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Abstract

Wheat is an important crop, used as staple food in numerous countries around the world.

However, wheat productivity is low in the developing world due to several biotic and abiotic

stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at

different growth stages is the major constraint in improving wheat productivity in the devel-

oping world. Therefore, screening/developing drought-tolerant genotypes at different growth

stages could improve the productivity of wheat. This study assessed seed germination and

seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress.

Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study

along with control (0 MPa). Wheat genotypes included in the study were ‘KLR-16’, ‘B6’,

‘J10’, ‘716’, ‘A12’, ‘Seher’, ‘KTDH-16’, and ‘J4’. Data relating to seed germination percent-

age, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio

and chlorophyll content were recorded. The studied parameters were significantly altered by

individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed

germination and growth parameters were reduced by osmotic potentials; however, huge dif-

ferences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in

seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and

53.35 to 65.16% in root fresh weight. The genotypes, ‘J4’, ‘KLR-16’ and ‘KTDH-16’, particu-

larly ‘J4’ better tolerated increasing osmotic potentials compared to the rest of the genotypes

included in the study. Principal component analysis segregated these genotypes from the

rest of the genotypes included in the study indicated that these can be used in the future
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studies to improve the drought tolerance of wheat crop. The genotype ‘J4’ can be used as a

breeding material to develop drought resistant wheat genotypes.

Introduction

Wheat (Triticum aestivum L.) belongs to Triticeae tribe and Poaceae family. It globally impor-

tant cereal supposed to be originated in the Middle East region of Asia [1, 2]. Tetraploid and

hexaploidy form of wheat has been domesticated since 10,000 years ago [3]. Hexaploid form is

modern day bread wheat and fulfills dietary needs of the global population. The Northern

India, Northern USA, and neighboring areas in Canada, Northern and Central Europe, South-

ern Australia, and South Africa are the major bread wheat producing areas in the world.

Global population is expected to reach10 billion by 2050, which would require double of the

current global food production. Expected climate changes would make the crop production

difficult because of sudden changes in temperature and rainfall [4]. Wheat contributes 2%

towards gross domestic product and 9.9% towards value added in agriculture. The area under

wheat production in the country fluctuates within 2–5% increase or decrease due to various

factors [5].

Seedling stage of crop plants is highly vulnerable to the water deficit. Seed germination is a

prerequisite and important transition stage for crop plants from seeds to seedlings. The semi-

arid regions of the world experience low moisture availability during seed germination of

wheat crop [6]. Low moisture availability during seed germination and subsequent growth

stages of wheat crop declines both production maturity time [7, 8]. The impacts of water stress

on seed germination and vegetative growth of different crops such as wheat [8], maize and bar-

ley [8–10] in earlier studies. The impact of drought stress on seed germination and seedling

stage of four bread wheat varieties have been evaluated and reduction in these traits was noted

with significant differences among tested varieties [6, 11].

The successful establishment of crop plants relies on microclimatic conditions of seedbed

and seed quality [12, 13]. Hence, seed germination of crop plants is tested under simulated

environments to infer their tolerance to adverse environmental conditions. Observing seed

germination under polyethylene glycol (PEG) induced drought stress is the most common

screening method used to test the drought tolerance of different crop varieties during seed ger-

mination and early stand establishment [14]. Inferring changes in root length or root depth of

the seedlings subjected to drought stress could provide valuable insights regarding these traits

[15, 16]. Higher tolerance to adverse environmental conditions during seedling stage results in

better crop production [15]. Screening a large pool of available genotypes under adverse envi-

ronmental conditions is a fundamental method to select the tolerant genotypes for improved

crop production. The use of osmotic substances of high molecular weight such as PEG is a

common method to test the drought tolerance of crop plants during seed germination and

seedling establishment [17, 18].

Seed germination and seedling emergence/establishment are important criteria for testing

the tolerance of wheat genotypes to various abiotic stresses, particularly, drought stress [8, 19].

Seed germination percentage and seedling establishment are significantly reduced when soil

osmotic potential reaches to -1.5 MPa [20]. Short-statured wheat cultivars have slower initial

growth and their coleoptile length and leaf index undergoes decline during early growth peri-

ods [21]. Reduced coleoptile length indicates low seed germination and subsequent low plant

height, whereas increased coleoptile length would result in larger initial leaf sizes and
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accelerate seed germination [22]. Positive correlation has been reported among seed germina-

tion and radical, plumule, coleoptile length, and dry weight of radical and plumule [23, 24].

