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This work investigates the effects of system nonlinearities on degenerate parametric amplifiers. A
simple, Duffing-type nonlinearity is appended to a representative equation of motion for a
mechanical or electromechanical parametric amplifier, and classical perturbation methods are used
to characterize the resulting effects on the amplifier’s frequency response and performance.
Ultimately, the work demonstrates that parametric amplification can be realized in nonlinear,
dynamic-range limited systems, such as resonant micro- or nanosystems, but at the expense of
performance degradation. Additionally, it is shown that nonlinear amplifiers can be operated above
their linear instability threshold but that doing so results in bistable amplified responses. © 2010
American Institute of Physics. �doi:10.1063/1.3446851�

Degenerate parametric amplifiers based on resonant
micro- and nanosystems have received significant attention
in the applied physics and engineering research communities
over the past few years due to their distinct utility in low-
noise, low-distortion signal amplification.1–7 While these
small-scale parametric amplifier implementations utilize
modes of operation similar to those exploited by their more
conventional electrical counterparts, in their most common
micro/nanomechanical embodiments they also feature a
scale-dependent dynamic range. Because of this, many
small-scale parametric amplifiers exhibit a narrow window
of forcing amplitude within which classical linear parametric
amplification can be effectively realized.5–8 Accordingly, if
low-noise, low-distortion signal amplification is to be fully
exploited in future micro/nanoscale transducer designs, it
may need to be realized in a nonlinear context.

The present work seeks to characterize the utility of de-
generate parametric amplifiers operating within a nonlinear
frequency response regime. Specifically, the work examines
the behavior of a representative degenerate amplifier with a
hardening, Duffing-type nonlinearity. A classical perturbation
technique, the method of averaging, is used to recover perti-
nent performance metrics, including the amplifier’s gain/
pump and gain/phase characteristics, and these results are
subsequently benchmarked against the metrics of a linear
device.

Classical parametric amplifiers are linear resonators
driven by a combined direct and parametric excitation. In
conventional implementations, the direct excitation signal is
targeted for amplification, and a time-varying system imped-
ance serves as a parametric pump. While linearity can be
maintained in systems with an appreciable dynamic range,
many micro/nanoresonators, including those based on vibrat-
ing nanowires or nanotubes, operate in the presence of a
relatively high noise floor and a reduced “nonlinear ceiling,”9

and when parametrically amplified exhibit a distinctly non-
linear, near-resonant response. While the origins of this non-
linearity vary from device to device and can stem from large

deflections or inertial, dissipative, and transduction effects,
the singularly important nonlinear effect of frequency pulling
can be generically characterized by appending a simple cubic
term to a representative degenerate parametric amplifier
model. With this in mind, the present effort considers a non-
dimensional governing equation for a degenerate amplifier of
the form

z� + 2��z� + z + �� cos�2���z + ��z3 = �� cos��� + 	� ,

�1�

where z represents the amplifier response, � captures the ef-
fects of linear dissipation attributable to, for example, fluid
and/or material damping, � represents the effective paramet-
ric pump amplitude, � dictates the system’s excitation fre-
quency, � defines a nondimensional time variable, � specifies
the direct excitation amplitude, and 	 represents a relative
phase term, introduced to account for the phase-dependent
tuning of degenerate amplification. Note that for analytical
purposes, all of the excitation, dissipation, and nonlinear
terms included in Eq. �1� are assumed to be small, and are
scaled by the small parameter � for ease of analysis.

Equation �1� lacks a closed-form solution suitable for
predictive design and analysis, but is amenable to perturba-
tion methods, specifically, the method of averaging. In light
of this, the system response is described in terms of slowly-
varying coordinates by introducing a constrained coordinate
transformation of the form

z��� = X���cos���� + Y���sin���� ,

z���� = − X���� sin���� + Y���� cos���� , �2�

and a frequency detuning parameter 
, defined by


 =
� − 1

�
, �3�

into Eq. �1�. The resulting equation and the implicit con-
straint �obtained by relating z and z� defined above, which
requires that X����cos����+Y����sin����=0�, are solved for
X� and Y� and averaged over one period 2� /� of excitation.
The resulting averaged equations are given by
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X� = − 1
8��2�Y + 8
Y + 8�X − 3�X2Y − 3�Y3

− 4� sin 	� + O��2� ,

Y� = − 1
8��2�X − 8
X + 8�Y + 3�XY2 + 3�X3

− 4� cos 	� + O��2� . �4�

The system’s steady-state behavior can be recovered from
these equations by setting �X� ,Y��= �0,0� and solving for the
steady-state values of X and Y, which are accurate to O���.
The performance of the nonlinear amplifier can be examined
by converting the result into polar �amplitude/phase� coordi-
nates and evaluating pertinent metrics for various normalized
pump amplitudes ���, relative phase angles �	�, direct exci-
tation amplitudes ���, and nonlinear stiffnesses ���. The am-
plifier gain is defined to be

G =
a1

a1��=0
, �5�

where a1 represents the steady-state amplitude of the ampli-
fier’s maximum amplitude frequency response branch. A
closed-form expression for G is omitted here due to its non-
trivial dependence on system parameters.

