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Abstract

Oxidative stress, an alteration in the balance between reactive oxygen species (ROS) generation and antioxidant

buffering capacity, has been implicated in the pathogenesis of cardiometabolic disorders (CMD). At physiological

levels, ROS functions as signalling mediators, regulates various physiological functions such as the growth,

proliferation, and migration endothelial cells (EC) and smooth muscle cells (SMC); formation and development of

new blood vessels; EC and SMC regulated death; vascular tone; host defence; and genomic stability. However, at

excessive levels, it causes a deviation in the redox state, mediates the development of CMD. Multiple mechanisms

account for the rise in the production of free radicals in the heart. These include mitochondrial dysfunction and

uncoupling, increased fatty acid oxidation, exaggerated activity of nicotinamide adenine dinucleotide phosphate

oxidase (NOX), reduced antioxidant capacity, and cardiac metabolic memory. The purpose of this study is to discuss

the link between oxidative stress and the aetiopathogenesis of CMD and highlight associated mechanisms.

Oxidative stress plays a vital role in the development of obesity and dyslipidaemia, insulin resistance and diabetes,

hypertension via various mechanisms associated with ROS-led inflammatory response and endothelial dysfunction.
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Introduction
Cardiometabolic disorders (CMD) is a constellation of

metabolic predisposing factors for atherosclerosis such

as insulin resistance (IR) or diabetes mellitus (DM), sys-

temic hypertension, central obesity, and dyslipidaemia

[1]. They contribute to the global death rate and remain

a public health challenge. There is a significant rise in

the prevalence of CMD not only in high-resource coun-

tries but also in developing nations with emerging econ-

omies [2, 3]. Although, there are available data on the

development of CMD and the mechanisms associated

with its attendant complications, novel mechanisms are

still revealed by recent studies in an attempt to open

new therapeutic opportunities [4, 5]. Several studies have

implicated oxidative stress in CMD development. It has

been reported that cardio-tolerance to oxidative stress

reduces with advancing age due to the antioxidant levels,

particularly enzymatic antioxidants, contributing to the

development of CMD [6]. Also, this has been linked with

arterial thickening and atherosclerosis [7, 8]. This ensues

in vascular endothelial damage and remodelling.

The high prevalence of CMD is a global phenomenon.

The increase in the global prevalence is seemingly due

to a parallel rise in the incidence of dietary and lifestyle

changes, and cases of obesity [9]. There is an anticipated

increase in these disorders due to projections of a

greater incidence in future obesity cases [9]. The in-

creased incidence of CMD among urban women when

compared with their rural counterparts has been
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attributed to the global increase in urbanization and de-

cline in physical exercise, especially in Africa [10]. A Ni-

gerian study reported a prevalence of 18.0% and 10.0% in

the semi-urban and rural community respectively and

34.7% and 24.7% respectively in a hypertensive population

[11]. In Tunisia, Hosseinpanah et al. [12] documented a

prevalence of 55.8% and 30.0% in women and men re-

spectively. The higher prevalence in women was ascribed

to the lower high-density lipoprotein (HDL), higher inci-

dence of central obesity, and hypertension. According to

the findings of Harzallah in Turkey [13], though female

had a higher prevalence (39.6%) than the male counterpart

(28%), the prevalence was similar in the urban (33.8%) and

rural (33.9%) settings. In Qatar, prevalence rate of 26.5%

was reported using Adult Treatment Panel III (ATP III)

criteria and 33.7% using International Diabetes Founda-

tion (IDF) criteria [14]. The observed incidence rose with

advancing age and increasing body mass index, but re-

duced advancement in education and regular physical ac-

tivity. In Lebanon, a prevalence of 31.2% was reported

with men having a striking higher tendency [15]. Sibai

[16] documented an age-adjusted prevalence of 37% in

males in Saudi Arabia, with a higher prevalence in male

(44%) than female (35.6%) [16]. In the USA in 2003/2004,

using the National Cholesterol Education Program

(NCEP)/ATP III criteria, about 34% people above 20 years

old had CMD [17], with a marginal higher prevalence in

male (35.1%) than female (32.6%). Although the preva-

lence of the disorder varies across geographic regions and

age groups, about 25% of the adult European population

was reported to have CMD [18].

This review highlights the role of ROS in the patho-

genesis of CMD and discusses the associated mecha-

nisms. This will shed more light to the pathogenesis of

CMD and consequent open new therapeutic horizons.

Methods
The present study reviewed all available data published

in peer-reviewed journals up till date. Search was made

using AJOL, DOAJ, Embase, Google Scholar, Pubmed/

Pubmed Central, and Scopus databases using relevant

key word searches like “Cardiometabolic disorders”,

“metabolic disorders”, “Reactive oxygen species”, “ROS”,

“oxidative stress”, “lipid peroxidation”, “Nitrosative

stress”, and “Antioxidants and cardiometabolic disor-

ders”. Papers published in peer-reviewed journals were

included in this narrative review. Papers that did not ad-

equately discuss details of the study were excluded from

this review. Duplicated records were also excluded.

Discussion

Pathophysiology of CMD

CMD involve interplay of a cascade of pathophysiological

events ensuing in a rise in IR, accumulation of free fatty

acids (FFA) in the circulation, lipid and glucose dysmeta-

bolism, and raised levels of adipokines and cytokines [19–

21]. Since insulin controls adipose tissue lipid breakdown,

the primary source of plasma (FFA), excess visceral fat

causes IR with a resultant increase in lipids breakdown

[22]. IR is further triggered by the increasing FFA concen-

trations via enhanced glucose dysregulation [23, 24].