Plant breeding concentrated on the above-ground traits for a long time, while root traits

have been ignored due to several difficulties [25]. Root traits have gained significant attention

during the last decade [26, 27]. Screening genotypes for early drought tolerance and inferring

their root attributes at seedling stage has witnessed significant progress [28, 29]. The genotypes

with higher root volume combined with longer seminal and adventitious root length has been

suggested as useful candidates for increasing grain yield [30]. Plant growth, root to shoot ratio

and root length could also be useful characteristics for improving the yield under arid and

semi-arid climatic conditions [31, 32].

The PEG has been frequently used to for genotypes’ screening for drought tolerance at ear-

lier growth stage. The PEG reduces seed germination and growth by reducing water potential,

and the effect is observed more on the shoots compared to primary roots [13, 33]. Several stud-

ies indicated that in vitro screening using PEG is one of the reliable approaches to select

drought-tolerant genotypes based on germination indices [16, 32]. The PEG is involved in the

transfer of ions and nonionic compounds such as mannitol, raffinose and inulin [34, 35]. The

earlier study [35] proposed that PEG is a high molecular weight non-ionic substance that is

water soluble and anti-penetrable. The decrease in osmotic and water potential due to PEG

has a positive correlation with the accumulation of proline which leads to decrease in osmotic

stress and helps to maintain plant growth [36].

Although plenty of lines/genotypes of wheat crop are being developed on regional scales,

their testing for drought tolerance at seedling stage is rarely done. Therefore, current study

tested drought tolerance of eight recently developed wheat genotypes/lines in Pakistan through

PEG-induced osmotic stress. It was hypothesized that the tested genotypes will differ in their

drought tolerance and growth traits. It was further hypothesized that increasing negative

osmotic potential would reduce seed germination and seedling traits. The results will help to

select the most tolerant genotypes for breeding purposes to develop drought tolerant geno-

types in the future.

Materials and methods

Experimental site

The current study was conducted at Plant Breeding and Genetics Laboratory, Dera Ghazi

Khan, Pakistan. Eight different wheat genotypes (Table 1) with unknown drought tolerance

were included in the study. There was no permit needed required to conduct the study as it

did not involve any endangered species. Three different osmotic potentials, i.e., 0, -0.6 MPa

and -1.2 MPa were included in the study by using PEG-6000 [37]. The desired quantity of

Table 1. The codes, names and drought tolerance levels of different wheat genotypes included in the study.

Genotype Code Genotype Name Drought tolerance

G1 ‘KLR-16’ Unknown

G2 ‘B6’ Unknown

G3 ‘J10’ Unknown

G4 ‘716’ Unknown

G5 ‘A12 (Ujala)’ Unknown

G6 ‘Seher’ Mild

G7 ‘KTDH-16’ Unknown

G8 ‘J4 (9268)’ Unknown

https://doi.org/10.1371/journal.pone.0262937.t001
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PEG-6000 was mixed in the distilled water to make the solutions of -0.6 MPa and -1.2 MPa,

whereas distilled water was used in the control treatment [37].

Seed germination experiment

Three replicates of 25 sterilized (with 5% sodium hypochlorite) seeds were germinated

between the two layers of Whatman No.1 filter paper in Petri dishes (150 × 15 mm). The 10 ml

treatment solution or distilled water was poured on the filter paper and afterwards the solution

or distilled water was given according to the needs. The Petri dishes were sealed with Parafilm

to prevent evaporation. Seeds were incubated at 20 ± 2˚C and 12 hours light dark period for 10

days. Seed germination percentage was observed every 24 hours for 10 days and then seed ger-

mination percentage was computed. The seed was considered as ‘germinated’ once the radicle

elongated to 1–2 mm.

Seedling growth experiment

Seedling growth experiment was carried out in plastic pots (97 × 165 × 90 mm) filled with a

mixture of the sand and peat (1:1). The pots were placed into growth cabinet with 3 replica-

tions and 10 seeds were planted in each replication. Seeds were sown 3 cm in depth and pots

irrigated with PEG-6000 solutions as to generate osmatic potentials of 0, -0.6 and -1.2 MPa.

Pots were incubated under 25˚C and 70–80% relative humidity for 20 days. A seed/seedling

was considered as emerged when the emerging radicle reached to soil surface. Different

growth traits such as root length, shoot length, fresh root weight, fresh shoot weight, dry root

weight, dry shoot weight, and root, shoot ratio were measured from three weeks old seedling.

The experiment was laid out according to randomized complete block design with split plot

arrangements. Genotypes were considered as main factor, whereas osmotic potentials were

regarded as sub-factor. The seedlings were taken off from the pots, rinsed with water to remove

the debris, measured for root, and shoot lengths, divided into roots and shoots and dried in an

oven (roots and shoots separately) to infer the dry weight. The chlorophyll index was measured

with SPAD meter and expressed as SPAD values.

