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I. INTRODUCTION

There is no doubt that advancements in technology and
particularly electronic communications have become one of
the main technological pillars of the modern age. The need
for confidentiality, integrity, authenticity, and non-repudiation
in data transmission and data storage makes the science of
cryptography one of the most important disciplines in infor-
mation technology. Cryptography, etymologically derived from
the Greek words hidden and writing, is the process of securing
data in transit or stored by third party adversaries. There are
two kinds of cryptosystems; symmetric and asymmetric.

Quantum computing theory firstly introduced as a concept
in 1982 by Richard Feynman, has been researched extensively
and is considered the destructor of the present modern asym-
metric cryptography. In addition, it is a fact that symmetric
cryptography can also be affected by specific quantum algo-
rithms; however, its security can be increased with the use
of larger key spaces. Furthermore, algorithms that can break
the present asymmetric cryptoschemes whose security is based
on the difficulty of factorizing large prime numbers and the
discrete logarithm problem have been introduced. It appears
that even elliptic curve cryptography which is considered
presently the most secure and efficient scheme is weak against
quantum computers. Consequently, a need for cryptographic
algorithms robust to quantum computations arose.

The rest of the paper deals initially with the analysis of
symmetric cryptography, asymmetric cryptography and hash
functions. Specifically, an emphasis is given on algorithms
that take advantage of the difficulty to factorize large prime
numbers, as well as the discrete logarithm problem. We move
on by giving an introduction to quantum mechanics and the
challenge of building a true quantum computer. Furthermore,

we introduce two important quantum algorithms that can
have a huge impact in asymmetric cryptography and less in
symmetric, namely, Shor’s algorithm and Grover’s algorithm
respectively. Finally, post-quantum cryptography is presented.
Particularly, an emphasis is given on the analysis of quantum
key distribution and some mathematical based solutions such
as lattice-based cryptography, multivariate-based cryptography,
hash-based signatures, and code-based cryptography.

II. PRESENT CRYPTOGRAPHY

In this chapter we explain briefly the role of symmetric
algorithms, asymmetric algorithms and hash functions in mod-
ern cryptography. We analyze the difficulty of factorizing large
numbers, as well as the discrete logarithm problem which is
the basis of strong asymmetric ciphers.

A. Symmetric Cryptography

In symmetric cryptography, the sender and the receiver use
the same secret key and the same cryptographic algorithm to
encrypt and decrypt data. For example, Alice can encrypt a
plaintext message using her shared secret key and Bob can
decrypt the message using the same cryptographic algorithm
Alice used and the same shared secret key. The key needs to
be kept secret, meaning that only Alice and Bob should know
it; therefore, an efficient way for exchanging secret keys over
public networks is demanded. Asymmetric cryptography was
introduced to solve the problem of key distribution in sym-
metric cryptography. Popular symmetric algorithms include the
advanced encryption standard (AES) and the data encryption
standard (3DES).

B. Asymmetric Cryptography

Asymmetric cryptography or public key cryptography
(PKC) is a form of encryption where the keys come in pairs.
Each party should have its own private and public key. For
instance, if Bob wants to encrypt a message, Alice would
send her public key to Bob and then Bob can encrypt the
message with Alice’s public key. Next, Bob would transmit
the encrypted message to Alice who is able to decrypt the
message with her private key. Thus, we encrypt the message
with a public key and only the person who owns the private
key can decrypt the message.

Asymmetric cryptography additionally is used for digital
signatures. For example, Alice can sign a document digitally
with her private key and Bob can verify the signature with
Alice’s known public key. The security of PKC rests on
computational problems such as the difficulty of factorizing
large prime numbers and the discrete logarithm problem. Such
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kind of algorithms are called one-way functions because they
are easy to compute in one direction but the inversion is
difficult [1].

1) Factorization Problem - RSA Cryptosystem: One of
the most important public-key schemes is RSA invented by
Ronald Rivest, Adi Shamir, and Leonard Adleman in 1977.
RSA exploits the difficulty of factorizing bi-prime numbers.
According to Paar and Pelzl [2], RSA and in general asymmet-
ric algorithms are not meant to replace symmetric algorithms
because they are computationally costly. RSA is mainly used
for secure key exchange between end nodes and often used
together with symmetric algorithms such as AES, where the
symmetric algorithm does the actual data encryption and de-
cryption. Kirsch [3] stated that RSA is theoretically vulnerable
if a fast factorizing algorithm is introduced or huge increase
in computation power can exist. The latter can be achieved
with the use of quantum mechanics on computers, known as
quantum-computers.