These cumulate in ladening of fatty deposits in the blood

vessels with resultant vasoconstriction, excessive fluid re-

tention, and sustained rise in blood pressure [22].

A raised level of FFA does not just prevent the stimu-

lation of glucose uptake in the muscle by insulin, [25] it

also depresses the production of glucose in the liver

[26], and enhances hepatic uptake of FFA. It causes in-

creased production of VLDL and triglyceride (TG) in the

liver [27–30], thus promoting TG transfer from VLDL

to HDL and subsequent clearance of HDL [29, 30].

Inflammatory cytokines are generated by the adipose

tissue and have the potential to trigger IR and adiponec-

tin [31, 32]. Tumour necrosis factor-alpha (TNF-α) sup-

presses insulin signalling [33], interleukin-6 (IL-6)

directly induces inflammation or enhances the release of

hepatic C-reactive protein [34], while interleukin-8 (IL-

8) activates neutrophil granulocytes. Adiponectin in-

creases hepatic insulin sensitivity and oxidation of skel-

etal muscle glucose and fatty acid, and decreases glucose

release [35–38]. This may infer that when there is ab-

normal plasma FFA concentration, the production of

adipokines is raised while that of adiponectin is reduced.

Though obesity-associated excess visceral and/or in-

traperitoneal fat is strongly linked with IR [25, 26, 39,

40], whether or not intraperitoneal fat causes or is just

associated with IR remains unclear. However, studies

have suggested that fatty acids from lipolysis of intraper-

itoneal fat are a vital influential predisposing factor of IR

since they are delivered to the liver directly through the

portal vein [41]. Findings from the study of Havel et al.

[42] among obese subjects revealed that lipolysis of the

intraperitoneal fat accounts for 20% of FFA delivered to

the liver and 15% delivered to skeletal muscle. Thus, in-

traperitoneal fat possibly contributes to hepatic IR, but

unlikely to trigger skeletal muscle IR.

The pathogenesis of CMD involves a complex inter-

play between genetics and environmental factors. Also,

epigenetic factors such as DNA methylation and histone

modification are possibly key in the incidence of these

disorders by mediating the effects of environmental ex-

posures on the risk of development of CMD. The gen-

etic factors are primarily hereditary and non-modifiable,

while the environmental factors are modifiable. Race and

advancing age are additional non-modifiable factors.

Table 1 shows a list of some modifiable factors. Individ-

uals at risk could be influenced by one or more heredi-

tary and environmental factors which may worsen the
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pathogenic progress [22]. Thus, lifestyle modifications

like diet and weight control, optimal exercise, cessation

of cigarette smoking, and control of pollution and expos-

ure to other mitochondrial toxins are beneficial factors

that assuage CMD development.

Epigenetics are alterations caused by developmental pro-

cesses or environmental influences that do not modify the

genetic code but influences the expression of the

information encoded in the DNA [43]. Though there is lim-

ited evidence from genetic studies for a common genetic

soil for CMD development, and contradicting relationships

of genes and gene variants exists [44]. In order to promote

early detection, prompt management and likely preventive

strategies, a good an in-depth knowledge of the predispos-

ing genetic factors influencing the development of CMD is

important.

Table 1 Modifiable protective and risk factors for cardiometabolic disorders
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Oxidative stress

Oxidative stress (OS) is the presence of reactive oxygen

species (ROS) in excess of the antioxidant buffering cap-

acity. It can be described as an imbalance in ROS gener-

ation and antioxidant defence leading to accumulation

of ROS. It is an alteration in the balance of prooxidant

/antioxidant system in favour of prooxidant with attend-

ant lethal effects with resultant damage to the cellular

macromolecules (Fig. 1). In organisms, including

humans, ROS and free radicals are produced during

metabolic and immune system function. Molecular oxy-

gen (O2) can unpair and leave free radicals which are

highly unstable and reactive, leading to the formation of

ROS [45, 46].

Free radicals are molecules with at least one unpaired

electrons in their outer orbit. This makes them highly

unstable and reactive with other molecules to produce

more stable species [47]. Such radicals include Reactive

Oxygen Species (ROS) and Reactive Nitrogen Species

(RNS) [48]. Free radicals and oxidant species are

involved in cellular and tissue dysfunction, and thus

toxic [49]. Although low or moderate concentrations of

these molecules play physiological roles such as signal-

ling processes and defence mechanisms against infec-

tious agents [49], when they are generated in excess,

they lead to lipid, protein and DNA damage. This is a

known fact, though stunning that ROS protects the cell

against ROS damage by stimulating antioxidant re-

sponses and maintaining or re-establishing redox bal-

ance. It is noteworthy to state that in non-pathological

states, ROS in low to moderate concentrations play a

key homeostatic function in cellular and mitochondrial

signaling and functionality; but, in excess concentrations

when unchecked, it mediates oxidative cell and tissue

damage. This can trigger positive feedback [50].

Sources of cardiovascular ROS

Sources of ROS in cells

Vascular cells, including cardiac cells and neurons, gen-

erate ROS, thus triggering the incidence of CMD.