Statistical analysis

The collected data were tested for normality, which indicated that data were normally distrib-

uted. Two-way analysis of variance (ANOVA) was then used to infer the significance in the

data. Least significant difference test at 5% probability was used to compare the means where

ANOVA indicated significant difference. Principal component analysis with Kaiser normaliza-

tion was used to better visualize the data. The principal components with >1 eigenvalue were

interpreted. Similarly, the variable having>0.60 factor loading was considered to significantly

affect the relevant principal component. All computations were made on XLSTAT add-in of

Microsoft Excel program. The minimal dataset of the study has been uploaded as S3 Table.

Results

Individual and interactive effects of genotypes and PEG-induced drought stress significantly

altered seed germination percentage, root and shoot length, fresh and dry weights of roots and

shoot, root:shoot ratio and chlorophyll index (S1 Table). Overall, the highest seed germination

percentage (78.11%) was recorded for genotype ‘J4’, whereas genotype ‘716’ resulted in the

lowest (64.33%) seed germination (Table 2). Similarly, the highest (16.02 cm) and the lowest

(11.72 cm) root length was noted for the genotypes ‘J4’ and ‘716’, respectively. The highest

shoot length (11.98 cm), root fresh weight (0.47 g), root dry weight (0.23 g), shoot fresh weight
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(0.42 g), shoot dry weight (0.24 g) and chlorophyll index (49.86 SPAD value) was noted for the

genotype ‘J4’. However, the lowest shoot length (8.34 cm) was recorded for the genotype ‘A12’,

while the genotype ‘A12’ observed the lowest root fresh weight (0.35 g), shoot fresh weight

(0.27 g), and shoot dry weight (0.10 g). Nonetheless, the lowest root dry weight (0.16 g) was

recorded for the genotype ‘716’, whereas the genotype ‘Seher’ resulted in the lowest chlorophyll

index (41.02 SPAD value) (Table 2).

The highest values of seed germination percentage, root and shoot length, fresh and dry

weights of roots and shoot, and chlorophyll index were recorded for control treatment,

whereas the lowest values of these traits were noted for -1.2 MPa osmotic potential (Table 3).

Contrastingly, the highest root:shoot ratio was noted for -0.6 MPa osmotic potential, whereas

the lowest value was noted under control treatment of the study (Table 3).

Regarding genotypes by drought stress interaction, all genotypes resulted in 100% seed ger-

mination under control treatment; however, seed germination recorded a significant decrease.

The genotype ‘J4’ with control treatment recorded the highest values for seed germination per-

centage, root and shoot length, fresh and dry weights of roots and shoot, and chlorophyll

index, whereas the lowest values for these traits were noted for the genotypes ‘716’ an ‘A12’

germinated under -1.2 MPa osmotic potential (Table 4). The genotypes ‘J4’ and ‘KTDH-16’

better tolerated increasing level of drought stress compared to the rest of the treatments

included in the study, whereas genotypes ‘716’ and ‘A12’ proved as the most sensitive

genotypes.

Table 2. The impact of different genotypes on their seed germination and growth traits grown under different osmotic potentials.

Genotypes GP RL SL RFW RDW SFW SDW R/S Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

J4 78.11 a 16.02 a 11.98 a 0.47 a 0.23 a 0.42 a 0.24 a 1.35 d 49.86 a

KTDH-16 73.22 b 14.58 b 10.58 b 0.43 b 0.22 a 0.36 bc 0.20 b 1.40 c 46.83 b

KLR-16 71.11 c 14.03 c 10.71 b 0.43 b 0.23 a 0.37 b 0.18 c 1.31 e 43.57 de

B6 70.55 c 13.37 d 9.62 d 0.43 b 0.23 a 0.35 cd 0.18 c 1.45 b 44.90 c

J10 71.22 c 12.43 e 10.05 c 0.40 c 0.20 b 0.34 d 0.16 d 1.26 f 44.13 cd

Seher 67.00 d 12.32 e 9.27 e 0.39 cd 0.18 c 0.34 d 0.17 d 1.34 d 41.02 f

A12 66.66 d 12.27 e 8.34 f 0.38 d 0.16 d 0.28 e 0.11 e 1.52 a 46.55 b

716 64.33 e 11.72 f 9.04 e 0.35 e 0.17 c 0.27 e 0.10 e 1.30 e 42.86 e

LSD 5% 1.01 0.22 0.25 0.09 0.013 0.015 0.01 0.24 0.85

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight,

SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant

(p > 0.05).

https://doi.org/10.1371/journal.pone.0262937.t002

Table 3. The impact of different osmotic potentials on seed germination and growth traits of different wheat genotypes included in the study.