The near-resonant response structure of this system is
quite intricate, as now summarized using frequency response
and phase plane diagrams derived using the averaged equa-
tions. Figure 1 depicts the response of a representative para-
metric amplifier driven at three distinct pump amplitudes. As
evident from Fig. 1�a�, when the amplifier of interest is
driven below the system’s parametric instability threshold �or
Arnold tongue, specifically, for ��4� at 
=0�, the system
exhibits a classical Duffing-type response, which for positive
values of the nonlinearity parameter � bends to the right.
This resonance structure is attributable to the fact that there
is a single “active” resonance at this operating condition—
that associated with the system’s direct excitation. Note that
the inset shows the �X ,Y� phase plane at the indicated fre-
quency. Figures 1�b� and 1�c� depict the amplifier’s near-
resonant response when driven slightly above and well above
the parametric instability threshold, respectively. It is evident
that in each of these scenarios the response features five dis-
tinct response branches, three of which are stable. The two
additional branches present here are comparable in magni-
tude but distinct in phase from the other stable/unstable
upper branch response pair, and arise from a bifurcation
across the instability threshold. This leads to the coexistence
of two “active” stable resonances in the amplifier. One can
view the transition from Fig. 1�a� to Fig. 1�c� as going from
a Duffing-dominated response to a parametrically dominated
response, albeit with broken symmetry arising from the di-
rect excitation. Note that the amplifier’s upper branch re-
mains qualitatively unchanged regardless of whether the sys-
tem is driven above or below the parametric instability
threshold but that two slightly different stable responses may
be observed. Because of this the parametric instability
threshold for the pump amplitude is of only minor concern,
in contrast with linear amplifier considerations.

Figure 2 highlights the gain versus normalized pump
amplitude for a representative nonlinear amplifier driven at
resonance. As evident, even comparatively small cubic non-
linearities limit the amplifier gain. Because of this, gains
comparable in magnitude to those reported in prior literature

are not expected to be obtainable in devices exhibiting even
small levels of nonlinearity.1–4 However, because the classi-
cal linear limitation on pump amplitude ���4�� can be
largely disregarded in a nonlinear amplifier, meaningful
gains can still be realized with strong pumping. Because of
this, parametric amplification can be plausibly realized in a
micro/nanoresonator with a limited, or even nonexistent, lin-
ear dynamic range.

Because the system of interest is designed to operate in a
degenerate mode, a phase-dependent amplifier gain is pre-
dicted for all device implementations, including those oper-
ating within a linear, near-Lorentzian frequency response re-
gime. Figures 3 and 4 highlight how the phase-periodic gain
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FIG. 1. Frequency response, a vs 
, for a representative amplifier
�	=−� /4, �=0.1, �=0.001, and �=0.01� driven �a� slightly below its para-
metric instability threshold ��=0.03�, �b� slightly above its parametric in-
stability threshold ��=0.055�, and �c� well above its parametric instability
threshold ��=0.08�. Solid/dashed lines are used to indicate stable/unstable
steady-state solutions. Data points are recovered from simulations of the
original equation of motion, Eq. �1�. Insets highlight the basins of attraction
in the �X ,Y� phase plane for 
=0.075; alternating basins are shown in black
and white, with internal trajectories �the unstable manifolds of the saddles�
highlighted in the locally opposite colors.
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variance obtained in linear amplifiers is distorted in the pres-
ence of nonlinearity. Specifically, these results indicate that
increasing the magnitude of the cubic stiffness nonlinearity
results in additional asymmetry in the gain/phase relation-
ship. Though this asymmetry ultimately has minimal effect
on absolute system performance, it does alter the phase value
at which maximum gains can be achieved, thus shifting the
amplifier’s optimal operating condition.

The aforementioned results clearly demonstrate that
meaningful parametric amplification can be realized in reso-
nant systems driven within a nonlinear response regime, al-
beit with performance metrics generally inferior to those
seen in classical, linear parametric amplifiers. While this per-
formance degradation is not desirable, parametric amplifica-
tion does appear to be a feasible option for on-chip, low-
noise, low-distortion amplification in dynamic-range limited

systems, such as resonant micro/nanotransducers, even into
their nonlinear operating range. Ongoing research is aimed at
realizing parametric amplification in two distinct classes of
nanoresonators, both of which have been shown to exhibit a
limited linear dynamic range: electrostatically actuated
single-wall carbon nanotube and silicon nanowire resonators.

A preliminary version of this work appeared at the 2nd
International Conference on Micro- and Nanosystems held as
part of the 2008 American Society of Mechanical Engineers’
International Design Engineering Technical Conference
�IDETC2008�.7 This work was supported by the Dynamical
Systems Program of the National Science Foundation under
Grant Nos. 0826276 and 0758419. The authors are grateful
to Nick Miller for his assistance with the numerical simula-
tions contained herein.
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FIG. 2. Amplifier gain G�
=0� vs parametric pump amplitude � for a
representative amplifier with 	=−� /4, �=0.1, and �=0.01.
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FIG. 3. Amplifier gain G�
=0� vs relative excitation phase 	 for an ampli-
fier with �=0.1, �=0.03, and �=0.01.
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FIG. 4. Amplifier gain G�
=0� vs relative excitation phase 	 for an ampli-
fier with �=0.1, �=0.001, and �=0.01.
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