2) Discrete Logarithm Problem (DLP): Asymmetric cryp-
tographic systems such as Diffie-Hellman (DH) and Elliptic
Curve Cryptography (ECC) are based on DLP. The difficulty
of breaking these cryptosystems is based on the difficulty
in determining the integer r such that gr = x mod p. The
integer r is called the discrete logarithm problem of x to the
base g, and we can write it as r = logg x mod p. The discrete
logarithm problem is a very hard problem to compute if the
parameters are large enough.

Diffie-Hellman is an asymmetric cipher that uses the afore-
mentioned property to transmit keys securely over a public
network. Recently, keys larger or equal to 2048 bits are
recommended for secure key exchange. In addition, another
family of public key algorithms known as Elliptic Curve
Cryptography is extensively used. ECC provides the same
level of security as RSA and DLP systems with shorter key
operands which makes it convenient to be used by systems
of low computational resources. ECC uses a pair (x, y) that
fits into the equation y2 = x3 + ax + b mod p together with
an imaginary point Θ (theta) at infinity, where a, b ∈ Zp and
4a3 + 27b2 6= 0 mod p [2]. ECC needs a cyclic Group G and
the primitive elements we use, or pair elements, to be of order
G. ECC is considered the most secure and efficient asymmetric
cryptosystem, but this tends to change with the introduction of
quantum computers as it is explained in the next sections.

III. QUANTUM COMPUTING VS CLASSICAL COMPUTING

In 1982, Richard Feynman came up with the idea of
quantum computer, a computer that uses the effects of quantum
mechanics to its advantage. Quantum mechanics is related to
microscopic physical phenomena and their strange behavior.
In a traditional computer the fundamental blocks are called
bits and can be observed only in two states; 0 and 1. Quantum
computers instead use quantum bits also usually referred as
qubits [4]. In a sense, qubits are particles that can exist not only
in the 0 and 1 state but in both simultaneously, known as super-
position. A particle collapses into one of these states when it is
inspected. Quantum computers take advantage of this property
mentioned to solve complex problems. An operation on a qubit
in superposition acts on both values at the same time. Another
physical phenomenon used in quantum computing is quantum

entanglement. When two qubits are entangled their quantum
state can no longer be described independently of each other,
but as a single object with four different states. In addition,
if one of the two qubits state change the entangled qubit will
change too regardless of the distance between them. This leads
to true parallel processing power [5]. The combination of the
aforementioned phenomena result in exponential increase in
the number of values that can be processed in one operation,
when the number of entanglement qubits increase. Therefore,
a n-qubit quantum computer can process 2n operations in
parallel.

Two kinds of quantum computers exists; universal and
non-universal. The main difference between the two is that
universal quantum computers are developed to perform any
given task, whereas non-universal quantum computers are
developed for a given purpose (e.g., optimization of machine
learning algorithms). Examples are, D-Wave’s 2000+ qubits
non-universal quantum computer [6] and IBM’s 17 qubits
universal quantum computer with proper error correction.
IBM’s quantum computer is currently the state of the art
of universal quantum computers [7]. Both D-Wave and IBM
have quantum computers accessible online for research pur-
poses. Additionally, in October 2017, Intel in collaboration
with QuTech announced their 17-qubits universal quantum
computer [7].

Bone and Castro [8] stated that a quantum computer is
completely different in design than a classical computer that
uses the traditional transistors and diodes. Researchers have
experimented with many different designs such as quantum
dots which are basically electrons being in a superposition
state, and computing liquids. Besides, they remarked that
quantum computers can show their superiority over the clas-
sical computers only when used with algorithms that exploit
the power of quantum parallelism. For example, a quantum
computer would not be any faster than a traditional computer
in multiplication.

A. Challenges in Quantum Computing

There are many challenges in quantum computing that
many researchers are working on.

• Quantum algorithms are mainly probabilistic. This
means that in one operation a quantum computer
returns many solutions where only one is the correct.
This trial and error for measuring and verifying the
correct answer weakens the advantage of quantum
computing speed [3].

• Qubits are susceptible to errors. They can be affected
by heat, noise in the environment, as well as stray
electromagnetic couplings. Classical computers are
susceptible to bit-flips (a zero can become one and
vise versa). Qubits suffer from bit-flips as well as
phase errors. Direct inspection for errors should be
avoided as it will cause the value to collapse, leaving
its superposition state.