Osmotic potential GP RL SL RFW RDW SFW SDW R/S Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

0 MPa 100.00 a 18.34 a 14.55 a 0.69 a 0.31 a 0.60 a 0.30 a 1.27 c 49.44 a

-0.6 MPa 70.08 b 13.97 b 9.79 b 0.37 b 0.21 b 0.30 b 0.15 b 1.43 a 45.53 b

-1.2 MPa 40.75 c 7.72 c 5.50 c 0.17 c 0.08 c 0.12 c 0.05 c 1.41 b 39.92 c

LSD 5% 0.62 0.13 0.15 0.015 0.008 0.009 0.006 0.013 0.52

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight,

SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant

(p > 0.05).

https://doi.org/10.1371/journal.pone.0262937.t003

PLOS ONE The impact of PEG-induced drought stress on seed germination and seedling growth of different wheat genotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262937 February 11, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0262937.t002
https://doi.org/10.1371/journal.pone.0262937.t003
https://doi.org/10.1371/journal.pone.0262937


The decrease in seed germination percentage, root and shoot length, fresh and dry weights

of roots and shoot, and chlorophyll index, and increase in root:shoot ratio was significantly

altered by individual and interactive effects of genotypes and PEG-induced drought stress lev-

els (S2 Table). Overall, the highest decrease in seed germination percentage (53.50%) and root

length (45.75%) was recorded for genotype ‘716’, whereas genotype ‘J4’ recorded the lowest

decline in these traits compared to the rest of the genotypes included in the study (Table 5).

The genotype ‘A12’ observed the highest decrease in shoot length, root dry weight, shoot fresh

weight and shoot dry weight. The lowest decrease in these traits was recorded for the genotype

‘J4’. Similarly, genotypes ‘716’ and ‘Seher’ observed the highest increase in root:shoot ratio,

whereas the lowest increase was noted for genotype ‘A12’ (Table 5).

The highest decrease in seed germination percentage, root and shoot length, fresh and dry

weights of roots and shoot, and chlorophyll index was recorded for -1.2 MPa osmotic potential

compared to the control treatment of the study, whereas the lowest decrease was recorded for

-0.6 MPa osmotic potential (Table 6). The root:shoot ratio was not altered by the osmotic

potentials included in the study (Table 6).

Table 4. The impact of wheat genotypes by different osmotic potentials’ interaction on seed germination and growth traits of wheat genotypes included in the

study.

Interactions GP RL SL RFW RDW SFW SDW R/S Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

