
| INVESTIGATION

The Impact of Recessive Deleterious Variation on
Signals of Adaptive Introgression in

Human Populations

Xinjun Zhang,* Bernard Kim,† Kirk E. Lohmueller,*,‡,1,2 and Emilia Huerta-Sánchez§,**,1,2

*Department of Ecology and Evolutionary Biology and ‡Department of Human Genetics, David Geffen School of Medicine,

University of California Los Angeles, California 90095-7088, †Department of Biology, Stanford University, Stanford, California

94305, §Department of Ecology and Evolutionary Biology and **Center for Computational Molecular Biology, Brown University,

Providence, Rhode Island 02906

ORCID IDs: 0000-0003-1298-3545 (X.Z.); 0000-0002-5025-1292 (B.K.); 0000-0002-3874-369X (K.E.L.); 0000-0002-1506-5494 (E.H.-S.)

ABSTRACT Admixture with archaic hominins has altered the landscape of genomic variation in modern human populations. Several

gene regions have been identified previously as candidates of adaptive introgression (AI) that facilitated human adaptation to specific

environments. However, simulation-based studies have suggested that population genetic processes other than adaptive mutations,

such as heterosis from recessive deleterious variants private to populations before admixture, can also lead to patterns in genomic data

that resemble AI. The extent to which the presence of deleterious variants affect the false-positive rate and the power of current

methods to detect AI has not been fully assessed. Here, we used extensive simulations under parameters relevant for human evolution

to show that recessive deleterious mutations can increase the false positive rates of tests for AI compared to models without deleterious

variants, especially when the recombination rates are low. We next examined candidates of AI in modern humans identified from

previous studies, and show that 24 out of 26 candidate regions remain significant, even when deleterious variants are included in the

null model. However, two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive signals of AI due to

recessive deleterious mutations. These genes are located in regions of the human genome with high exon density together with low

recombination rate, factors that we show increase the rate of false-positives due to recessive deleterious mutations. Although the

combination of such parameters is rare in the human genome, caution is warranted in such regions, as well as in other species with

more compact genomes and/or lower recombination rates. In sum, our results suggest that recessive deleterious mutations cannot

account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of

adaptation.
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GENE flow between populations can rapidly increase the

genetic variation in the recipient group by introducing

new variants from a different population. If some of this

genetic variation increases an organism’s ability to survive

or reproduce in a specific environment, it can be considered

adaptive. Adaptive introgression (AI) has been found to fa-

cilitate adaptation to local environments in a wide range of

taxa, from plants to animals (Song et al. 2011; Racimo et al.

2015; Payseur and Rieseberg 2016; Burgarella et al. 2019).

In modern humans, introgression with archaic hominins, in-

cluding Neanderthals (Prüfer et al. 2013, 2017) and Deniso-

vans (Reich et al. 2010; Meyer et al. 2012), has changed the

genomic diversity of, and supplied adaptive alleles to, most

populations outside of Africa. Previous studies have identi-

fied at least 30 candidate genomic regions inmodern humans

that were putatively adaptively introgressed (Abi-Rached

et al. 2011; Mendez et al. 2012; Ding et al. 2013; SIGMA
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Type 2 Diabetes Consortium et al. 2014; Vernot and Akey

2014; Gittelman et al. 2016; Sankararaman et al. 2016;

Mallick et al. 2016; Racimo et al. 2016, 2017; Enard and

Petrov 2018)—among which one of the most well-known

examples is a Denisovan-like haplotype at the EPAS1 gene

that facilitated adaptation to high altitude in the Tibetan

population (Huerta-Sánchez et al. 2014; Huerta-Sánchez

and Casey 2015). As of today, the putative AI tracts inmodern

humans can be traced back to Neanderthals (Vernot and

Akey 2014; Gittelman et al. 2016; Browning et al. 2018;

Enard and Petrov 2018), Denisovans (Huerta-Sánchez et al.

2014; Racimo et al. 2016), unknown archaic groups (Plagnol

and Wall 2006; Durvasula and Sankararaman 2019), or a

mix of more than one population (Racimo et al. 2015;

Browning et al. 2018).