Fig. 1 Oxidative stress resulting from an imbalance between ROS generation and antioxidant system and its consequences on

cellular macromolecules

Akhigbe and Ajayi Lipids in Health and Disease           (2021) 20:23 Page 4 of 18



Various enzyme systems such as cytochrome P450, the

mitochondrial respiratory chain, xanthine oxidase (XO),

uncoupled endothelial nitric oxide synthase (eNOS),

heme oxygenase (HO), myeloperoxidase (MPO), lipoxy-

genase (LOX), cyclooxygenase (COX) and NADPH oxi-

dases (NOX) generate ROS especially in a pathological

state [51].

XO is a xanthine oxidoreductase that exists in two

forms; xanthine dehydrogenase (XDH), which is the pre-

dominant form and can be irreversibly or reversibly con-

verted into XO via proteolysis or the oxidation of

cysteine residues respectively [52]. Its expression in the

vascular endothelium is promoted by angiotensin II

(Ang II) or oscillatory shear in a NOX-dependent man-

ner [53].

The NOX family includes NOX1-5 and DUOX1-2. In

humans, NOX2 NADPH oxidase seems to be the most

important source of ROS generation [54–56]. NADPH

oxidases are specific source of ROS because they pro-

duce ROS in a tightly-controlled manner unlike as in

other sources where ROS are produced as a secondary

metabolite [57]. Also, NADPH oxidases can also gener-

ate ROS from other enzyme systems [57].

Superoxide radical (O2
-) is the first moiety that is pro-

duced by most of the enzyme systems, particularly

NADPH oxidases. O2
- radical can undergo rapid dismu-

tation to hydrogen peroxide (H2O2), which is mediates

most signaling effects of ROS [57].

ROS in the heart

Excessive ROS generation in the mitochondria has been

shown in cardiomyocytes [58]. Mitochondria are the

powerhouses of the living cells and produce energy pri-

marily via oxidative phosphorylation. Also, mitochondria

are the major source of ROS in the cardiovascular sys-

tem [51, 58] (Fig. 2, Table 2). The aconitase of the Kreb’s

cycle in the mitochondria matrix produces NADH and

FADH2 which are oxidized for ATP production in the

electron transport chain (ETC) located in the inner

membrane of the mitochondria. The ETC mediates elec-

tron flow through series of electron carriers including

complexes I, II, III and IV as well as ubiquinone and

Fig. 2 Generation of reactive oxygen species (ROS) by the mitochondria electron transport chain. Δp : proton motive force, ΔΨ: membrane

potential, ΔpH : proton gradient
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cytochrome c. As electron flows through the ETC, pro-

tons are translocated from the mitochondria matrix to

the mitochondria inter-membrane space, thus creating

an electrochemical potential gradient across the inner

membrane. Generation of superoxide anion radicals in

the mitochondria is mainly by electron leakage from the

chain. Under physiological conditions, the oxygen ten-

sion in the mitochondria is low in state 4 respiration

and oxygen consumption by the chain does not meet the

demand of oxidative phosphorylation. Hence, a decrease

in the rate of mitochondrial oxidative phosphorylation

increases electron leakage from the ETC and conversely

generation of superoxide anion radical.

XO generates O2
- as a secondary metabolite of purine

catabolism. NOS uncoupling and subsequent O2
- gener-

ation have been linked with vascular endothelial dys-

function. Although, NOS primarily produces nitric oxide

(NO), it may generate O2
- if it becomes uncoupled. Un-

coupling of NOS is commonly seen when its co-factor,

tetrahydrobiopterin (BH4), or its substrate, L-arginine, is

deficient [59]. NADPH oxidases may also contribute to

the generation of ROS by degrading BH4 via oxidation,

thus causing NOS uncoupling [60], or activating

xanthine oxidase [61].

Oxidative stress triggers apoptosis via several pathways

activating enzymes involved in pro-apoptotic signalings,

such as JNK, p38, ASK-1, and CaMKII [62] with result-

ant release of cytochrome-c. Though the excessive gen-

eration of ROS by NOX is deleterious, at minimal to

moderate levels, H2O2 and O2
- produced by NOX, act as

signalling molecules, thus mediating physiological re-

sponses [63].

ROS and the vasculature

ROS influence pathological and physiological pro-

cesses in the vasculature. Predisposing factors to

CMD like DM, obesity, hypertension, dyslipidaemia,

and ageing result in vascular dysfunction partly

through oxidative stress [64]. ROS is essential for

the growth, proliferation, and migration of endothe-

lial cells (ECs) and smooth muscle cells (SMCs), as

well as angiogenesis, apoptosis of EC and SMC, vas-

cular tone, host defence, and genomic stability [65].

OS does not only induce macromolecular damage, it

also alters vascular redox-dependent signaling

pathways [66]. ROS target signaling pathways such

as mitogen activated protein kinases (MAPKs) which

include extracellular signal-regulated kinases (ERK1/

2), p38 and c-Jun N-terminal kinases [67]. It also

targets serine/threonine kinase Akt/protein kinase B,

epidermal growth factors (EGF), and platelet-derived

growth factors (PDGF). In oxidative stress, ROS trig-

gers endothelial dysfunction via disruption of vaso-

protective NO signaling [68].

NO is a vasodilator that acts via cGMP which is pro-

duced by SMCs. NO inhibits platelet adhesion and ag-

gregation, thus acting as an anti-atherogenic factor. It

also prevents leukocyte-endothelial interactions and MC

proliferation [69]. O2
- rapidly reacts with NO to produce

peroxynitrite (ONOO-), which is also a potent oxidant

[70]. ONOO- formation occurs more rapidly than super-

oxide dismutase (SOD)-dependent dismutation of O2
-

[71]. The formed ONOO- induces BH4 oxidation with

resultant eNOS uncoupling [72] thus converting eNOS

into a pro-oxidant [73]. Hence, ONOO- formation de-

pletes NO concentration and also induces eNOS

uncoupling.