• Another challenge is the difficulty of coherence.
Qubits can retain their quantum state for a short period
of time. Researchers at the University of New South
Wales in Australia have created two different types
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of qubits (Phosphorous atom and an Artificial atom)
and by putting them into a tiny silicon (silicon 28)
they were able to elliminate the magnetic noise that
makes them prone to errors. Additionally, they stated
that the Phosphorous atom has 99.99% accuracy which
accounts for 1 error every 10,000 quantum operations
[9]. Their qubits can remain in superposition for a
total of 35 seconds which is considered a world record
[10]. Moreover, to achieve long coherence qubits need
not only to be isolated from the external world but to
be kept in temperatures reaching the absolute zero.
However, this isolation makes it difficult to control
them without contributing additional noise [3].

IBM in 2017, introduced the definition of Quantum Volume.
Quantum volume is a metric to measure how powerful a
quantum computer is based on how many qubits it has, how
good is the error correction on these qubits, and the number of
operations that can be done in parallel. Increase in the number
of qubit does not improve a quantum computer if the error rate
is high. However, improving the error rate would result in a
more powerful quantum computer [11].

IV. CRYPTOSYSTEMS VULNERABLE TO QUANTUM
ALGORITHMS

This section discusses the impact of quantum algorithms
on present cryptography and gives an introduction to Shor’s
algorithm and Grover’s algorithm. Note that Shor’s algorithm
explained in the following subsection makes the algorithms
that rely on the difficulty of factorizing or computing discrete
logarithms vulnerable.

Cryptography plays an important role in every electronic
communication system today. For example the security of
emails, passwords, financial transactions, or even electronic
voting systems require the same security objectives such as
confidentiality and integrity [12]. Cryptography makes sure
that only parties that have exchanged keys can read the
encrypted message (also called authentic parties). Quantum
computers threaten the main goal of every secure and authentic
communication because they are able to do computations
that classical (conventional) computers cannot. Consequently,
quantum computers can break the cryptographic keys quickly
by calculating or searching exhaustively all secret keys, allow-
ing an eavesdropper to intercept the communication channel
between authentic parties (sender/receiver). This task is consid-
ered to be computational infeasible by a conventional computer
[13].

According to NIST, quantum computers will bring the end
of the current public key encryption schemes [14]. Table I
adapted from NIST shows the impact of quantum computing
on present cryptographic schemes.

A. Shor’s Algorithm in Asymmetric Cryptography

In 1994, the mathematician Peter Shor in his paper “Al-
gorithms for Quantum Computation: Discrete Logarithms and
Factoring” [15], proved that factorizing large integers would
change fundamentally with a quantum computer.

Shor’s algorithm can make modern asymmetric cryptog-
raphy collapse since is it based on large prime integer fac-
torization or the discrete logarithm problem. To understand

how Shor’s algorithm factorizes large prime numbers we use
the following example. We want to find the prime factors of
number 15. To do so, we need a 4-qubit register. We can
visualize a 4-qubit register as a normal 4-bit register of a
traditional computer. Number 15 in binary is 1111, so a 4-
qubit register is enough to accommodate (calculate) the prime
factorization of this number. According to Bone and Castro
[8], a calculation performed on the register can be thought as
computations done in parallel for every possible value that the
register can take (0-15). This is also the only step needed to
be performed on a quantum computer.

The algorithm does the following:

• n = 15, is the number we want to factorize

• x = random number such as 1 < x < n− 1

• x is raised to the power contained in the register (every
possible state) and then divided by n
The remainder from this operation is stored in a sec-
ond 4-qubit register. The second register now contains
the superposition results. Let’s assume that x = 2
which is larger than 1 and smaller than 14.

• If we raise x to the powers of the 4-qubit register
which is a maximum of 15 and divide by 15, the
remainders are shown in Table II.
What we observe in the results is a repeating sequence
of 4 numbers (1,2,4,8). We can confidently say then
that f = 4 which is the sequence when x = 2 and n =
15. The value f can be used to calculate a possible
factor with the following equation:
Possible factor: P = xf/2 − 1

In case we get a result which is not a prime number we
repeat the calculation with different f values.

Shor’s algorithm can be used additionally for computing
discrete logarithm problems. Vazirani [16] explored in detail
the methodology of Shor’s algorithm and showed that by
starting from a random superposition state of two integers,
and by performing a series of Fourier transformations, a new
superposition can be set-up to give us with high probability
two integers that satisfy an equation. By using this equation
we can calculate the value r which is the unknown ”exponent”
in the DLP.