The detection of AI relies mostly on independently looking

for signatures of introgression (Plagnol andWall 2006; Green

et al. 2010; Durand et al. 2011; Martin et al. 2014; Browning

et al. 2018) and signatures of positive selection (Tajima

1989; Fay and Wu 2000; Sabeti et al. 2002, 2007; Voight

et al. 2006; Grossman et al. 2010). Additionally, a number

of allele frequency-based summary statistics have been

shown to be particularly powerful at directly inferring AI

without needing to apply separate tests for introgression

and selection at genomic regions. These statistics include:

the number of uniquely shared alleles between donor and

recipient populations (U statistic), the quantile distribution

of derived alleles in the recipient population (Q statistic), and

the sequence divergence ratio (RD) (Racimo et al. 2017).

Racimo et al. (2017) further demonstrated the robustness

of these statistics to several factors that may confound the

detection of AI, including incomplete lineage sorting and an-

cestral population structure.

While there is tremendous interest in identifying candidate

regions for AI, most mutations that occur in genomes are

likely either neutral or deleterious (Lynch et al. 1999; Eyre-

Walker and Keightley 2007; Lynch 2010; Lohmueller

2014). Deleterious mutations continue to accumulate in

the distinct populations after they split from each other

(Henn et al. 2016). These deleterious mutations can also

affect the genomic landscape in the recipient population

after introgression. The genetic load (i.e., reduction in pop-

ulation fitness due to deleterious variants) of archaic hom-

inins is usually higher than that of modern humans due to

the former’s small effective population size (Prüfer et al.

2013). Thus, most introgressed archaic ancestry is ulti-

mately purged from the modern human gene pool (Harris

and Nielsen 2016; Juric et al. 2016). Conversely, a higher

frequency of archaic variants and longer introgressed tracts

are the typical signatures indicating AI. However, recent

studies suggest that other population genetic processes

can also generate long introgressed tracts at high frequen-

cies in a recipient population. For example, if the recipient

population harbors many recessive deleterious mutations

that are not shared with the donor (Whitlock et al. 2000;

Bierne et al. 2002; Agrawal and Whitlock 2011; Harris and

Nielsen 2016; Kim et al. 2018), after introgression admixed

individuals will have higher heterozygosity at those sites

and the deleterious effect will be reduced (Figure 1). As

such, an initial heterosis effect occurs, since admixed indi-

viduals have higher fitness compared to unadmixed indi-

viduals due to themasking of recessive deleterious variants.

The neutral markers nearby the recessive deleterious vari-

ants would also increase in frequency (Ingvarsson and

Whitlock 2000; Bierne et al. 2002), leading to an overall

increase of introgressed ancestry in the admixed population

(Harris and Nielsen 2016), resembling what is expected

from AI (Racimo et al. 2015, 2017).

As an example of this, Harris and Nielsen (Harris and

Nielsen 2016) simulated a modern human–Neanderthal ad-

mixture, and suggested that the heterosis effect from reces-

sive deleterious variants can increase the Neanderthal

ancestry in modern humans by up to 3%. Kim et al. (2018)

showed that low recombination rate, high exon densities,

and small recipient population size can all amplify the effect

of deleterious variants leading to an increase in introgressed

ancestry. However, both Harris and Nielsen (2016) and Kim

et al. (2018) illustrated the confounding effect of deleterious

variants on AI by directly tracking the introgressed ancestry

from simulations. Although straightforward and convenient

in simulation studies, introgressed ancestry is difficult to

measure precisely in empirical data. Thus, it remains unclear

whether other summary statistics aimed to detect AI are af-

fected by the presence of deleterious variants.

Our present work aims to systematically explore the be-

havior of the summary statistics for detecting AI in the pres-

ence of recessive deleterious variants in realistic human

demographic models. By performing extensive simulations

under different evolutionary parameters (demography, re-

combination rate, and genic structure), we show that null

models assuming neutrality, without accounting for the het-

erosis effect causedby recessivedeleteriousmutations, lead to

increased false positive rates for most statistics.