G1 × O1 100.00 a 17.20 d 13.73 d 0.54 e 0.28 ef 0.48 f 0.17 g 1.25 gh 47.50 de

G2 × O1 100.00 a 17.50 d 13.00 e 0.65 d 0.26 fg 0.53 e 0.23 e 1.34 ef 52.66 ab

G3 × O1 100.00 a 18.46 c 14.03 cd 0.72 b 0.32 bc 0.64 c 0.33 c 1.33 ef 49.40 c

G4 × O1 100.00 a 17.13 d 14.36 c 0.68 c 0.30 cd 0.61 d 0.30 d 1.19 i 51.66 b

G5 × O1 100.00 a 19.16 b 16.03 a 0.76 a 0.37 a 0.69 a 0.38 a 1.22 h 53.53 a

G6 × O1 100.00 a 19.46 ab 15.66 ab 0.72 b 0.33 b 0.62 cd 0.31 d 1.24 h 46.73 ef

G7 × O1 100.00 a 19.66 a 15.43 b 0.75 a 0.36 a 0.66 b 0.36 b 1.28 g 48.66 cd

G8 × O1 100.00 a 18.13 c 14.20 c 0.70 bc 0.28 de 0.62 cd 0.31 cd 1.28 g 45.40 fg

G1 × O2 59.66 g 11.50 i 8.73 i 0.34 jk 0.17 k 0.24 j 0.09 i 1.32 f 43.00 hi

G2 × O2 62.00 f 12.26 h 7.93 j 0.33 k 0.19 jk 0.24 j 0.07 j 1.58 b 46.40 ef

G3 × O2 70.66 d 13.46 g 9.36 h 0.36 ij 0.22 hi 0.29 i 0.16 g 1.45 d 45.66 f

G4 × O2 71.00 d 13.10 g 10.33 g 0.35 ijk 0.20 ij 0.29 i 0.13 h 1.25 gh 43.03 hi

G5 × O2 82.00 b 18.36 c 12.33 f 0.42 f 0.24 g 0.38 g 0.23 e 1.48 c 52.40 ab

G6 × O2 67.66 e 14.43 f 10.30 g 0.39 gh 0.24 gh 0.33 h 0.16 g 1.36 e 44.16 gh

G7 × O2 75.66 c 16.03 e 10.20 g 0.40 fg 0.25 g 0.34 h 0.20 f 1.57 b 50.00 c

G8 × O2 72.00 d 12.63 h 9.16 hi 0.37 hi 0.21 ij 0.33 h 0.17 g 1.41 d 39.63 k

G1 × O3 33.33 m 6.46 m 4.66 m 0.16 o 0.08 m 0.11 n 0.04 l 1.32 f 38.10 l

G2 × O3 38.00 l 7.06 l 4.10 n 0.17 o 0.03 n 0.06 p 0.02 lm 1.66 a 40.60 jk

G3 × O3 41.00 k 8.20 k 5.46 l 0.22 lm 0.15 l 0.13 m 0.06 jk 1.58 b 39.63 k

G4 × O3 42.66 jk 7.06 l 5.45 l 0.18 no 0.10 m 0.14 lm 0.07 j 1.34 ef 37.70 l

G5 × O3 52.33 h 10.53 j 7.60 j 0.24 l 0.08 m 0.19 k 0.11 h 1.35 ef 43.66 h

G6 × O3 45.66 i 8.20 k 6.16 k 0.19 mn 0.13 l 0.16 l 0.09 i 1.34 ef 39.83 k

G7 × O3 44.00 ij 8.06 k 6.13 k 0.13 p 0.05 n 0.10 no 0.04 kl 1.34 ef 41.83 ij

G8 × O3 29.00 n 6.20 m 4.46 mn 0.12 p 0.04 n 0.08 op 0.01 m 1.32 f 38.03 l

LSD 5% 1.76 0.39 0.44 0.027 0.022 0.023 0.017 0.037 1.48

Here, G1 = 716, G2 = A12, G3 = B6, G4 = J10, G5 = J4, G6 = KLR-16, G7 = KTDH16, G8 = Seher, O1 = control (0 MPa), O2 = -0.6 MPa, O3 = -1.2 MPa. Here, GP = seed

germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight, SDW = shoot dry weight, R/

S = root:shoot ratio, Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant (p > 0.05).

https://doi.org/10.1371/journal.pone.0262937.t004
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Regarding genotypes by drought stress interaction, the genotype ‘Seher’ with -1.2 MPa

treatment recorded the highest decrease in seed germination percentage, root and shoot

length, fresh and dry weights of roots and shoot, and chlorophyll index, whereas the lowest

decrease in these traits were noted for the genotypes ‘J4’ under -0.6 MPa osmotic potential

(Table 7). The genotypes ‘J4’ and ‘KTDH-16’ better tolerated increasing level of drought stress

compared to the rest of the treatments included in the study, whereas genotypes ‘Seher’, ‘716’

and ‘A12’ proved as the most sensitive genotypes.

Principal component analysis executed on germination and growth traits of different geno-

types yielded in two principal components (PCs) with eigenvalues >1 (Table 8). The first two

PCs collectively explained 91.86% variability in the dataset. The first PC was positively influ-

enced by all measured traits except root:shoot ratio, whereas the second PC was positively

affected by root:shoot ratio and chlorophyll index (Table 8).

The biplot of first two PCs divided the genotypes in two major groups. The first group had

three genotypes having similar seed germination percentage and growth-related traits, whereas

the second group was not influenced by any studied traits. The first group contained the geno-

types with higher drought tolerance while the second group included the genotypes with the

lowest drought tolerance recorded in the current study (Fig 1).

Principal component analysis executed on reductions in seed germination and growth traits

of different genotypes in three PCs with eigenvalues >1 (Table 9). The first three PCs

Table 5. The impact of different genotypes on percentage decrease in their seed germination and growth traits under different osmotic potentials.

Genotypes GP RL SL RFW RDW SFW SDW R/S � Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

716 53.50 a 47.75 a 51.21 b 53.35 c 54.19 b 62.82 de 61.67 c 6.05 a 14.59 bc

A12 50.00 b 44.75 b 53.72 a 61.19 b 56.37 ab 71.37 a 79.23 a 20.80 c 17.38 b

B6 44.16 c 41.33 c 47.15 c 59.64 b 42.21 d 66.40 bc 66.66 b 14.03 b 13.65 c

J10 43.16 c 41.14 c 45.05 c 61.03 b 50.05 c 64.22 cd 66.60 b 9.40 a 21.87 a

J4 32.83 e 24.61 e 37.83 d 56.09 c 55.37 ab 58.44 f 54.78 d 16.08 b 10.27 d

KLR-16 43.33 c 41.86 c 47.45 c 59.63 b 43.46 d 60.50 ef 58.59 cd 9.19 a 10.11 d

KTDH-16 40.16 d 38.73 d 47.07 c 64.35 a 58.30 a 66.80 b 66.199b 13.43 b 5.62 e

Seher 49.50 b 48.06 a 51.99 ab 65.16 a 54.60 b 67.04 b 69.51 b 6.667a 14.46 c

LSD 5% 1.54 1.76 2.45 2.87 3.63 2.35 4.05 3.48 2.91

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight,

SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant

(p > 0.05).

