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The Impact of Random Predictors on
Comparisons of Coefficients between
Models: Comment on Clogg, Petkova, and
Haritou!

Paul D. Allison
University of Pennsylvania

As Clogg, Petkova, and Haritou (1995) correctly observe, regression ana-
lysts are often intensely concerned with what happens to the coefficient
of a predictor variable when additional variables are introduced into a
regression model. Unfortunately, this concern is typically expressed in
comparisons that lack any measure of statistical reliability. To remedy
this deficiency, Clogg, Petkova, and Haritou (hereafter CPH) propose a
set of methods for testing whether the change in a regression coefficient
(or set of coefficients) is statistically significant. These methods have the
virtues of simplicity and applicability to a wide class of generalized linear
regression models.

CPH deserve credit for identifying an important but overlooked prob-
lem, and their solutions are both clever and elegant. Nevertheless, I
believe that their proposed methods suffer from a fundamental flaw:
they make unrealistic assumptions about the sampling properties of the
predictor variables. Not surprisingly, this strategy leads to a substantial
simplification of their methodology. But in doing so, it exposes the analyst
to the risk of highly misleading conclusions.

My main objective is to explain why I think their assumptions are
problematic and to suggest what may go wrong as a consequence. I shall
focus primarily on the three-variable linear model since it embodies all
the critical issues without the distracting complications of the multivari-
able and nonlinear cases. And if the methods are deficient in the three-
variable case, there is little point in generalizing them to more compli-
cated situations. I shall also suggest some alternative methods for both
three-variable and multivariable linear models.

! For helpful suggestions, I am indebted to Nicholas Christakis, Arthur Goldberger,
Herbert Smith, and Richard Waterman. Direct correspondence to Paul D. Allison,
Department of Sociology, University of Pennsylvania, 3718 Locust Walk, Philadel-
phia, Pennsylvania 19104-6299. E-mail: allison@ssdc.sas.upenn.edu
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THE THREE-VARIABLE CASE

As far as possible, I will utilize the notation of CPH. The basic situation
is this: we first regress ¥ on X. Then we regress ¥ on X and Z. We want
to know if there is a significant difference between the two coefficients
for X. Like CPH, I assume that the data are generated by a “full”
model:

Yi =a+ Byx~in + Byz~xZi + Vi, i= 1; NN (7 (1)

where v; satisfies the usual assumptions of the linear model.? All deri-
vations are based on this model, not on the “reduced” model that ex-
cludes Z.

The basic aim is to test the null hypothesis that 8 = 0, where 8 = B,
— By..,» and B,, is the population least squares regression coefficient of
Y on X alone. That is, B,, = oxyloﬁ, where o, is the covariance of X
and ¥, and o is the variance of X. An unbiased estimator of 3 is just d
= b,, — b,,., where the b’s are the sample least squares estimators of
the @’s. It can be shown that

5= (0> @
yz-% O_i )
which is the population analogue of CPH’s formula
st
d= byz-x ;—2— ) (3)

X

where s,, is the sample covariance between X and Z and s? is the sample
variance of X. We see then that 8 = 0if B,,., = O or if o, = 0, that
is, if either Z has no effect on ¥, controlling for X, or if X and Z are
uncorrelated. In other words, there are two different ways that the null
hypothesis can be true. But CPH focus only on the first possibility. They
conclude that an appropriate test statistic for this null hypothesis is just
the usual f-statistic for the null hypothesis that 8,,., = 0, namely, the
ratio of the least squares coefficient b,,., to its estimated standard error.
In this setting, then, one needs only to check the significance of the added
variable. If its coefficient is significantly different from zero, we con-
clude that the coefficient for the initial variable has also changed sig-
nificantly.