By examining the currently known AI candidate regions in

modern humans, we next show that most of the human AI

candidate genes cannot be explained by deleterious variants,

suggesting they may be genuine targets of AI. However, we

also show that at least several candidate genes previously

identified as being under AI [HYAL2 (Ding et al.2013) and the

HLA gene cluster (Abi-Rached et al. 2011)] may alternatively

be false-positives due to the presence of deleterious variants.

We further show that the greater exon density and low re-

combination rate are the main factors contributing to the

high false positive rates in the two genes. Greater exon den-

sity generates a higher density of recessive deleterious muta-

tions, leading to a higher probability of heterosis upon

admixture (Kim et al. 2018). A low recombination rate main-

tains haplotypes at a given genomic region in a population.

The combination of the two factors maximizes the heterosis

effect due to deleterious mutations upon admixture. We dis-

cuss implications of these results for detecting AI in different

regions of the genome and different species.
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Materials and Methods

Simulations and measurement of AI

Weused the softwareSLiM(version3.2.0) (Haller andMesser

2018) throughout this work for the simulations. We obtained

200 simulation replicates under each of the different demo-

graphic models of admixture. Each of the models consists of

three populations: an ancestral population at equilibrium

that splits into two subpopulations (pD for “donor popula-

tion” and pO for “outgroup”), and one of the subpopulations

subsequently splits again after a period of time (pO, and pR

for “recipient population”). After the pO–pR split, a pulse of

admixture (lasting one generation) occurs from pD to pR and

the admixture proportion is 10%. Figure 2 shows an illustra-

tion of the two demographic models used in this study: (1)

Model_0 (Figure 2A) represents a demography where the

recipient population size is 10 times smaller than the donor

population size throughout the simulation, and the pulse of

admixture occurs at 10,000 generations ago; and (2) Mod-

el_h (Figure 2B) represents a more realistic human demog-

raphy with a single pulse of archaic admixture introduced to

the non-African population (Reich et al. 2010; Gravel et al.

2011; Sankararaman et al. 2012; Prüfer et al. 2013, 2017)

1610 generations ago. Here the recipient population (pR)

represents a non-African population, the outgroup popula-

tion (pO) represents Africans, and the donor population

(pD) represents an archaic group such as Neanderthals or

Denisovans.
Kim et al. (2018) reported that a long-term population

contraction can greatly influence the dynamics of introgres-

sion, and that a prolonged bottleneck in the recipient pop-

ulation leads to a drastic increase of introgressed ancestry

when the deleterious mutations are recessive. Thus, we use

Model_0 as a general model to examine the robustness of

the summary statistics when the heterosis effect from reces-

sive deleterious variants is maximized. In contrast, Model_h

serves as a comparison to evaluate the behavior of the sum-

mary statistics under a realistic demography for human

populations.

We introduced mutations in the simulations that could

have one of four different effects on fitness: (1) “Neutral”:

all mutations being neutral (s = 0); (2) “Deleterious”: re-

cessive deleterious mutations present in the populations,

drawn from a gamma distribution of fitness effect (DFE)

with a shape parameter of 0.186 and average selection co-

efficient of 20.01315 (see Kim et al. 2017), as well as a

2.31:1 ratio (Huber et al. 2017) of nonsynonymous to syn-

onymous mutations; (3) “Mild-Pos”: the Deleterious model

with an adaptive mutation with milder strength of positive

selection (s = 0.01) introduced in pD (donor population)

after the initial pD–pO split; (4) “Strong-Pos”: the Delete-

rious model with an adaptive mutation with stronger

strength of positive selection (s = 0.1) introduced in pD

after the initial split.

All simulated genomic regions have a length of 5 Mb,with

genic structure from the modern human genome build

GRCh37/hg19. We used the exon ranges defined by the

GENCODE v.14 annotations (Harrow et al. 2012) and the

sex-averaged recombination map by Kong et al. (2010) aver-

aged over a 10-kb scale. The per base pair mutation rate was

fixed at 1.5*1028. For comparison purposes, we also applied

a uniform recombination rates at 1028 and 1029 per base pair

per generation as specified below. We also scaled the simu-

lation parameters by a scaling factor of c (c = 5) to increase

computational efficiency. The population size thus was

rescaled to N/c, all generation times to t/c, selection coeffi-

cient to s*c, mutation rate to m*c, and the recombination rate

also at r*c {approximation from 0.5 [12(122r)c] for small r

and small c}. Other evolutionary parameters remain the same

before and after rescaling. For each simulation, we sampled

100 chromosomes from the recipient, donor and outgroup

population. Unless otherwise stated, deleterious mutations

are recessive (dominance coefficient h=0).