� indicated that relevant trait was increased instead of decrease

https://doi.org/10.1371/journal.pone.0262937.t005

Table 6. The impact of different osmotic potentials on percentage decrease in their seed germination and growth traits under different osmotic potentials.

Osmotic potential GP RL SL RFW RDW SFW SDW R/S� Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

-0.6 MPa 29.91 b 24.05 b 32.92 b 45.96 b 30.59 b 49.47 b 50.00 b 12.80 7.88 b

-1.2 MPa 59.25 a 58.00 a 62.45 a 74.15 a 73.04 a 79.93 a 80.81 a 11.11 19.10 a

LSD 5% 0.77 0.59 1.22 1.43 1.81 1.17 2.02 NS 1.45

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight,

SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant

(p > 0.05).

� indicated that relevant trait was increased instead of decrease

https://doi.org/10.1371/journal.pone.0262937.t006
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Table 7. The impact of wheat genotypes by different osmotic potentials’ interaction on decrease in seed germination and growth traits of wheat genotypes included

in the study.

Interactions GP RL SL RFW RDW SFW SDW R/S Chl

(%) (cm) (cm) (g) (g) (g) (g) (SPAD value)

G1 × O2 40.33 h 33.12 f 36.38 de 37.37 h 38.08 f 48.61 fg 47.04 gh 6.01 a-d 9.43 gh

G2 × O2 38.00 i 29.88 g 38.97 d 48.39 f 26.64 hi 54.57 e 70.03 e 17.81 fg 11.87 fg

G3 × O2 29.33 k 27.07 h 33.26 e 49.70 f 30.85 gh 54.15 e 51.45 fg 9.01 b-e 7.55 h

G4 × O2 29.00 k 23.54 i 28.05 f 48.53 f 33.73 fg 51.38 ef 56.59 f 5.64 abc 16.70 cde

G5 × O2 18.00 m 4.17 k 23.07 g 44.04 g 33.30 fg 44.25 h 40.00 i 21.46 gh 2.12 i

G6 × O2 32.33 j 25.85 h 34.26 e 46.32 fg 26.30 hi 46.80 gh 46.21 gh 10.13 cde 5.47 hi

G7 × O2 24.33 l 18.47 j 33.90 e 45.94 fg 30.31 ghi 48.67 fg 44.41 hi 22.14 gh -2.77 j

G8 × O2 28.00 k 30.33 g 35.44 e 47.39 fg 25.53 i 47.36 gh 44.24 hi 10.19 cde 12.71 efg

G1 × O3 66.66 b 62.38 b 66.04 a 69.33 de 70.29 c 77.04 bc 76.30 cd 6.10 a-d 19.76 bc

G2 × O3 62.00 c 59.62 c 68.46 a 73.99 b 86.11 a 88.18 a 88.44 b 23.78 h 22.90 b

G3 × O3 59.00 d 55.58 d 61.04 b 69.58 cde 53.57 e 78.65 b 81.86 c 19.05 gh 19.75 bc

G4 × O3 57.33 de 58.75 c 62.05 b 73.53 bc 66.36 c 77.06 bc 76.61 cd 13.16 ef 27.03 a

G5 × O3 47.66 g 45.04 e 52.59 c 68.14 e 77.43 b 72.62 d 69.56 e 10.70 de 18.42 cd

G6 × O3 54.33 f 57.86 c 60.63 b 72.94 bcd 60.61 d 74.20 cd 70.98 de 8.24 b-e 14.70 def

G7 × O3 56.00 ef 58.98 c 60.25 b 82.76 a 86.29 a 84.93 a 87.95 b 4.72 ab 14.02 ef

G8 × O3 71.00 a 65.80 a 68.54 a 82.92 a 83.67 a 86.72 a 94.78 a 3.14 a 16.20 cde

LSD 5% 2.18 2.52 3.46 4.06 5.14 3.32 5.73 4.93 4.12

Here, G1 = 716, G2 = A12, G3 = B6, G4 = J10, G5 = J4, G6 = KLR-16, G7 = KTDH16, G8 = Seher, O2 = -0.6 MPa, O3 = -1.2 MPa. Here, GP = seed germination percentage,

RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight, SDW = shoot dry weight, R/S = root:shoot ratio,

Chl = chlorophyll index. The means sharing same letters within a same column are statistically non-significant (p > 0.05).

� indicates that the relevant trait was increased instead of decrease

https://doi.org/10.1371/journal.pone.0262937.t007

Table 8. Eigenvalues, variability and factor loadings of first two principal components of principal component

analysis executed on seed germination and growth traits of wheat genotypes included in the study.