? Specifically, I assume that E(v;|X;, Z,) = 0, V(v;|X,, Z;) = o7, and cov(v;, v;|X,,
Z;, X,, Z;) = 0 for all i and for all j ¥ i. For exact inferences, one also needs
normality of v;.
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This is a surprising result, one that CPH claim applies only in the
three-variable case. What they do not say is that there is an analogous
and even more startling result in the multivariable case: suppose that a
single Z variable is added to a model with several X variables. Under
CPH’s procedure, the ¢-statistic for the change in each X coefficient is
identical to the ¢-statistic for the Z coefficient. In other words, when a
single variable is added to a regression model, either every coefficient
changes significantly or none do. 1 suspect that most experienced
regression analysts will be troubled by this property. When a variableis
added to a regression equation, some coefficients may change
greatly, others hardly at all. Is it plausible that a procedure for testing
changes in coefficients should be insensitive to the magnitudes of the
changes?

CPH reach these unusual conclusions because of the way they treat
the predictor variables X and Z. In textbook treatments of regression
analysis, it is common to assume that the predictor variables are fixed
or nonstochastic. That means that, in repeated sampling, all the values
of the predictors stay the same from sample to sample, and only the
values of the dependent variable change. In fact, however, this assump-
tion is only plausible for experimental designs or for stratified sampling
when there is one stratum for every combination of values of the predictor
variables. But the vast bulk of social science research is nonexperimental,
and no one does stratified sampling in that way. So why do textbook
writers make such a patently unrealistic assumption? Because it enor-
mously simplifies the algebra and it is relatively innocuous. For inferences
about a correctly specified model, you get the same (or equivalent) results
whether you treat the predictor variables as random or fixed. For exam-
ple, in a two-variable linear model, the standard result for fixed X is that
V(b,,) = ol/nsi. When X is random, we have V(b,,) = olE(1/ns).
These results are operationally equivalent because, in the random case,
we estimate the expectation by its sample value.

Results are not equivalent, however, when the aim is to compare a
full model with a restricted model. When predictor variables are fixed,
for example, it is well known that deleting Z from the model reduces the
variance of the coefficient of X. But when X and Z are random, Binkley
and Abbot (1987) showed that the variance of the coefficient of X may
increase substantially when Z is deleted. Similarly, in comparing the
performance of alternative variable selection methods, Breiman and
Spector (1992) concluded: “There can be startling differences between
the x-fixed and x-random situations.”

Although CPH do not assume that the predictor variables are fixed,
they do something equivalent: they make all their inferences conditional
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on the realized values of the predictor variables.® Here’s a crucial exam-
ple: from CPH’s formula (11), it is easily shown that the conditional
variance of d is

2

s %

wﬂx2>=vww9{§]. @)
x

Noting that s,,/s’ is the sample regression coefficient of Z on X, we can

also write this as

V@|X, Z) = V(b,,..) bl (s)

This result is correct as far as it goes, but treating (5) as the variance of
d assumes that s,, and s’ are constants, not random variables that can
vary from sample to sample. In the next section I show that when X and
Z are random, the unconditional variance of d is larger than (5), possibly
much larger.

ALTERNATIVE METHODS FOR THE THREE-VARIABLE CASE

In the appendix, I derive the unconditional variance of d in the multivari-
able case. Specializing to the three-variable case, we have

V(@) = Vb, )E®b;,) + Bs,..V(bsy). 6)

Comparing (6) with (5), we see that the first component of the sum in (6)
corresponds to (5) except that we have taken the expectation of b2,. Since
the second component of (6) is nonnegative, the unconditional variance
exceeds the conditional variance except when B,,., = O.