To explore a potential extreme case of how recessive

deleterious mutations could influence the false positive

rate, for each of the models described above with different

fitness effect, we simulated a 5 Mb region with the genic

structure of a window in the human genome (Harrow et al.

2012) that has the highest density of exons (chr11:62.3–

67.3 Mb; referred to as “Chr11max”; Figure S1; Figure 3,

Figure 4, and Figure 6). To explore the effect of recessive

deleterious mutations on putatively adaptively intro-

gressed regions in humans, we identified the genomic co-

ordinates using the original studies that identified the AI

candidate genes (Table S1), and extracted their flanking

regions upstream and downstream of the gene region to a

total length of 5 Mb, with the gene region positioned in

the center.

Computing the mean exon density, recombination rate,
and B-statistic across the human genome

To tabulate exon density across the genome, we scanned the

22autosomes of the humangenomeusing a slidingwindowof

5 Mb with step size of 100 kb, and counted the number of

exons per 5-Mb window. For each window, we calculated

“exon density” as the total number of exons per window,

the mean recombination rate (Kong et al. 2010), the mean

of the B-statistic (McVicker et al. 2009) that captures the

strength of background selection, and the mean of dN/dS

ratio computed for all genes within the 5 Mb windows over

primate phylogeny (Enard et al. 2016).

Summary statistics for detecting adaptive introgression

For each simulation replicate, we computed the summary

statistics for detecting adaptive introgression for nonoverlap-

ping 50 kb windows throughout the simulated segment. A

full list of the AI summary statistics used in our study can be

found in Table 1. We also directly tracked the Introgressed

ancestry in the recipient population that originated from the

donor population using the tree sequence file generated from

SLiM, and reconstructed the information using pyslim

(Kelleher et al. 2018) and msprime (Kelleher et al. 2016)
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modules in Python3, which was referred to as “introgressed

ancestry” or pI (Kim et al. 2018). Therefore, the introgressed

ancestry calculated from this study is the true proportion of

ancestry.

For the other summary statistics that capture the signa-

ture of adaptive introgression, we used a custom Python

script to extract the sampled haplotype matrices that are in

MS style from the SLiM output (100 haplotype samples per

population), and filled in the nonsegregating ancestral al-

leles to match the size of the haplotype matrices from the

donor, recipient, and outgroup populations respectively. We

calculated the summary statistics at nonoverlapping 50-kb

windows using the same Python script pipeline for each

simulation replicate.

For each statistic, we defined the critical value as the most

extreme 5% quantile value in the distribution of Neutral

simulations, grouping all windows and replicates together.

For theDeleterious simulations, the false positive rate (FPR) is

defined as the proportion of simulations per 50-kb window

exceeding the critical values. Similarly, for the Mild- and

Strong-Pos simulations, the true positive rate (TPR) is defined

as the proportion of simulations per-window exceeding the

critical value. For the D statistic (Green et al. 2010; Durand

et al. 2011), since the critical value from the Neutral model

can reach its highest possible value (D= 1), we calculate the

FPR as the proportion of simulations per window that equals

the critical value.

Summary statistics for non-African modern
human populations

We calculated a variety of AI summary statistics using mod-

ern human genome variation data from Phase 3 of The

1000 Genomes Project Consortium et al. (2015). To illustrate

the signals of AI captured by the summary statistics from

previous studies, we used all individuals from seven repre-

sentative populations from Eurasia and the Americas as

recipient populations (for archaic introgression). Specifically,

we used Western Europeans (CEU), British (GBR), Finnish

(FIN), Italians (TSI), Han Chinese (CHB), Indians (GIH),

and Peruvians (PEL). We also used Yorubans (YRI) as the

unadmixed outgroup population. For the donor population,

we used the unphased, high-quality whole genome se-

quences from the Altai Neanderthal (Prüfer et al. 2013)