ROS also triggers the structure of the inflammasome,

IL-1β, and IL-8 via the activation of caspase-1 [74]. This

pathway is vital in atherosclerosis.

As highlighted previously, NADPH oxidase, XO,

and uncoupled eNOS, including lipoxygenase, cyclo-

oxygenase, and cytochrome P450 monooxygenase are

key enzymes that generate ROS in the cells as well

as in the vascular wall. ROS are involved in the

structural modification of the vascular wall thickness

and lumen diameter [75]. This is consequent to the

passive adaptation to chronic changes in

hemodynamics and neuro-humoral factors such as

angiotensin II and ROS [75]. This vascular remodel-

ling could be inward eutrophic or hypertrophic, and

play a role in the development of hypertension. The

inward eutrophic remodelling involves reduction in

the size of the lumen, media thickening, improved

media to lumen ratio, and little alteration in the

cross-sectional area of the media [76], while the

hypertrophic remodelling involves an enhancement

in the cross-sectional area of the vascular wall, size

of the cell and accumulation of ECM proteins like

collagen and fibronectin [77].

Table 2 Enzymes and inhibitors of the electron transport chain (ETC)

Complex Enzymes Inhibitors

Complex I NADH-ubiquinone oxidoreductase Rotenone, Amobarbital (Amytal), Demerol, Piericidin,

Complex II Succinate- ubiquinone oxidoreductase Thenoyltrifluoroacetne (TTFA), Malonate oxaloacetate, Diazoxide

Complex III Ubiquinone cytochrome-c oxidoreductase Antimycin A, Myxothiazol, Stigmatellin

Complex IV Cytochrome-c oxidase Cyanide, Carbon monoxide, Azide, Hydrogen sulphide

Complex V ATP synthase Oligomycin A, Diyclo hexyl carbo dimide (DCCD)
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Vascular ROS scavenging

Mitochondria as the primary source of ROS CMD is

accompanied by an imbalance in vascular ROS gener-

ation and scavenging. The primary defense against vas-

cular ROS is discussed below.

Superoxide dismutase In humans, SOD1, SOD2, and

SOD3 are the three known SOD isoforms. SOD1 (cop-

per, zinc [Cu-Zn]-SOD) is located in the cytoplasm and

mitochondrial intermembrane space, SOD2 (Mn-SOD)

is located in the mitochondrial matrix, while SOD3

(extracellular [EC]-SOD) is located in the extracellular

space [78]. SOD dismutates O2
- to H2O2 and oxygen,

hence prevents the inactivation of NO. However, high

concentrations of the secondary metabolites of the dis-

mutation may cross cellular membranes to generate pro-

atherogenic molecules [78–81]. The effect of SOD is

dose-dependent.

Catalase Catalase decomposes H2O2 to oxygen and

water. Up-regulation of this enzymatic antioxidant in-

hibits atherosclerosis [80] and impairs angiotensin II-

mediated aortic wall hypertrophy [82].

Glutathione peroxidase Glutathione peroxidase (GPx)

catalyzes the reduction of H2O2 to water, and lipid per-

oxides to their alcohols [83, 84]. Although there are 8

isoforms of GPx, GPx1 and GPx4 seem to be the most

studied. GPx1 is found in many cell types, and its defi-

ciency has been linked with atherosclerosis [85, 86]. On

the other hand, GPx4 is expressed in the endoplasmic

reticulum (ER), cytoplasm, mitochondria, and plasma

membrane. GPx4 prevents atherogenesis by impairing

lipid peroxidation and the sensitivity of vascular cell to

oxidized lipids [87].

Paraoxonase Paraoxonases (PON) include PON-1,

PON-2, and PON-3. PON exhibit anti-atherogenic prop-

erties, possibly via inhibition of oxidative stress [88].

PON-1 is primarily secreted by the liver [89]. PON-1

prevents the peroxidation of HDL and LDL, breaks

down cholesteryl esters and lipoproteins seen in oxidized

lipoproteins, and also prevents OS, inflammation, and

monocyte attraction via blunting myeloperoxidase-

induced ROS generation. PON-2, which is expressed in

the ER and mitochondrial membranes, exerts its effects

on the vascular cells [90, 91]. PON-3, which is located in

the serum and cells [92], prevents atherogenesis [93, 94].

Heme oxygenase HO catalyzes degradation of heme to

carbon monoxide (CO), biliverdin, and free ferrous iron

[95]. HO exists in three isoforms; the inducible (HO-1),

constitutive (HO-2), an enzymatically inactive (HO-3)

forms [95]. OS, hypoxia, and some cytokines stimulate

the upregulation of the inducible isoform, which are key

in impairing vascular remodelling and atherosclerosis

[95]. Although at moderate concentrations, the CO pro-

duced by HO has anti-inflammatory, antiproliferative,

and vasodilatory activities, it is toxic at a very high con-

centration [96]. Biliverdin is a pigment that scavenges

radicals and also blunts the effect of NOX [97].

Thioredoxin Thioredoxin (Trx) is an enzymatic anti-

oxidant that is located in the ECs, SMCs, and fibro-

blasts [98]. It is vasoprotective and reverses age-

related arterial stiffness and raised blood pressure via

enhancement of vascular redox and restoration of the

function of eNOS [98].