Traits PC1 PC2

Eigenvalue 6.76 1.50

Variability (%) 75.10 16.75

Cumulative % 75.10 91.86

Factor loadings

GP 0.91 -0.03

RL 0.99 0.05

SL 0.94 -0.28

FRW 0.96 -0.05

DRW 0.89 -0.28

FSW 0.99 -0.05

DSW 0.96 0.08

R/S 0.11 0.93

CHL 0.61 0.66

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root

dry weight, SFW = shoot fresh weight, SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The

bold values indicate that the relevant trait significantly affected the corresponding principal component

https://doi.org/10.1371/journal.pone.0262937.t008
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Fig 1. Biplot of the first two principal components of principal component analysis executed on seed germination

and growth traits of wheat genotypes included in the study. Here, GP = seed germination percentage, RL = root

length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight, SFW = shoot fresh weight, SDW = shoot

dry weight, R/S = root:shoot ratio, Chl = chlorophyll index.

https://doi.org/10.1371/journal.pone.0262937.g001

Table 9. Eigenvalues, variability, and factor loadings of first two principal components of principal component

analysis executed on percentage decrease in seed germination and growth traits of wheat genotypes included in

the study.

PC1 PC2 PC3

Eigenvalue 4.23 2.36 1.024

Variability (%) 47.09 26.25 11.37

Cumulative % 47.09 73.32 84.72

Factor loadings

GP 0.82 0.47 0.03

RL 0.84 0.46 -0.20

SL 0.89 0.18 -0.20

FRW 0.52 -0.69 -0.23

DRW 0.08 -0.67 -0.34

FSW 0.82 -0.53 -0.03

DSW 0.86 -0.36 0.25

R/S 0.17 0.70 -0.48

CHL 0.54 0.19 0.68

Here, GP = seed germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root

dry weight, SFW = shoot fresh weight, SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index. The

bold values indicate that the relevant trait significantly affected the corresponding principal component

https://doi.org/10.1371/journal.pone.0262937.t009
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collectively explained 84.72% variability in the dataset. The first PC was positively influenced

by seed germination percentage, root and shoot length and fresh and dry weight of root. The

second PC was positively affected by root:shoot ratio and negatively affected by fresh and dry

weight of root (Table 9) The third PC was only positively influenced by chlorophyll index.

The biplot of first two PCs divided the genotypes in two major groups. The first group had

three genotypes having similar values for decrease in seed germination percentage and

growth-related traits, whereas the second group was not influenced by the decrease studied

traits. The first group contained the genotypes with the lowest drought tolerance while the sec-

ond group included the genotypes with the highest drought tolerance recorded in the current

study (Fig 2).

Discussion

Different genotypes significantly differed for their tolerance to PEG-induced drought stress as

hypothesized. Similarly, the highest reduction in seed germination and growth traits was

recorded under -1.2 MPa osmotic potential level compared to the control treatment of the

study which supported our second hypothesis [14, 38]. Seed germination is an important tran-

sition stage from seeds to seedlings for crop plants and higher seed germination under stressful

and benign environmental conditions enable plants to thrive and produce higher yields under

adverse as well as benign environments [38]. Seed germination is controlled by the microcli-

matic conditions of the seedbed as well genetic potential of the crop plants. Genotypes by envi-

ronment interactions is significant for getting higher crop yields. The semi-arid regions of the

world experience low moisture availability during seed germination of wheat crop. Low

Fig 2. Biplot of the first two principal components of principal component analysis executed on percentage

decrease in seed germination and growth traits of wheat genotypes included in the study. Here, GP = seed

germination percentage, RL = root length, SL = shoot length, RFW = root fresh weight, RDW = root dry weight,

SFW = shoot fresh weight, SDW = shoot dry weight, R/S = root:shoot ratio, Chl = chlorophyll index.

https://doi.org/10.1371/journal.pone.0262937.g002
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moisture availability during seed germination crop declines both production maturity time [7,

8]. The impacts of water stress on seed germination and vegetative growth of different crops

such as wheat [8], maize and barley [8–10] has been reported in earlier studies and a constant

decline in the germination was recorded. The impact of drought stress on seed germination

and seedling stage of four bread wheat varieties have been evaluated and reduction in these

traits was noted with significant differences among tested varieties [11].

Seed germination is controlled by several necessary enzymes and stored food for the grow-

ing embryo. The increasing negative osmotic potential disrupts the activities of these enzymes;

thus, seeds lose their germination potential [39]. The other major reason of decreased seed ger-

mination is lower imbibition of water and the moisture needs of the seeds required for seed

germination are not fulfilled. The reduced seed germination under higher negative osmotic

potential in the current study is linked with lower water imbibition and subsequently reduced

enzyme activities necessary for seed germination. Several earlier studies have reported that

increasing osmotic potential have lowered seed germination of crop plants and weed species.