and/or the Altai Denisovan (Meyer et al. 2012), depending

on which archaic group was identified as the AI source (Col-

umn 4 in Table S1). We referred to the coordinates of AI

candidate genes listed in Table S1 to identify each 5 Mb

region centered on the candidate gene, and extracted the

corresponding genomic sequences from the modern popula-

tions and their respective donor populations. We addition-

ally removed sites in the archaic genomes that have potential

quality issues (quality score ,40 and/or mapping quality

,30). If a previously identified AI gene was found to be

associated with more than one archaic group, we used only

the Altai Neanderthal sequence for these cases. As we did on

the simulations, the summary statistics were calculated at

nonoverlapping 50-kb windows in the empirical data.

To compute the FPR due to deleterious mutations, we use

the neutral simulations (i.e., no deleterious mutations) to

define the critical values for each test statistic. We then use

the simulations with recessive deleterious mutations as the

test datasets to examine the FPR (see Figure 5). These sim-

ulations used the recombination rate and exon structure in

the 5-Mb region around each candidate AI gene and assumed

the demography described by Model_h. Again, the FPR rep-

resents the proportion of simulations for a given statistic in a

50-kb window in a candidate gene that are as extreme as, or

more extreme than, the 5% neutral critical value. Here, we

also computed P-values for each of these empirical AI candi-

date regions under two null models. The first null model

assumed all mutations are neutral, while the second included

fully recessive deleterious mutations. We then defined the

Figure 1 The heterosis effect from

an increase in heterozygosity due

to admixture. A red or yellow star

represents a mutation that is dele-

terious and recessive (h = 0). Each

individual in the pre-admixed pop-

ulations is homozygous for reces-

sive deleterious variants at two

distinct sites. If the two populations

admix in equally, all mutations that

were private to the original popu-

lations and were previously homo-

zygous are now heterozygous in

the F1 population.

802 X. Zhang et al.
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critical values for each test statistic using these simulations.

We computed P-values for each 50-kb window within the

candidate region by examiningwhere the empirical summary

statistics computed from the 1000 Genomes Project data fell

within simulated distributions (see Figure 7).

Data availability

The authors state that all data necessary for confirming the

conclusions presented in the article are represented fully

within the article. All scripts necessary for reproducing the

simulations presented in this work are available at: https://

github.com/xzhang-popgen/HeterosisAIScripts/. Supplemen-

tal materials, including additional methods, Figures S1–S16

and Table S1, are available online through FigShare. Supple-

mental material available at figshare: https://doi.org/10.

25386/genetics.12404324.

Results

Recessive deleterious variants affect summary statistics
used to detect AI

We first tested how the presence of recessive deleterious

variants affects the distribution of the AI summary statistics

listed in Table 1. To maximize the heterosis effect, here we

simulated the genic structure of the “Chr11Max” genomic

region with a uniformly low recombination rate (r =

1e29) under the Model_0 demography.

Figure 3 shows the distribution of one of the summary

statistics, U50 in nonoverlapping 50-kb windows. U50 cap-

tures the number of high-frequency introgressed-derived al-

leles in the recipient population. Under the scenario where all

mutations are neutral, we expect the dynamics of intro-

gressed-derived alleles to be influenced simply by gene flow

and other subsequent neutral processes. With a small pulse of

admixture, only a small fraction of the introgressed alleles is

expected to drift to high frequencies, which is reflected by the

low to zero U50 allele count in the distribution of U50 under

the Neutral simulations (Figure 3A). However, in the pres-

ence of recessive deleterious variants, the count of U50 al-

leles becomes elevated in all genomic windows (Figure 3B).

This pattern is illustrated by the substantially increased mean

and variance in the distribution, in contrast to the Neutral

comparison (Figure 3B). In cases of AI where a beneficial

mutation is introduced in the donor population prior to ad-

mixture (Figure 3, C and D), a notable increase of the mean

and variance of U50 is also observed. Therefore, the signa-

tures of AI and the heterosis effect due to deleterious muta-

tions are similar, but AI leads to a more pronounced peak at

the beneficial mutation. Additionally, an adaptive mutation

elevates the range of summary statistics in the flanking re-

gion, and the length of the region under its influence posi-

tively correlates with the strength of selection. However,

when the elevation in U50 is due to recessive deleterious

mutations, there is a slight, but consistent, upward shift

across the entire region.