Non-enzymatic antioxidants Bilirubin, uric acid, gluta-

thione, exogenous substances like vitamins (mainly vita-

mins C and E) and polyphenols, contribute to the

antioxidant defence system [99]. Bilirubin and uric acid

scavenge extracellular radicals, while glutathione modi-

fies the intracellular redox state [99]. Vitamin C (ascor-

bic acid) scavenges several oxidative/nitrogen species,

stabilizes BH4 and eNOs, and restores vitamin E from

its radical state (tocopheroxyl radical) [100]. α-

tocopherol is the principal member of vitamin E with

antioxidant property. Sources of polyphenolic antioxi-

dants include food such as vegetables and cocoa and

beverages. Polyphenolics impair NADPH oxidases activ-

ities [101, 102].

Micronutrients like selenium, copper, zinc, iron, and

calcium also contribute to the antioxidant buffering cap-

acity. Selenium protects against oxidative DNA damage.

It acts via selenoenzymes-mediated mechanism such as

GPx [103]. As selenium serves as a co-factor of GPx,

copper and zinc are co-factors of SOD, while the iron is

a co-factor of catalase. Thus, these elements influence

the activities of the respective enzymatic antioxidants.

Note worthily, iron and copper may act as pro-oxidants

by catalyzing the production of hydroxyl (OH) radicals

from O2
- and H2O2 [104, 105]. Although calcium is crit-

ical in excitation-contraction coupling, it also plays vital

physiological roles like the regulation of gene expression

and cellular energetics [106–110].

Biomarkers of oxidative stress

Oxidative stress has been shown to be a key player in

various diseases including cardiometabolic disorders. A

wide range of methods have been developed and

employed to measure the nature and extent of oxidative

stress ranging from oxidation of lipids to free amino

acids and proteins, and DNA. Although diverse oxidative

stress biomarkers are available as predictors of various

diseases, the specificity of each seems to be yet
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established. Available biomarkers of oxidative stress have

been summarized in Table 3.

Oxidative stress and CMD

Oxidative stress and obesity

Emerging evidences implicating OS as the soil for the

initiation and progression of dyslipidaemia, obesity, IR,

DM, hypertension and atherosclerosis exit. Obesity is

the primary causal component of CMD [111–114] (Fig.

3). Consumption of an energy-dense meal is linked to a

significant increase in the concentrations of 4-hydroxyl

2-nonenal (HNE) [116], thus is essential in the incidence

of obesity. Notably, Johnson et al. [117] have reported a

reduced HNE level of HNE in obese individuals on cal-

orie restriction. This underscores the essence of OS via

HNE in incident obesity. ROS generation rises in parallel

with fat adipocyte fat accumulation, and the increase in

the level of FFAs also stimulates adipocyte ROS gener-

ation via NADPH oxidase activation and decline in en-

zymatic antioxidant expression [115]. In the presence of

OS in adipocytes, anti-inflammatory adiponectin level

falls [118, 119], while pro-inflammatory adipocytokines

concentration rises [115, 120, 121]. Dysregulation of adi-

pocytokines is vital in the development of obesity-

associated metabolic disorder. Raised adipocyte gener-

ation of PAI-1, MCP-1, and TNF-α is important in the

pathogenesis of thrombosis [122], and IR [123, 124].

Since adiponectin increases cellular sensitivity to insulin

[37, 125–127] and also possesses anti-atherogenic effects

[128–130], a marked reduction in the circulatory con-

centrations of adiponectin results in IR and atheroscler-

osis via systemic inflammation [115]. HNE up-regulates

the expression of inducible cyclooxygenase (COX-2) and

PAI-1 [131] and down-regulates the expression of adipo-

nectin [119, 132]. Dysregulation of adipocytes results in

systemic inflammation; this as well as increased adipo-

cyte ROS generation promotes endothelial dysfunction.

This is key in the development of IR, DM and athero-

sclerosis. Interestingly, renin-angiotensin-aldosterone

system (RAAS) which plays an important role in blood

pressure and volume regulation, has also been demon-

strated to trigger adipocyte ROS generation [133].

Oxidative stress and IR/diabetes

Following systemic inflammation, oxidative damage to

the endothelial cells causes impaired glucose uptake and

utilization by hepatocytes and skeletal myocytes. Activa-

tion of NOX via RAAS increases endothelial ROS gener-

ation [134, 135]. This is dependent on angiotensin II

type-1 and mineralocorticoid receptors [136]. This cas-

cade of events continues and causes a transition from IR

to DM type II [137]. Oxidative injury to the endothelium

reduces the circulatory level of NO due to the decline in

its synthesis by uncoupling eNOS via ROS-induced oxi-

dation and depletion of BH4 [138, 139]. Increased gener-

ation of ONOO- via coupling of NO to superoxide also

contributes to NO depletion [140]. The generated

ONOO- is very reactive and leads to endothelial cell

death [140, 141] which also impairs endothelial NO gen-

eration. It is a known fact that eNOS-derived NO is es-

sential in angiogenesis by enhancing vascular endothelial

growth factors and up-regulating the recruitment of

endothelial progenitor cells from the bone marrow [142,

143]. Hence ROS-induced decline in circulatory NO sec-

ondary to endothelial dysfunction impairs the growth of

the capillary network and blood flow regulation and sub-

sequent diminution of microcirculation in metabolically

active tissues and dysregulations of glucose and

dyslipidaemia.