B. Grover’s algorithm in Symmetric Cryptography

Lov Grover created an algorithm that uses quantum com-
puters to search unsorted databases [17]. The algorithm can
find a specific entry in an unsorted database of N entries in√
N searches. In comparison, a conventional computer would

need N/2 searches to find the same entry. Bone and Castro
[8] remarked the impact of a possible application of Grover’s
algorithm to crack Data Encryption Standard (DES), which
relies its security on a 56-bit key. The authors remarked that
the algorithm needs only 185 searches to find the key.

Currently, to prevent password cracking we increase the
number of key bits (larger key space); as a result, the number of
searches needed to crack a password increases exponentially.
Buchmann et al. [18] stated that Grover’s algorithm have some
applications to symmetric cryptosystems but it is not as fast
as Shor’s algorithm.
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TABLE I. IMPACT ANALYSIS OF QUANTUM COMPUTING ON ENCRYPTION SCHEMES (ADAPTED FROM [14])

Cryptographic Algorithm Type Purpose Impact From Quantum
Computer

AES-256 Symmetric key Encryption Secure
SHA-256, SHA-3 – Hash functions Secure
RSA Public key Signatures, key establishment No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography) Public key Signatures, key exchange No longer secure
DSA (Finite Field Cryptography) Public key Signatures, key exchange No longer secure

TABLE II. 4-QUBIT REGISTERS WITH REMAINDERS

Register 1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Register 2: 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

C. Asymmetric Encryption Schemes Affected

All public key algorithms used today are based on two
mathematical problems, the aforementioned factorization of
large numbers (e.g., RSA) and the calculation of discrete
logarithms (e.g., DSA signatures and ElGamal encryption).
Both have similar mathematical structure and can be broken
with Shor’s algorithm rapidly. Recent algorithms based on
elliptic curves (such as ECDSA) use a modification of the
discrete logarithm problem that makes them equally weak
against quantum computers. Kirsch and Chow [3] mentioned
that a modified Shor’s algorithm can be used to decrypt data
encrypted with ECC. In addition, they emphasized that the
relatively small key space of ECC compared to RSA makes it
easier to be broken by quantum computers. Furthermore, Proos
and Zalka [19] explained that 160-bit elliptic curves could be
broken by a 1000-qubit quantum computer, while factorizing
1024-bit RSA would require a 2000-qubit quantum computer.
The number of qubits needed to break a cryptosystem is
relative to the algorithm proposed. In addition, they show in
some detail how to use Shor’s algorithm to break ECC over
GF(p).

On the other hand, Grover’s algorithm is a threat only to
some symmetric cryptographic schemes. NIST [14] points out
that if the key sizes are sufficient, symmetric cryptographic
schemes (specifically the Advanced Encryption Standard-AES)
are resistant to quantum computers. Another aspect to be taken
into consideration is the robustness of algorithms against quan-
tum computing attacks also known as quantum cryptanalysis.

In Table III, a comparison of classical and quantum security
levels for the most used cryptographic schemes is presented.

D. Symmetric Encryption Schemes Affected

For symmetric cryptography quantum computing is con-
sidered a minor threat. The only known threat is Grover’s
algorithm that offers a square root speed-up over classical brute
force algorithms. For example, for a n-bit cipher the quantum
computer operates on (

√
2n = 2n/2). In practice, this means

that a symmetric cipher with a key length of 128-bit (e.g.,
AES-128) would provide a security level of 64-bit. We recall
here that security level of 80-bit is considered secure. The
Advanced Encryption Standard (AES) is considered to be one
of the cryptographic primitives that is resilient in quantum
computations, but only when is used with key sizes of 192
or 256 bits. Another indicator of the security of AES in the
post-quantum era is that NSA (The National Security Agency)

allows AES cipher to secure (protect) classified information
for security levels, SECRET and TOP SECRET, but only with
key sizes of 192 and 256 bits [20].

TABLE III. COMPARISON OF CLASSICAL AND QUANTUM SECURITY
LEVELS FOR THE MOST USED CRYPTOGRAPHIC SCHEMES

Effective Key Strength/Security Level (in bits)Crypto Scheme Key Size Classical Computing Quantum Computing
RSA-1024 1024 80 0
RSA-2048 2048 112 0
ECC-256 256 128 0
ECC-384 384 256 0
AES-128 128 128 64
AES-256 256 256 128

E. Hash Functions

The family of hash functions suffer from a similar problem
as symmetric ciphers since their security depends on a fixed
output length. Grover’s algorithm can be utilized to find a
collision in a hash function in square root steps of its original
length (it is like searching an unsorted database). In addition,
it has been proved that it is possible to combine Grover’s
algorithm with the birthday paradox. Brassard et al. [21]
described a quantum birthday attack. By creating a table of
size 3

√
N and utilizing Grover’s algorithm to find a collision

an attack is said to work effectively. This means that to provide
a b− bit security level against Grover’s quantum algorithm a
hash function must provide at least a 3b − bit output. As a
result, many of the present hash algorithms are disqualified
for use in the quantum era. However, both SHA-2 and SHA-3
with longer outputs, remain quantum resistant.