In practice, a consistent estimator for this variance is

s2@) = s¥(b,,.,) b2, + b2, 5%0b,,). )

All of these quantities are available from standard computer output.
Here, s(b,,.,) is just the estimated standard error of b,,.,, and s(b,,) is
the estimated standard error of b,,. The usual formula for s(b,,) depends,
of course, on the assumption that Z can be expressed as a linear function
of X with an error term satisfying the standard conditions. If this is

3 CPH appear to confuse conditioning on the model with conditioning on the predictor
variables when they write V(d|H ) = V(d|X, Z) where H refers to the full model.
While they are correct that it is necessary to choose some model as “true” in order
to calculate expectations and variances, that does not imply that one must also condi-
tion on the variables in that model. In statistical terminology, conditioning on a model
has no technical meaning, while conditioning on a random variable (or variables) is
a well-defined operation.
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implausible (e.g., if Z is dichotomous), one can use robust variance esti-
mates (White 1980) that are now available in many regression programs.
Having calculated s%(d), one can construct the test statistic d/s(d), which
will have approximately a standard normal distribution under the null
hypothesis that 8 = 0. Alternatively, an approximate 95% confidence
interval can be calculated as d * 2s(d).

For hypothesis testing, another solution is based on likelihood theory.
Assuming a trivariate normal distribution for X, ¥, and Z, one can max-
imize the likelihood, subject to the constraint that & = 0, and construct
a likelihood ratio test by comparing the constrained likelihood with the
unconstrained likelihood. The chi-square statistic is calculated as twice
the positive difference in the two log likelihoods. Notice, however, that
we can carry out the constrained estimation in two distinct steps. First
constrain B,, . = 0; and then constrain o,, = 0. Pick whichever likeli-
hood is larger and contrast that with the unrestricted likelihood (which
must be larger still). This amounts to doing two likelihood-ratio tests,
one for each constraint, and using the chi-square that is smaller.

This logic could be extended to more conventional tests for regression
coefficients. First regress ¥ on both X and Z, and do a standard test for
B,z = 0. Then regress Z on X (or, equivalently, X on Z) and test for
significance of that coefficient. Reject the null only if both tests lead to
rejection. Note that under this procedure, the probability of rejecting the
null hypothesis (and concluding that the coefficient of X has changed) is
always lower than it is for the CPH test because the rejection region of
my proposed test is a proper subset of their rejection region.

A MONTE CARLO STUDY

To get an empirical comparison of the conditional and unconditional
methods, I generated random samples from a “population” in which X
and Z had a bivariate normal distribution with means of zero, variances
of one, and a correlation of p, where p was assigned values of .00, .30,
and .50. I then generated ¥ according to the equation

Y=1+2X+vZ +E, ®)

where E, an “unobserved” random disturbance, was normally distrib-
uted with a mean of zero, a variance of 100, and was independent of X
and Z. The coefficient v had values of either zero or three. When y =
0, it follows that & = 0. When vy = 3, we have 8 = 3p. For each of the
six combinations of p and vy, I drew 500 random samples of size n =
100. In each sample, I calculated d, the conditional and unconditional
estimates of the variance of d, and nominal 95% confidence intervals
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TABLE 1
COMPARISON OF CONDITIONAL AND UNCONDITIONAL METHODS WITH SIMULATED
Data, vy = 3
CONDITIONAL UNCONDITIONAL
0 ) Vid) Mean V(d) % Covered Mean V(d) % Covered
.00 .00 102 .014 15 116 99
.10 .30 115 .021 51 124 94
.30 .90 .203 114 80 211 94
.50 1.50 429 .360 92 .439 96

around & using both the conditional and unconditional variance esti-
mates.

Tables 1 and 2 give the results. I will first examine table 1, in which
¥ = 3. The third column gives the actual variance of d across the 500
samples, which is a model-free estimate of the true variance. The fourth
column reports the mean of the estimated variances of d using CPH’s
conditional estimator. When p = 0, the actual variance is more than
seven times the average estimated conditional variance, a truly horren-
dous performance. As p gets larger, the CPH estimator does some-
what better, although even at p = .50 it is still only 84% of the actual
value.