We next examined the distribution of other summary sta-

tisticsunder the fourfitness scenarios (FigureS2), andobserved

similar patterns as for U50. These findings indicate that, con-

sistent with what Kim et al. (2018) observed for introgressed

ancestry, deleterious variations can generate similar patterns as

AI in the absence of beneficial alleles and local adaptation.

To better understand the spatial patterns of variation across

the simulated region, we visualized the haplotypes (Supple-

mental Methods; Marnetto and Huerta-Sánchez 2017) in a

100-kb window in the middle of the segment containing the

adaptive mutation when applicable (Figure S3). The haplo-

types left by recessive deleterious mutations (Figure S3A)

and true adaptive mutations (Figure S3B) differ in structure.

Interestingly, both scenarios lead to higher haplotype homozy-

gosity in the recipient population. However, in the AI scenario

(Figure S3B), the haplotypes from the donor and recipient

populations are more like each other (i.e., the number of dif-

ferences between the donor haplotype and the introgressed

haplotype is smaller, shown in the right panels of Figure S3)

than under the scenario with recessive deleterious mutations.

Deleterious mutations increase the FPR for AI detection

Toquantify theextent towhichdeleteriousmutations cangive

false evidence of AI, we used the neutral distribution of

summary statistics in each 50-kb window across the large

Figure 2 Simulated demographic

models. Going forward in time,

after a burn-in period of 10*N

generations (100k generations for

Model_0 and 73k for Model_h),

the ancestral population diverged

into two subpopulations, the do-

nor population (pD) and the ances-

tral population of pO and the

recipient population (pR). The sec-

ond population split results in pR

and pO. Some time after the split

of pO and pR, a single pulse of

admixture occurred such that

10% of the ancestry of pR came

from pD. Beneficial mutations are

denoted by the yellow star.

Adaptive Introgression or Heterosis? 803
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5-Mb segment to define the critical values for a test of AI. We

define the critical value as themost extreme5%quantile value

grouping all windows from neutral simulations together.

For therecessivedeleteriousmodel,weobtain theproportion

of simulations (200 replicates) per window that exceeds the

critical value under the neutral model, and define this pro-

portion as the FPR, as no true adaptive mutations are present.

Similarly, we define the TPR for the mild- and strong–positive

selection models as the per-window proportion of simulations

exceeding the critical value, where the critical value is again

defined from the neutral model. Figure 4 shows the neutral

critical value and the true/false positive rates in U50 and RD

statistics under the simulation setting described in the section

above. The TPR/FPR distribution for other summary statistics

can be found in Figure S4. The neutral model simulations have

FPRs �5%, by definition. In contrast, the recessive deleterious

simulations show elevated FPRs in most windows for both sta-

tistics (8.62–34.48% for RD; 3.45–22.41% for U50). The high

FPRs are not negligible, as the identification of AI in empirical

data relies on looking for outliers in summary statistics when

the presence and location of the adaptive mutation is un-

known. Deleterious variation is also more common in hu-

man genomes than adaptive variation (Lynch et al. 1999;

Eyre-Walker and Keightley 2007; Lynch 2010; Lohmueller

2014), which may further compound this effect.

To further understand how demographic history and re-

combination rate influence the FPR/TPRof the tests for AI, we

simulated the “Chr11Max” 5 Mb segment (see Simulations

and measurements of adaptive introgression in Materials and

Methods) using the human demographic model (Model_h),

and realistic estimates of recombination rate in this region

(referred to as r=hg19 in Table 2).We summarized the FPRs

and TPRs of a subset of statistics (pI, RD, U50, Q95) under

these scenarios in Table 2 (also see Figures S5–S7). We ob-

served that simulations with low recombination rate showed

higher mean FPRs using these statistics. Moreover, the stan-

dard deviation (SD) of the statistics increases when the

realistic recombination rates are applied (average recom-

bination rate higher than 1e29).

Onaverage, theTPRs are close to, or higher than, the FPRs in

correspondingwindows, andtheyareespeciallydistinguishable

from the neutral and deleterious models with a distinct peak in

the focalwindows containing the adaptivemutation (Figure 4).