V. POST-QUANTUM CRYPTOGRAPHY

The goal of post-quantum cryptography (also known as
quantum-resistant cryptography) is to develop cryptographic
systems that are secure against both quantum and conventional
computers and can interoperate with existing communication
protocols and networks [14]. Many post-quantum public key
candidates are actively investigated the last years. In 2016,
NIST announced a call for proposals of algorithms that are
believed to be quantum resilient with a deadline in November
2017. In January 2018, NIST published the results of the first
round. In total 82 algorithms were proposed from which 59
are encryption or key exchange schemes and 23 are signature
schemes. After 3 to 5 years of analysis NIST will report the
findings and prepare a draft of standards [22]. Furthermore,
the National Security Agency (NSA) has already announced
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plans to migrate their cryptographic standards to post-quantum
cryptography [23].

The cryptographic algorithms presented in this section
do not rely on the hidden subgroup problem (HSP) such
as factorizing integers or computing discrete logarithms, but
different complex mathematical problems.

A. Quantum Key Distribution

Quantum Key Distribution (QKD) addresses the challenge
of securely exchanging a cryptographic key between two par-
ties over an insecure channel. QKD relies on the fundamental
characteristics of quantum mechanics which are invulnerable
to increasing computational power, and may be performed by
using the quantum properties of light, lasers, fibre-optics as
well as free space transmission technology. QKD was first
introduced in 1984 when Charles Bennett and Gilles Brassard
developed their BB84 protocol [24, 25]. Research has led to the
development of many new QKD protocols exploiting mainly
two different properties that are described right below.

Prepare-and-measure (P&M) protocols use the Heisenberg
Uncertainty principle [26] stating that the measuring act of
a quantum state changes that state in some way. This makes
it difficult for an attacker to eavesdrop on a communication
channel without leaving any trace. In case of eavesdropping the
legitimate exchange parties are able to discard the corrupted
information as well as to calculate the amount of information
that has been intercepted [27]. This property was exploited in
BB84.

Entanglement based (EB) protocols use pairs of entangled
objects which are shared between two parties. As explained
in III, entanglement is a quantum physical phenomenon which
links two or more objects together in such a way that after-
wards they have to be considered as one object. Additionally,
measuring one of the objects would affect the other as well. In
practice when an entangled pair of objects is shared between
two legitimate exchange parties anyone intercepting either
object would alter the overall system. This would reveal the
presence of an attacker along with the amount of information
that the attacker retrieved. This property was exploited in E91
[28] protocol.

Both of the above-mentioned approaches are additionally
divided into three families; discrete variable coding, continuous
variable coding and distributed phase reference coding. The
main difference between these families is the type of detecting
system used. Both discrete variable coding and distributed
phase reference coding use photon counting and post-select
the events in which a detection has effectively taken place
[29]. Continuous variable coding uses homodyne detection
[29] which is a comparison of modulation of a single frequency
of an oscillating signal with a standard oscillation.

A concise list of QKD protocols for the aforementioned
families is presented below.

Discrete variable coding protocols:

• BB84 [24, 25] - the first QKD protocol that uses four
non-orthogonal polarized single photon states or low-
intensity light pulses. A detailed description of this
protocol is given below.

• BBM [30] - is an entanglement based version of BB84.

• E91 [28] - is based on the gedanken experiment [31]
and the generalized Bell’s theorem [32]. In addition,
it can be considered an extension of Bennett and
Brassard’s (authors of BB84) original idea.

• SARG04 [33, 34] - is similar to BB84 but instead of
using the state to code the bits, the bases are used.
SARG04 is more robust than BB84 against the photon
number splitting (PNS) attack.

• Six state protocol [35–37] - is a version of BB84
that uses a six-state polarization scheme on three
orthogonal bases.

• Six state version of the SARG04 coding [38].

• Singapore protocol [39] - is a tomographic protocol
that is more efficient than the Six state protocol.

• B92 protocol [40] - two non-orthogonal quantum
states using low-intensity coherent light pulses.