These variance underestimates are reflected in the percentages of con-
fidence intervals that actually include the true value, shown under “%
covered.” For p = 0, only 15% of the CPH confidence intervals include
the true value 8 = 0. Equivalently, a two-tailed test of the null hypothesis
(which is true in this case) would be rejected in 85% of the samples. For
p = .10, the coverage improves substantially to 51%, and for p = .50
it is almost at the nominal level. By contrast, the unconditional methods
perform very well. Although the average of the variance estimates is
always greater than the actual variance, the overestimate is never greater
than 14%. And the coverage of the confidence intervals is fairly close to
the nominal value of 95%.

Now turn to table 2, in which v = 0. From equation (6), we see that
when the true coefficient of Z is zero, the unconditional variance reduces
to the conditional variance. Hence, there is no reason in this case to
expect the unconditional method to do any better than the conditional
method, and the results in table 2 bear that out. In fact, the unconditional
estimates do somewhat worse. While the results for the conditional meth-
ods are nearly ideal, the unconditional variance estimates are too high,
and the confidence intervals are too large. These biases are greatest when
p = 0 and become trivial when p = .50. Even in the worst case, how-
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TABLE 2
COMPARISON OF CONDITIONAL AND UNCONDITIONAL METHODS WITH SIMULATED
DaTA, y = 0
CONDITIONAL UNCONDITIONAL
p 3 V(d) Mean V(d) % Covered Mean V(d) % Covered
.00 .00 .009 .010 95 .022 100
.10 .00 .021 .020 93 .032 100
.30 .00 .108 .110 95 .120 99
.50 .00 .367 .365 95 .378 97

ever, the unconditional confidence intervals are conservative in that the
probability of rejecting the true null hypothesis is less than the nominal
a level.

One should not take these simulations as definitive, however. Only a
few sets of parameter values and one sample size were considered. The
assumption that the predictor variables are normally distributed is also
unduly restrictive. Nevertheless, I think the results are sufficiently clear
to raise substantial doubts about the appropriateness of CPH’s proce-
dures for the kinds of data that are typically analyzed by social scien-
tists.

THE MULTIVARIABLE CASE

The generalization to the multivariable case involves a few new issues.
In matrix notation the true model is

Y=XB+Zy + v, 9

where ¥ and v are n X 1 vectors, X is an # X p matrix (including a
column of ones for the intercept), Z is an #» X ¢ matrix, Bisap X 1
vector, and vy is a ¢ X 1 vector. I assume further that the usual assump-
tions of the linear model hold conditionally on X and Z. That is, E(v|X,
Z) = 0Oand V(v|X, Z) = o1 where I is the n X # identity matrix. The
aim is to make inferences about 8 = B* — 3, where f* is the p X 1
vector of population least squares regression coefficients of ¥ on X alone.
We estimate & with d = b* — b, where b* is the sample least squares
estimator of ¥ on X alone and b is the least squares estimator of ¥ on X
when Z is included. Let g be the least squares estimator of y when both
X and Z are included in the model, and let H = (XTX)™'X7Z, the p X
¢ matrix of least squares regression coefficients for Z on X.
In the appendix I show that an appropriate estimator for V(d) is
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V)= HV(@@HT + g"WgXTX)™}, (10)

where W is a matrix of variances and covariances of the residuals from
regressing Z on X. The first component of the sum in (10) is equivalent
to CPH’s conditional variance estimator. Although the matrix W is not
standardly available in regression programs, it could be easily computed
from the residuals.

No special computation is necessary when there is only a single Z
variable, as (10) reduces to

V(d) = s*(g)hh? + g2V(h), (11)

where s*(g) is the squared estimated standard error of g, % is now a p X
1 vector of regression coefficients for Z on X, and V(h) is the usual
estimated covariance matrix. As in the three-variable case, one may wish
to use a more robust estimator for this matrix. From the main diagonal
of (11), the variance for the change in the coefficient of a single variable
X,;is

s2dy) = s (@h] + g's(hy), (12)

where %, is the coefficient of X; in the regression of Z on X. Note that
(12) has exactly the same form as (7) in the three-variable case, except
that the bivariate coefficient of Z on X is replaced by a partial coefficient.