Studies have implicated OS in IR and DM through in-

sulin signaling, insulin-induced GLUT 4 translocation

and glucose uptake via insulin receptor substrate (IRS)

phosphorylation, MARK activation and ER stress. Acti-

vation of serine/threonine kinase cascade stimulates

serine phosphorylation of IRS that in turn impairs

Table 3 Biomarkers of oxidative stress

Markers of oxidative stress

Lipid oxidation Malondialdehyde (MDA), 4-hydroxy-2-nonenal
(4-HNE), F2-isoprostanes, isolevuglandins, acro-
lein, crotonaldehyde, and methylglyoxal.

Protein/amino acid
oxidation

Protein carbonyls, advanced glycation
endproducts (AGEs), advanced lipoxigenation
end products (ALEs), advanced oxidation
protein products (AOPP), 3-nitrotyrosine,
ischemia-modified albumin (IMA), oxidized low
density lipoprotein (oxLDL)

DNA oxidation 8-oxo-2’ - deoxyguanosine (8-oxo-dG; 8OHdG),
5-chlorocytosine, 5-chlorouracil,

Markers of ROS generation

Enzymatic Xanthine oxidase (XO), myeloperoxidase
(MPO), nicotinamide adenine dinucleotide
phosphate oxidase (NOX), nitric oxide
synthase (NOS)

Non-enzymatic Uric acid

ROS-regulated
transcription factors

Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB)

Markers of antioxidant defense

Enzymatic Superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), glutathione
reductase (GR), glutathione S-transferase (GST),
glucose -6- phosphate dehydrogenase (G6PD),
Protein thiol-disulfide oxidoreductases [thiore-
doxin (Trx) and peroxiredoxins (Prxs)].

Non-enzymatic Ascorbic acid, α-tocopherol, β-carotene, poly-
phenols, bilirubin, albumin, ceruloplasmin, fer-
ritin, glutathione (GSH).

ROS-regulated
transcription factors

Nuclear factor (erythroid-derived 2)-like 2 (Nrf-
2)

Others Asymmetric dimethyl L-arginine (ADMA)
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tyrosine phosphorylation thus possibly enhancing IRS

degradation [144], resulting to alteration of glucose up-

take signalling pathways by GLUT4 via IRS-1 and phos-

phatidylinositol 3-kinase (PI3K)/Akt [137]. Impairment

of glucose uptake through this pathway exerts a further

negative effect on IR. Adipocytes, which act as glucose

sensors [145], senses impaired GLUT4-mediated glucose

uptake and release adipocytokines (such as retinol-

binding protein 4, RBP 4) to prevent glucose uptake by

skeletal muscle and improve hepatic glucose output

through insulin signalling blockade [146]. This sums up

to raised plasma level of glucose. Hence OS mediates

the development of IR and DM type II via downregula-

tion of circulatory NO bioavailability and GLUT 4 ex-

pression in adipocytes (Fig. 4).

Oxidative stress and hypertension

The role of NO in the pathophysiology of hypertension

has well clearly described. NO enhances angiogenesis

and blood supply, thus regulates blood pressure. NO

may react with O- to increase the generation of ONOO-,

which break down to form hydroxyl radical [147, 148].

The generated ONOO- causes eNOS uncoupling, iNOS

uncoupling, and BH4 depletion [137]. Under physio-

logical conditions, electrons are transferred from a heme

group in the oxygenase domain to L-arginine by eNOS.

This leads to the generation of L-citrulline and NO

[149]. However, when there is a depletion of NO, may

be due to depletion of L-arginine, a substrate of NO, or

BH4, a co-factor in NO production, eNOS switches to

an uncoupled state from a coupled state. This leads to

the reduction of oxygen by electrons from the heme

group with subsequent production of superoxide radical

(O2
-) [150]. This radical reacts with NO to further de-

plete NO, leading to endothelial dysfunction and rise

peripheral resistance, thus causing a sustained rise in

blood pressure. Depletion of L-arginine is associated

with exaggerated arginase II activity. iNOS expression is

also up-regulated in endothelial dysfunction [137]. Al-

though iNOS generates NO, due to oxidative stress-

induced BH4 depletion and iNOS uncoupling, iNOS un-

coupling enhances oxidative stress. Also, it leads to a

Fig. 3 The role of oxidative stress in the development of obesity and cardiometabolic disorders. This illustration is a modification of the working

model illustrating how increased ROS production in accumulated fat contributes to metabolic syndrome by Furukawa et al. [115]
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vicious cycle of endothelial dysfunction and persistent

rise in blood pressure (Fig. 5). In addition, endogenous

eNOS inhibitor, asymmetric dimethyl-L-arginine

(ADMA) may contribute to eNOS uncoupling. Oxidative

stress has been demonstrated to enhance the activity of

protein arginine N-methyltransferase (PRMT) and re-

duce the activity of dimethylarginine dimethylaminohy-

drolase (DDAH), an ADMA-degrading enzyme, thus

resulting in a rise in ADMA concentrations [69, 151,

152]. The rise in ADMA levels may inhibit NO synthesis

by eNOS or even lead to eNOS uncoupling [69, 151].

Note worthily, BH4 depletion-driven eNOS uncoupling

may rather be secondary to the oxidation of zinc-

thiolate cluster of eNOS. Exposure of isolated eNOS to

ONOO- causes disruption of the zinc-thiolate cluster of

the enzyme [153]. Since the Cys99 in this cluster is

essential for BH4 binding, oxidation of this cluster will

disrupt the BH4 binding site of the enzyme; an state

similar to depletion of BH4.