Continuous variable coding protocols:

• Gaussian protocols
◦ Continuous variable version of BB84 [41]
◦ Continuous variable using coherent states [42]
◦ Coherent state QKD protocol [43] - based on

simultaneous quadrature measurements.
◦ Coherent state QKD protocol [44] - based

on the generation and transmission of random
distributions of coherent or squeezed states.

• Discrete-modulation protocols
◦ First continuous variable protocol based on

coherent states instead of squeezed states [45].

Distributed phase reference coding protocols:

• Differential Phase Shift (DPS) Quantum Key Distri-
bution (QKD) protocol [46, 47] - uses a single photon
in superposition state of three basis kets, where the
phase difference between two sequential pulses carries
bit information.

• Coherent One Way (COW) protocol [48, 49] - the key
is obtained by a time-of-arrival measurement on the
data line (raw key). Additionally, an interferometer is
built on a monitoring line, allowing to monitor the
presence of an intruder. A prototype was presented in
2008 [50].

Discrete variable coding protocols are the most widely
implemented, whereas the continuous variable and distributed
phase reference coding protocols are mainly concerned with
overcoming practical limitations of experiments.

1) BB84 protocol: BB84 is the first quantum cryptographic
protocol (QKD scheme) which is still in use today. According
to Mayers [51] BB84 is provable secure, explaining that a
secure key sequence can be generated whenever the channel
bit error rate is less than about 7% [52]. BB84 exploits the
polarization of light for creating random sequence of qubits
(key) that are transmitted through a quantum channel.
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BB84 uses two different bases, base 1 is polarized 0o

(horizontal) or 90o (vertical) with 0o equal to 0 and 90o equal
to 1. Base 2 is polarized 45o or 135o with 45o equal to 1 and
135o equal to 0. Alice begins by sending a photon in one of
the two bases having a value of 0 or 1. Both the base and
the value should be chosen randomly. Next, Bob selects the
base 1 or 2 and measures a value without knowing which base
Alice has used. The key exchange process continues until they
have generated enough bits. Furthermore, Bob tells Alice the
sequence of the bases he used but not the values he measured
and Alice informs Bob whether the chosen bases were right
or wrong. If the base is right, Alice and Bob have equal bits,
whereas if it is wrong the bits are discarded. In addition, any
bits that did not make it to the destination are discarded by
Alice. Now Alice can use the key that they just exchanged to
encode the message and send it to Bob. BB84 is illustrated
visually in Fig. 1.

Worthy to mentioning is that this method of communication
was broken by Lydersen et al. in 2010 [53]. Their experiment
proved that although BB84 is provable secure the actual
hardware implemented is not. The authors managed to inspect
the secret key without the receiver noticing it by blinding the
APD-based detector (avalanche photodiode).

Yuan et al. [54] proposed improvements to mitigate blind-
ing attacks, such as monitoring the photocurrent for anoma-
lously high values. Lydersen et al. [55] after taking into
consideration the improvements of Yuan et al. [54] succeeded
again to reveal the secret key without leaving any traces.

2) Photon Number Splitting Attack: The crucial issue in
quantum key distribution is its security. In addition to noise in
the quantum channel, the equipment is impractical to produce
and detect single photons. Therefore, in practice, laser pulses
are used. Producing multiple photons opens up a new attack
known as Photon Number Splitting (PNS) attack. In PNS
attack, an attacker (Eve) deterministically splits a photon off of
the signal and stores it in a quantum memory which does not
modify the polarisation of the photons. The remaining photons
are allowed to pass and are transmitted to the receiver (Bob).
Next, Bob measures the photons and the sender (Alice) has to
reveal the encoding bases. Eve will then be able to measure
all captured photons on a correct bases. Consequently, Eve
will obtain information about the secret key from all signals
containing more than one photon without being noticed [57].

Different solutions have been proposed for mitigating PNS
attacks. The most promising solution developed by Lo et al.
[58] uses decoy states to detect PNS attacks. This is achieved
by sending randomly laser pulses with a lower average photon
number. Thereafter, Eve cannot distinguish between decoyed
signals and non-decoyed signals. This method works for both
single and multi-photon pulses [59].

B. Mathematically-based Solutions

There are many alternative mathematical problems to those
used in RSA, DH and ECDSA that have already been imple-
mented as public key cryptographic schemes, and for which
the Hidden Subgroup Problem (HSP) [60] does not apply;
therefore, they appear to be quantum resistant.

The most researched mathematical-based implementations
are the following:

• Lattice-based cryptography [61]

• Multivariate-based cryptography [62]

• Hash-based signatures [63]

• Code-based cryptography [64]

The existing alternatives and new schemes emerging from
these areas of mathematics do not all necessarily satisfy the
characteristics of an ideal scheme. In the following subsections
we are going to give an overview of these cryptographic
schemes.