To test the null hypothesis that 8 = 0, i.e., that none of the coefficients
changes with the addition of Z, one may use the statistic

_d"vd)"'d
?

which has approximately an F distribution with p and n — p — ¢ degrees
of freedom under the null hypothesis. By contrast, CPH’s F-statistic has
min(p, ¢) as the divisor and the corresponding degrees of freedom. That’s
because CPH’s estimator of V(d) does not have full rank if ¢ < p, that
is, if the number of Z’s is less than the number of X’s.* But (10) has full
rank (except when g = 0) with probability 1, because the second compo-
nent of the sum has full rank.

Likelihood tests of 8 = 0 are also possible with LISREL 8 (Joreskog
and Soérbom 1993) because that program allows for testing nonlinear
restrictions on the coefficients. The trick is to specify a recursive linear
model in which all the X’s are causally prior to all the Z’s. Then esti-
mate the model under the restriction Hg = 0. While earlier versions of

F* , (13)

* A square matrix has full rank if no column (or row) is a linear function of the other
columns (or rows).
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LISREL cannot impose nonlinear restrictions, they do report standard
error estimates for the “indirect effects” using formulas given by Sobel
(1982). Under a recursive model, the indirect effect of X; on ¥ through
Z is equivalent to d;. Hence, these standard errors can be used to con-
struct ¢-statistics and confidence intervals for the individual elements of
d. Although Sobel’s formulas are equivalent to (10), his results were
obtained as asymptotic approximations. Equation (10), on the other
hand, is based on exact results in the appendix.

WHEN IS CONDITIONING JUSTIFIED?

I have argued that when predictors are random, making inferences condi-
tional on the sample values of the predictors is justified in some situations
but not in others. Is there any way to characterize the distinction between
these two kinds of situations? Here are two possible answers to this
question:

1. Ancillavity.—For conventional inferences about regression coeffi-
cients, the practice of making inferences conditional on the predictor vari-
ables is well grounded in the theory of ancillarity (Cox and Hinkley 1974).
That theory says, roughly, that if the marginal probability distribution of
some sample statistic does not depend on the parameters of interest, then
inference should be made conditional on that sample statistic, which is
termed an ancillary statistic. In standard regression problems, the mo-
ments (means, variances, and covariances) of the predictor variables are
ancillary for testing hypotheses about the regression coefficients, so it is
reasonable to make inferences conditional on those moments.

For the three-variable case considered here, however, we have a sam-
ple statistic s,, whose sampling distribution obviously depends on the
parameter o,,. But this is one of the parameters we are trying to make
inferences about because the null hypothesis is true if o,, = 0. Condition-
ing on s, is tantamount to assuming that the only way the null hypothesis
(that 8 = 0) can be true is if §,,., = 0. Hence, conditioning cannot be
justified by the principle of ancillarity.

2. Conditional unbiasedness.—Consider an arbitrary statistic § com-
puted from data (X, V). A plausible claim is that the conditional variance
V(#|X) is acceptable for making inference about § whenever V() =
E(V(8]X)), that is, when the unconditional variance is equal to the ex-
pected value of the conditional variance. From (A3) in the appendix, we
see that this equality holds if and only if E(® |X) does not depend on X.
For a standard, three-variable linear model, this condition is satisfied
because E[byH|X, Z] = B,,.,, that is, the coefficients are conditionally
unbiased. On the other hand,
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E[d|X,Z] = a(b“> # 8. (14)
BZI

This means that, in a particular sample, if b,, happens to be larger (or

smaller) than the “true” coefficient due to sampling variation, then d

will also tend to be too large (or too small). Using the unconditional

variance for inference enables us to take account of this additional source

of variation.

GENERALIZED LINEAR MODELS

Everything I have said so far applies only to linear models. For generalized
linear models, the situation is rather more complicated because the regres-
sion estimators cannot usually be expressed in closed form. Nevertheless,
given the arguments just presented, there are strong reasons to suspect that
the unconditional variance of d will exceed the conditional variance. While
I have not yet attempted to derive the unconditional variance, I am not
optimistic that useful formulas will be forthcoming. Bootstrap estimates of
the variance offer one potential solution in these situations.