Local RAAS activation plays an integral role in the

complex cascades that contribute to endothelial dysfunc-

tion. Studies have shown that the accumulation of vis-

ceral fat and raised OS and inflammatory response in

adipose tissue enhance the release of components of adi-

pose RAAS. Animal studies have demonstrated up-

regulation of angiotensinogen in fatty tissue in obesity.

This is strongly linked with hypertension [154]. Angio-

tensinogen converts angiotensin I to angiotensin II,

which exerts its effects via angiotensin II type 1 receptor

(AT1R) [149]. In the zona glomerulosa of the adrenal

cortex, activation of AT1R triggers the release of miner-

alocorticoids [149], which elevate blood pressure

Fig. 4 The role of oxidative stress in the pathogenesis of insulin resistance/type II diabetes. This illustration is a modification of the mechanism

illustrating the role of oxidative stress to adipocytes in insulin resistance by Otani H [137].

Akhigbe and Ajayi Lipids in Health and Disease           (2021) 20:23 Page 10 of 18



primarily via stimulation of sodium reabsorption and ex-

pansion of plasma volume, and secondarily via non-

genomic mineralocorticoid receptor (MR)-mediated ac-

tions [155]. In non-adrenal tissues, activation of AT1R

triggers ROS generation with resultant impairment of in-

sulin signaling, as well as proliferative and inflammatory

responses [156]. This penultimately leads to endothelial

dysfunction and hypertension. It is worthy to note that

mineralocorticoids such as aldosterone and deoxycor-

ticosterone acetate have been reported to activate NADP

H, trigger oxidative stress and release superoxides [157,

158].

XO is a hypoxia-inducible enzyme, which is found in

vascular smooth muscle cells (VSMCs) and vascular

endothelial cells. XO catalyzes superoxide production

[149]. Mervaala and colleagues [159] documented that

rodents with over-expressed human renin and angioten-

sinogen genes have raised XO activity with endothelial

dysfunction and hypertension. Experimental studies have

also demonstrated increased renal XO activity in salt-fed

spontaneously hypertensive rats [160].

Membrane-bound vascular-derived NOX enzymatic

complex can be activated by angiotensin II and aldoster-

one even at low concentrations [161]. Activation of this

system is a major source of ROS, which leads to NO de-

pletion and endothelial dysfunction. Mounting number

of studies has implicated the crosstalk between NOX

and mitochondria with incident eNOS dysregulation/un-

coupling and endothelial dysfunction. It has been estab-

lished that Ang II stimulates mitochondrial ROS

(mtROS) formation and opening of the mitochondrial

permeability transition pore (mPTP) with resultant leak-

age of the generated mtROS to the cytosol [162, 163].

This activates the p38 MAPK and JNK signaling with

subsequent activation of NOX [162, 163]. Also, NOX

could be activated through cSrc-dependent phosphoryl-

ation of p47phox, which is triggered by Ang II. Ang II-

dependent NOX causes mitochondrial dysfunction with

consequent mtROS formation [164, 165]. This cascade

of events leads to a robust accumulation of mtROS for-

mation with cardiovascular implications. mtROS-driven

phagocytic NOX activation triggers immune cell infiltra-

tion and aggravates Ang II-mediated eNOS uncoupling

[166], reduced circulatory NO and endothelial

dysfunction.

Although enzymatic superoxide dismutase scavenges

the superoxides that are produced in the mitochondria

during oxidative phosphorylation, this mechanism may

be overwhelmed when ROS generation is exaggerated.

This leads to mitochondrial DNA damage and endothe-

lial injury [167].

Oxidative stress and atherosclerosis

Atherosclerosis is the common clinical disorder that re-

sults from obesity, IR and DM, and hypertension (Fig.

6). It begins with the formation of atheromatous plaque,

which is triggered by endothelial ROS generation and

accumulation of LDL in the intima. LDL consists of an

ApoB protein molecule, triglycerol, cholesterol and its

esters, phospholipids, and vitamin E [168]. The presence

of TG enhances the influx and accumulation of LDL in

the tunica intima, where it is oxidized by ROS, and

Fig. 5 The role of oxidative stress in the pathogenesis of hypertension. XO: xanthine oxidase, NOX: nicotinamide adenine dinucleotide phosphate

oxidase, eNOS: endothelial nitric oxide synthase, OxLDL: Oxidized LDL, ROS: reactive oxygen species, PDGF: Platelet-derived growth factor, SMC:

smooth muscle cells, MF: Myofibrils
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picked up by macrophages via scavenger receptor (SR)

CD36 to produce foam cells [169–171]. Other SRs such

as SR-AI, SR-AII, MARCO, and SRCL (class A), SR-BI

(class B), CD68 (Class D), LOX-1 (class E), SREC-1

(Class F), and SR-PSOX/CXCL16 (Class G) have been

reported [172].

Oxidized LDL (OxLDL) is cytotoxic to atherosclerosis-

related cells such as T-cells, macrophages, ECs, and

SMCs [173] via OxLDL-derived lipid peroxides and hy-

droperoxides [174]. High concentrations of OxLDL acti-

vates caspase 3 in a Fas-independent manner, thus

causing apoptosis with characteristic DNA fragmenta-

tion [168]; although, caspases 6, 8 and 9 may also be in-

volved. Besides, OxLDL simultaneously triggers necrosis

via ROS [168]. Although OxLDL suppresses nuclear

factor-kappa B (NF-kB) in long-term, it activates it in

short-term in ECs, SMCs, and macrophages [175–177].