1) Lattice-based Cryptography: This is a form of public-
key cryptography that avoids the weaknesses of RSA. Rather
than multiplying primes, lattice-based encryption schemes in-
volve multiplying matrices. Furthermore, lattice-based cryp-
tographic constructions are based on the presumed hardness
of lattice problems, the most basic of which is the shortest
vector problem (SVP) [61]. Here, we are given as input a
lattice represented by an arbitrary basis and our goal is to
output the shortest non-zero vector in it.

The Ajtai-Dwork (AD) [65], Goldreich-Goldwasser-Halevi
(GGH) [66] and NTRU [67] encryption schemes that are
explained below are lattice-based cryptosystems.

In 1997, Ajtai and Dwork[65] found the first connection
between the worst and the average case complexity of the
Shortest Vector Problem (SVP). They claimed that their cryp-
tosystem is provably secure, but in 1998, Nguyen and Ster
[68] refuted it. Furthermore, the AD public key is big and it
causes message expansion making it an unrealistic public key
candidate in post-quantum era.

The Goldreich-Goldwasser-Halevi (GGH) was published in
1997. GGH makes use of the Closest Vector Problem (CVP)
which is known to be NP-hard. Despite the fact that GGH is
more efficient than Ajtai-Dwork (AD), in 1999, Nguyen[69]
proved that GGH has a major flaw; partial information on
plaintexts can be recovered by solving CVP instances.

NTRU was published in 1996 by Hoffstein et al. [67].
It is used for both encryption (NTRUEncrypt) and digital
signature (NTRUSign) schemes. NTRU relies on the difficulty
of factorizing certain polynomials making it resistant against
Shor’s algorithm. To provide 128-bit post-quantum security
level NTRU demands 12881-bit keys [70]. As of today there
is not any known attack for NTRU.

In 2013, Damien Stehle and Ron Steinfeld developed a
provably secure version of NTRU (SS-NTRU) [71].

In May 2016, Bernstein et al. [72] released a new version of
NTRU called “NTRU Prime”. NTRU Prime countermeasures
the weaknesses of several lattice based cryptosystems, includ-
ing NTRU, by using different more secure ring structures.

In conclusion, among all the lattice-based candidates men-
tioned above NTRU is the most efficient and secure algorithm
making it a promising candidate for the post-quantum era.

2) Multivariate-based Cryptography: The security of this
public key scheme relies on the difficulty of solving systems
of multivariate polynomials over finite fields. Research has
shown that development of an encryption algorithm based on
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Fig. 1. Key exchange in the BB84 protocol implemented with polarization of photons (adapted from [56]).

multivariate equations is difficult [13]. Multivariate cryptosys-
tems can be used both for encryption and digital signatures.
Tao et al. [73] explained that there have been several attempts
to build asymmetric pubic key encryption schemes based on
multivariate polynomials; however, most of them are insecure
because of the fact that certain quadratic forms associated with
their central maps have low rank. The authors [73] proposed
a new efficient multivariate scheme, namely Simple Matrix
(ABC), based on matrix multiplication that overcomes the
aforementioned weakness. In addition, multivariate cryptosys-
tems can be used for digitals signatures. The most promis-
ing signature schemes include Unbalanced Oil and Vinegar
(multivariate quadratic equations), and Rainbow. UOV has a
large ratio between the number of variables and equations (3:1)
making the signatures three times longer than the hash values.
In addition, the public key sizes are large. On the other hand,
Rainbow is more efficient by using smaller ratios which result
in smaller digital signatures and key sizes [12].

3) Hash-based Signatures: In this subsection, we introduce
the Lamport signature scheme invented in 1979 by Leslie Lam-
port. Buchmann et al. [18] introduced concisely the scheme.
A parameter b defines the desired security level of our system.
For 128-bit b security level we need a secure hash function
that takes arbitrary length input and produces 256-bit length
output; thus, SHA-256 is considered an optimal solution that
can be fitted with our message m.

Private key: A random number generator is used to
produce 256 pairs of random numbers. Each number is 256
bits. In total our generated numbers are 2×256×256 = 16 KB.
Therefore, we can precisely say that the private key consists
of 8b2 bits.

Public key: All generated numbers (private key) are hashed

independently creating 512 different hashes (256 pairs) of 256-
bit length each. Therefore, we can precisely say that the public
key consists of 8b2 bits.

