that there are some

correlations between the different k bins also at z= 9 in the Moderate

scenario, however these are absent in the Pessimistic scenario. These

correlations for the Moderate scenario are however considerably

smaller and they are ∼50 per cent of the correlations seen in the

bottom-right panel of Fig. 7.

Summarizing this section, we find that foregrounds restrict the

k modes that can be used for detecting the EoR 21-cm PS. This

results in reducing the SNR and also reducing the impact of

non-Gaussianity on the error predictions. The deviations from the

Gaussian predictions continue to be important (> 50 per cent) at

z = 7 even if the effect of Foreground Avoidance is included.

6 SU M M A RY A N D C O N C L U S I O N S

There are currently several radio-interferometric arrays such as

LOFAR, MWA, and PAPER, which have been carrying out obser-

vations to detect the EoR 21-cm PS. Several other instruments like

HERA and SKA, which are expected to have greater sensitivity,

are under construction or planning. It is of considerable interest

MNRAS 487, 4951–4964 (2019)
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to have error predictions for the EoR 21-cm PS considering such

observations, and there have been several works (e.g. Mellema

et al. 2013; Pober et al. 2014; Greig & Mesinger 2015; Ewall-

Wice et al. 2016) addressing this under the assumption that the

EoR 21-cm signal is a Gaussian random field. However there have

been several studies (e.g. Bharadwaj & Pandey 2005; Mondal et al.

2015; Mondal et al. 2016, 2017; Majumdar et al. 2018) which show

that the EoR 21-cm signal is non-Gaussian in nature. In this paper

we study how these non-Gaussianties affect the error estimates for

the EoR 21-cm PS considering observations with the upcoming

SKA-Low.

The error predictions for any observation of the EoR 21-cm

PS are quantified through the error covariance matrix Cij , which

depends on the PS and the trispectrum of the EoR 21-cm signal,

and also observational effects like the array baseline distribution

and the system noise. The EoR simulations generally provide

predictions for the bin-averaged 21-cm PS and trispectrum without

incorporating the observational effects. In this paper we first present

a methodology for calculating Cij combining the simulated PS and

trispectrum with these observational effects. The error covariance

matrix for the binned 21-cm PS (equation 4) actually depends on

the trispectrum T (kgi
, −kgi

, kgj
,−kgj

) evaluated at individual pairs

of Fourier modes kgi
and kgj

, unfortunately this is not available

from simulations as the computations involved for a reliable

estimate is extremely large and cumbersome. We have overcome

this by considering two different cases where we approximate

T (kgi
, −kgi

, kgj
, −kgj

) using the bin averaged trispectrum T̄ (ki, kj )

for which estimates are available from simulations. Results are

mainly presented for Case I, which assumes that the different k

modes within the same k bin are completely correlated. We also

consider Case II, which assumes the different k modes within

the same k bin to be totally uncorrelated. These represent two

extreme cases, and the reality is expected to be somewhere in

between. We find that the error predictions for Case II are typically

intermediate between the Gaussian predictions and Case I. In most

situations we may adopt a simple picture where the predictions for

Case I represent the upper limit for the error covariance matrix,

and the actual errors may be expected to have values between

these and the Gaussian predictions. It may however be noted

that we do have a few situations where the predictions for Case

II exceed those for Case I as seen in the lower left-hand panel

of Fig. 6.

We find that the predicted errors typically increase at large k

(Fig. 1) where it is system noise dominated. In this situation the

r.m.s. error scales as t−1
obs, and the k range below which a 5σ detection

of the EoR 21-cm PS is possible (km) increases as tobs is increased

(Fig. 2). The values of km also increase as reionization proceeds

as Tsys increases with redshift. At all z a 5σ detection is possible

for 128 hours of observation. However km is largest (∼ 0.9 Mpc−1)

at z = 8, and the accessible k range is smaller at higher z with

km ∼ 0.09 Mpc−1 at z = 13. The value of km increases significantly

for tobs = 1024 hours and we have km > 1 Mpc−1 for all z ≤ 10.