OxLDL-induced NF-kB activation is via LOX-1. Binding

of OxLDL to LOX-1 promotes the production of O- and

H2O2, as well as activation of NF-kB via p38 MAP kin-

ase//P13K/ERK1/2 signaling pathway [178, 179], thus

eliciting an inflammation in the endothelial cells. NF-kB

regulates the expression of MCP-1, P-selectin, E-selectin,

ICAM-1, and VCAM-1 [180].

Recruitment of monocyte-macrophage into the intima

is regulated by adhesion molecules, integrins, selectins,

and chemokines such as monocyte chemo-attractant

protein-1 (MCP-1) [181, 182]. ROS does not just oxidize

OxLDL; they also up-regulate MCP-1 and other mole-

cules that are responsible for monocyte-macrophage re-

cruitment. Although, SMCs and ECs synthesize MCP-1,

SMCs also moves to the tunica intima from the tunica

media, where they differentiate into myofibroblasts and

increase in the presence of PDGF [183, 184] and insulin

via ROS-dependent phosphorylation of serine residues

of IRS-1 [185, 186]. These myofibroblasts are responsible

for collagen synthesis, which causes intima thickening.

Enhanced inflammatory response and OS promote

apoptosis of the foam cells and necrotic lipid core for-

mation [187, 188]. The necrotic lipid core is covered

with a collagen fibre-enriched fibrous cup which is lyzed

by activation of matrix metalloproteinases (MMP) in the

presence of ROS [189, 190] generating an advanced

atheromatous plaque called unstable plaque. This nar-

rows the lumen of the artery and raises the intraluminal

pressure.

It has been established that coronary artery disease

progresses faster in diabetic patients. There are

Fig. 6 The role of oxidative stress in the pathogenesis of atherosclerosis – early phase (a) and late phase (b). This illustration is culled from the

illustration of the role of oxidative stress to adipocytes in atherosclerosis by Otani H [137].
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mounting evidence that suggestive that adiposity and

impaired glycaemia promote the development of ischae-

mic heart disease (IHD) even in non-diabetic individual

[191, 192]. Although insulin-treated diabetes has been

shown to be an independent predictor of late and repeat

coronary revascularization [193], study of Komatsu et al.

[194] revealed that IR in the general population treated

with percutaneous coronary intervention (PCI) enhanced

restenosis due to continuous neointimal growth after the

first generation drug eluting stent (DES) implantation.

Sasso and his colleagues [192] in a prospective longitu-

dinal observational study demonstrated the role of IR

and cytokines in the incident of IHD in normoglycaemic

subjects. Findings of their study showed that adiponectin

levels were independently associated with restenosis; and

HOMA-IR and adiponectin were independently associ-

ated with de novo IHD and overall new PCI.

Cardiac metabolic memory

Even when glucose level has been restored, chronic

rise in glucose concentration as seen in DM stimu-

lates metabolic alterations that modify tissue homeo-

stasis. This is called metabolic memory [195].

Epigenetics is essential in establishing cardiac meta-

bolic memory. Chronic epigenetic effects like histone

and DNA methylations are quite stable and may be

inherited as a memory by offspring cells [196]. In

addition, maternal nutrition as well as in utero expos-

ure may trigger developmental programming which

may also be transferred to progenies, thus triggering

disorders like CMD [197]. Hyperglycemia may trigger

long-term inflammatory and oxidative stress pathways.

This is accompanied by resultant persistent or pos-

sibly permanent modifications [198]. Experimental

study demonstrates hyperglycemia-dependent ROS as

a primary trigger of endothelial glycemic memory

[199]. Studies have revealed that hyperglycemia stimu-

lates a reversible increase in the concentrations of IL-

6 and decline in histone-3 methylation at the IL-6

promoter in cardiomyocytes [200]. This infers that

the raised inflammatory gene expression in cardio-

myocytes observed in hyperglycemia is secondary to

impaired repressive epigenetic histone modifications

[200]. It is not unlikely that hyperglycemia-stimulated

mitochondrial dysfunction and apoptosis account for

cardiac metabolic memory [200]. Also, hyperglycemia

triggers developmental control of insulin-like growth

factor-1 (IGF-1) receptor in cardiac muscle cells

[201]. Human studies have revealed that a rise in adi-

pose tissue accumulation in obesity is linked to en-

hanced methylation at the hypoxia-inducible factor

3A (HIF3A) locus in blood cells and adipose tissue,

but not in the skin [202]. Metabolic intermediates

from catabolism of macromolecules serve as co-

factors for chromatin-modifying enzymes [203–214].

Conclusion and future perspectives

Oxidative stress, through a complex cascade, is essential

in the development of CMD. Increasing evidence has

demonstrated that ROS via various pathways triggers

systemic inflammation and endothelial cell dysfunction

through several mechanisms, such as mitochondrial dys-

function and uncoupling, raised FAO, up-regulation of

NOX activity, impaired antioxidant capacity, and cardiac

metabolic memory. Although more studies aimed at

demonstrating other associated pathogenesis of CMD is

important, a good understanding of the link between

oxidative stress and CMD opens new therapeutic hori-

zons in the management of CMD by targeting one or

more specific pathways in the pathophysiology.
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