The next step is to sign the message. We have a hashed
message m and then for each bit (depending on its value 0 or
1) of the message digest we choose one number from each
pair that comprise the private key. As a result, we have a
sequence of 256 numbers (relative to the bit sequence of the
hashed message m). The sequence of numbers is the digital
signature published along with the plaintext message. It is
worth noting that the private key should never be used again
and the remaining 256 numbers from the pairs should be
destroyed (Lamport one-time signature).

The verification process is straightforward. The recipient
calculates the hash of the message and then, for each bit of
the hashed message we choose the corresponding hash from
the public key (512 in number). In addition, the recipient
hashes each number of the sender’s private key which should
correspond to the same sequence of hashed values with the
recipients correctly chosen public key values. The security of
this system derives by the decision of using the private key
only once. Consequently, an adversary can only retrieve 50
percent of the private key which makes it impossible to forge
a new valid signature.

Buchmann et al. [18] explained that in case we want to
sign more than one messages, chaining can be introduced. The
signer includes in the signed message a newly generated public
key that is used to verify the next message received.

Witernitz described a one time signature (WOTS) which is
more efficient than Lamport’s. Specifically, the signature size
and the keys are smaller [74]. However, OTSs are not suitable
for large-scale use because they can be used only once.
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Merkle introduced a new approach that combines Witer-
nitz’s OTS with binary trees (Merkle Signature Scheme). A
binary tree is made of nodes. In our case each node represents
the hash value of the concatenation of the child nodes. Each
of the leaf nodes (lowest nodes in the tree hierarchy) contains
a Witernitz’s OTS which is used for signing. The first node
in the hierarchy of the tree known as root node is the actual
public key that can verify the OTSs contained in the leaf nodes
[74].

In 2013, A. Hulsing improved the WOTS algorithm by
making it more efficient without affecting its security level
even when hash functions without collision resistance are used
[75].

Currently two hash-based signature schemes are under
evaluation for standardization. Specifically, the eXtended
Merkle Signature Scheme (XMSS) [76] which is a stateful
signature scheme, and Stateless Practical Hash-based Incredi-
bly Nice Collision-resilient Signatures (SPHINCS) [77] which
is as the name indicates a stateless signature scheme.

4) Code-based Cryptography: Code-based cryptography
refers to cryptosystems that make use of error correcting codes.
The algorithms are based on the difficulty of decoding linear
codes and are considered robust to quantum attacks when
the key sizes are increased by the factor of 4. Furthermore,
Buchmann et al. [18] state that the best way to solve the
decoding problem is to transform it to a Low-Weight-Code-
World Problem (LWCWP) but solving a LWCWP in large
dimensions is considered infeasible. It would be easier to
comprehend the process of this scheme by using Buchmann’s
[18] concise explanation of McEliece’s original code-based
public-key encryption system. We define b as the security
of our system and it is a power of 2. n = 4b lg b, d =
lg n, and t = 0.5n/d.

For example, if b = 128 then n = 512 log2(128) which is
equal to 3584. d = 12 and t = 149. The receiver’s public key
in this system is dtn matrix K with coefficients F2. Messages
to be encrypted should have exactly t bits set to 1 and for
the encryption the message m is multiplied by K. The receiver
generates a public key with a hidden Goppa code structure
(error-correction code) that allows to decode the message with
Patterson’s algorithm, or even by faster algorithms. The code’s
generator matrix K is perturbated by two invertible matrices
which are used to decrypt the ciphertext to obtain the message
m.

As for any other class of cryptosystems, the practice of
code-based cryptography is a trade-off between efficiency and
security. McEliece’s cryptosystem encryption and decryption
process are fast with very low complexity, but it makes use of
large public keys (100 kilobytes to several megabytes).

VI. CONCLUSION

In today’s world, where information play a particularly
important role, the transmission and the storage of data must
be maximally secure. Quantum computers pose a significant
risk to both conventional public key algorithms (such as
RSA, ElGamal, ECC and DSA) and symmetric key algorithms
(3DES, AES). Year by year it seems that we are getting closer
to create a fully operational universal quantum computer that

can utilize strong quantum algorithms such as Shor’s algorithm
and Grover’s algorithm. The consequence of this technological
advancement is the absolute collapse of the present public
key algorithms that are considered secure, such as RSA and
Elliptic Curve Cryptosystems. The answer on that threat is
the introduction of cryptographic schemes resistant to quantum
computing, such as quantum key distribution methods like the
BB84 protocol, and mathematical-based solutions like lattice-
based cryptography, hash-based signatures, and code-based
cryptography.
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