We have km > 1 Mpc−1 at all redshifts for tobs = 10 000 hours. We

note that at redshifts z = 7 and 9 a 5σ detection is not possible at

the smallest k bin (k = 0.04 Mpc−1), which is predicted to be CV

limited (Figs 1 and 4).

The error predictions here are in excess of the Gaussian predic-

tions that ignore the contribution from the trispectrum. At all z the

fractional deviation � is found to exhibit a ’U’-shaped k dependence

(Fig. 3) in the CV limit where the system noise can be ignored. The

deviations are minimum at kmin ∼ 0.1 − 0.3 Mpc−1 where the ratio

Nki
T̄ (ki, ki)/P̄

2(ki) also is minimum, and � rises steeply on both

sides with particularly large values (∼ 100 per cent) at k > kmin.

For finite observation times where the system noise is important,

we have significant deviations (� ∼ 40–100 per cent) at k < kmin

for tobs = 1024. However, for k > kmin the errors are system noise

dominated (except at z ≤ 8) and the deviations are small. At z = 7

we have particularly large deviations (� ∼ 100 per cent and larger)

at k > kmin for tobs ≥ 1024 hours.

The SNR (Figs 5 and 6) is expected to increase ∝ tobs for small

observation time where the system noise dominates the errors; we

also expect the Gaussian predictions to match those for Case I

and Case II in this regime. This is clearly seen for most redshifts

at k = 0.57 Mpc−1 (Fig. 5) and 1.63 Mpc−1 (Fig. 6), which are,

respectively, representative of intermediate and small length-scales.

However, at z = 7 we see that the SNR saturates at the CV limit

beyond tobs ∼ 103 hours. At k = 0.04 Mpc−1 (Fig. 4), which is

representative of large length-scales, the SNR saturates within ∼100

hours at all redshifts. The Gaussian predictions, Case I and Case II,

also differ significantly, and the predictions for Case II are typically

between the Gaussian and Case I predictions.

The inherent non-Gaussianity of the EoR 21-cm signal introduces

correlations between the errors in different k bins. AlthoughCij (i �=
j) is independent of tobs, the dimensionless correlation coefficients

rij = Cij/
√

CiiCjj are tobs dependent. We expect the correlations

rij to become important for large tobs, and we have presented results

for 1024 hours (Fig. 7). We find significant correlations and anti

correlations ‖rij‖ ∼ 0.1 − 0.4 among the four smallest k bins over

the entire z range. Further, we find strong correlations rij ∼ 0.7−0.8

among some of the k bins in the range k ∼ 0.1 − 1 Mpc−1 at z = 7

and 9.

The results summarized till now has not considered the fore-

grounds. The foreground contamination is expected to be restricted

within a wedge, and only the k modes outside this foreground wedge

can be used for 21-cm PS detection. In addition to the Optimistic

scenario where there are no foregrounds, we have also considered

the Moderate and Pessimistic scenarios where the (k⊥, k‖) extent

of the foreground wedge, respectively, correspond to θL = 3 ×
FWHM/2 and θL = 90

◦
in equation (16). We find that for both

the foreground scenarios a few k bins are excluded and the SNR is

reduced compared to the Optimistic scenario (Fig. 8). The impact

of non-Gaussianity on the error predictions is also reduced (Fig. 9).

The results for the Moderate scenario are comparable to those for

the Optimistic scenarios, which have no foregrounds, however the

predictions are considerably degraded for the Pessimistic scenario.

Finally we note that the deviations from the Gaussian predictions,

including correlations between the different k bins, continue to be

important (> 50 per cent) for all the scenarios at z = 7.

In conclusion, we note that non-Gaussian effects make a sig-

nificant contribution to the error predictions, particularly at low

redshifts and large length-scales. In addition to increasing the

error predictions with respect to the Gaussian predictions, it also

introduces significant correlations and anticorrelations between

different k bins.
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