The tested genotypes significantly differed for their drought tolerance and the genotype ‘J4’

proved the most tolerant one compared to the rest of the genotypes included in the study. The

differences among genotypes are owed to their genetic make-up as well as ability to uptake

moisture necessary for the seed germination. The genotype ‘J4’ is a potential candidate for

developing drought tolerant wheat varieties through conventional breeding [40].

Different growth traits of the tested genotypes were also significantly altered by the osmotic

potentials used in the current study. Like seed germination, genotype ‘J4’ better tolerated mois-

ture deficiency compared to the rest of the genotypes included in the study. The decreased

growth traits under higher drought stress level can be explained with the lower moisture avail-

ability and subsequent lower transport of photosynthate from source to the sink. The differ-

ences among genotypes are owed to their inherent genetic makeup [41, 42].

Earlier studies [43, 44] have reported under water deficit reduced root length, shoot length,

root weight, shoot weight, number of spike, number of grains number/spike, 1000-grain,

weight and grain yield of wheat genotypes. Under drought stress root growth is limited but

shoot growth is abruptly decreased [45]. The root:shoot ratio was increased in the current

study indicating that all the tested genotypes tended to increase their root length under low

moisture availability. However, the increased root length could not compensated the damaged

caused by low water availability to growth traits [46, 47]. Chlorophyll concentration has been

reported to decrease under drought stress [24, 48] and similar was recorded in the current

study.

Generally, G × PEG-induced drought stress interactions reduced germinations and seedling

characteristics of the studied genotypes. The PCA divided the genotypes into 2 distinct groups,

i.e., group 1 and group 2 according to seed germination growth traits and decrease in seed ger-

mination and growth traits were tolerant to drought stress compared to the rest of the geno-

types included in the study. Thus, the identified genotypes, particularly, ‘J4’ can be used for

improving drought tolerance of bread wheat genotypes [49].

Conclusion

Different genotypes significantly differed for their tolerance to PEG-induced drought stress as

hypothesized. Similarly, the highest reduction in seed germination and growth traits was

recorded under -1.2 MPa osmotic potential level compared to the control treatment of the

study which supported our second hypothesis. The genotype ‘J4’ better tolerated drought stress

compared to the rest of the genotypes included in the study. Therefore, ‘J4’ can be used as

breeding material to improve drought tolerance of wheat crop.
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46. Önen H, Farooq S, Tad S, Özaslan C, Gunal H, Chauhan BS. The influence of environmental factors on

germination of Burcucumber (Sicyos angulatus) seeds: Implications for range expansion and manage-

ment. Weed Sci. 2018; 66: 494–501.

PLOS ONE The impact of PEG-induced drought stress on seed germination and seedling growth of different wheat genotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262937 February 11, 2022 14 / 15

https://doi.org/10.1023/B%3APLSO.0000037029.82618.27
https://doi.org/10.1023/B%3APLSO.0000037029.82618.27
https://doi.org/10.1186/s13007-015-0055-9
http://www.ncbi.nlm.nih.gov/pubmed/25750658
https://doi.org/10.1111/j.1439-0523.2010.01801.x
https://doi.org/10.1111/j.1439-0523.2010.01801.x
https://doi.org/10.2135/cropsci1981.0011183x002100020012x
https://doi.org/10.1111/j.1439-037X.2004.00592.x
http://www.ncbi.nlm.nih.gov/pubmed/10449394
https://doi.org/10.1104/pp.47.4.453
http://www.ncbi.nlm.nih.gov/pubmed/16657642
https://doi.org/10.3390/agronomy11030522
https://doi.org/10.3390/agronomy11030522
https://doi.org/10.3390/plants10091910
http://www.ncbi.nlm.nih.gov/pubmed/34579441
https://doi.org/10.1371/journal.pone.0257893
http://www.ncbi.nlm.nih.gov/pubmed/34735478
https://doi.org/10.1007/s11120-021-00853-z
http://www.ncbi.nlm.nih.gov/pubmed/34125427
https://doi.org/10.2478/intag-2013-0017
https://doi.org/10.2478/intag-2013-0017
https://doi.org/10.1371/journal.pone.0262937


47. Hussain M, Farooq S, Jabran K, Ijaz M, Sattar A, Hassan W. Wheat sown with narrow spacing results in

higher yield and water use efficiency under deficit supplemental irrigation at the vegetative and repro-

ductive stage. Agronomy. 2016; 6: 22. https://doi.org/10.3390/agronomy6020022

48. Jain M, Tiwary S, Plant RG. Sorbitol-induced changes in various growth and biochemici parameters in

maize. Plant, Soil and Environment. 2010: 56(6); 263–267.

49. Bilgili D, Mehmet A, Kazım M. Effects of peg-induced drought stress on germination and seedling per-
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