CONCLUSION

I have argued that the methods of CPH for comparing regression coeffi-
cients in “full” and “reduced” models depend on treating the predictor
variables as though they were fixed from sample to sample, an unrealistic
assumption for most social science data. Allowing for randomness in
the predictors leads to different, more conservative tests and confidence
intervals. This differs from inferences about coefficients in a single, cor-
rectly specified model, where methods are the same whether predictors
are fixed or random. The alternative methods proposed here are readily
implemented with conventional software and appear to outperform the
CPH methods on simulated data. While the issues are admittedly subtle,
I hope that these arguments are sufficient to forestall the universal and
uncritical adoption of the CPH tests as a standard for evaluating changes
in regression coefficients.

APPENDIX
Derivation of the Unconditional Variance

Using the notation developed above for the multivariable case, I make
use of the well-known result (e.g., Goldberger 1991) that b* = b + Hg.
This implies that d = Hg. We then have

1303



American Journal of Sociology

E(d|X,Z) = Hy, (A1)
and

V(d|X,Z)=HV(g)HT. (A2)

Formula (A2) is equivalent to the variance formula given by CPH. To
get the unconditional variance, we make use of another well-known for-
mula for arbitrary random vectors U and V,

V(U) = E[V(U|V)] + VIEU|V)], (A3)

that is, the unconditional variance is equal to the expectation of the
conditional variance plus the variance of the conditional expectation.
Applying this to the problem at hand, we have

V(@) = E[V(@|X, Z)] + VIE@|X, Z)]

(A4)
= EHV(HT) + V(HYy).
Focusing on the second term in (A4), write H = [hh, . . . kel vy =
[viv:- - -y, and Z = [Z,Z, . . . Z ). We then have
g
Hy= ) v, (AS3)
=1
It follows that
VEHY = > V) + D > yyecovlhy b, (A6)
i j o kE

Substituting (A6) into (A4) yields the desired result.

If we are willing to assume that the population regression of Z on X
satisfies a standard linear model, then we can further simplify (A6). In
that event,

Vh) = 62 EXTX)", (A7)
and
cov(kj, hy) = o, EXTX)™?, (A8)

where O'f is the disturbance variance in the equation for Z; and o, is the
covariance between the disturbances in the equations for Z; and Z,. Let
) be a ¢ X ¢ matrix containing these variances and covariances. We
can then write V(d) as

Vd)=EHV(@HD + yTOyEXTX)" . (A9)
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To estimate this, we can replace population quantities with sample esti-
mators to get

V)= HV(g)HT + g"Wg(X7X)™}, (A10)

where W is a matrix of variances and covariances of the residuals ob-
tained from regressing Z on X.
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REPLY TO ALLISON: MORE ON COMPARING
REGRESSION COEFFICIENTS!

Allison (1994) raises some legitimate questions concerning the interpreta-
tion of some of our procedures (Clogg, Petkova, and Haritou 1994; CPH
hereafter). Because his comments pertain to the CPH methods for the
analysis of linear regression models, in this note we also concentrate on

this case.?
Virtually all of the literature on specification tests or collapsibility tests

! We are indebted to Bing Li and Bruce Lindsay for helpful comments.

? The CPH procedures for generalized linear models are different from the CPH
procedures for linear models. For example, for the analysis of collapsibility in contin-
gency tables where log-linear models or related models might be used, the CPH
procedures are automatically “unconditional” because the models pertain to multivar-
iate (joint or marginal) distributions. For contingency table settings where either
log-linear models (unconditional) or logit models (conditional) might be used to address
the same question, the inferences are equivalent between the two cases as well. The
CPH procedures for generalized linear models are valid unconditionally, for testing
the relevant null hypothesis, and so are valid conditionally as well.
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