This shows that the summary statistics have high statistical

power in general at detecting a true AI signal, as they reject

the null hypothesis more often for true positives (density plots

Figure 3 U50 statistics under Model_0. (A–D) show the distributions of U50 statistic in 50-kb windows across the 5-Mb region on Chr11. U50 is the number

of sites with an archaic allele that has frequency.50% in the recipient population. For each 50-kb window (the x-axis), we plot the interquartile distributions

of U50 over 200 simulation replicates in boxes, with whiskers extending to all data points. Mutations are (A) neutral, (B) recessive and deleterious with

selection effects drawn from a gamma DFE, (C) same as (B) with a single mildly beneficial (s = 0.01) mutation, and (D) same as (B) with a single highly

beneficial (s = 0.1) mutation. Recombination was simulated at a uniform rate of 1e29 per site. The adaptive mutations in (C and D) are placed in a window in

the middle of the region (2.5 Mb), indicated by the green solid line. We simulated under the demography described by Model_0 (see Figure 2).
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in Figure 4). It should be noted that the power varies across

statistics, and correlates positively with the FPR. For example,

the power of pI can be up to 100% in AI models, but its mean

FPR in the deleterious models is also high (Table 2).

Altogether, recessive deleterious variants contribute to a

higherFPR forAIdetection inall summarystatistics examined.

Some statistics appear tobemore vulnerable thanothers,with

pI, RD, U stats, andQ stats beingmost affected (Figure S2 and

Figure S4). Low recombination rates amplify the heterosis

effect that mimics the AI signature, while the modern human

demography (Model_h) results in fewer false positives than

Model_0 in general, which has a relatively long-term contrac-

tion in the recipient population (Figures S5 and S6).

Deleterious mutations have a limited effect on top
candidates for AI in humans

Next,wesought tosystematicallyassesswhether thepatternsof

AI summary statistics caused by recessive deleterious variants

could lead to false detection of AI whenwe simulate under the

genic structure observed for previously identified AI candidate

regions in humans. This is an important consideration because

these regionswere detected as unusual either in comparison to

the rest of the genome or under demographic models that

assumed all mutations were neutral. Thus, it remains unclear

whetherdeleterious variationcouldprovideanalternatemech-

anism for the observed patterns.

Weextracted the recombination rates and genic structure of

the 5 Mb sequences surrounding 26 previously identified AI

regions (Abi-Rached et al. 2011; Mendez et al. 2012, 2013;

Ding et al. 2013; Huerta-Sánchez et al. 2014; Sankararaman

et al. 2014; SIGMA Type 2 Diabetes Consortium et al. 2014;

Vernot and Akey 2014; Deschamps et al. 2016; Gittelman et al.

2016; Racimo et al. 2016, 2017; Browning et al. 2018) (Table

S1). For each candidate region, using its recombination rate

and exon density, we ran 200 simulation replicates under the

human demography described by Model_h. We simulated un-

der two models (the Neutral and Deleterious models) to

compute the FPRs in the AI candidate gene regions.

Overall, we find that most statistics do not have extremely

elevated FPRs across most of the gene regions in the presence

of deleteriousmutations (Figure S7). TheD statistic, however,

is a notable exception, showing a higher FPR across all

Figure 4 Distributions, true positive rate (TPR), and false positive rate (FPR) of the U50 and RD Statistics. (A) The U50 statistic. (B) The RD statistic. The

left panels show the distribution of U50 and divergence ratio (RD) statistics using values obtained from all windows, and the critical values (blue dotted

line) used to compute the FPR and TPR on the right panels. The right panels show the FPR (under the neutral and deleterious models) and the TPRs

(under the models with positive selection) for each 50-kb window in a region of 5 Mb. For the simulations, red, orange, blue and black represent

Strong-Pos, Mild-Pos, Neutral, and Deleterious, respectively. The light blue lines in the midpanels illustrate the exons where new mutations can arise,

and the green solid line represents the window where the adaptive mutation occurred. The simulations were run under Model_0 using the genic

structure of the Chr11Max region, using a uniform low recombination rate of 1e–9.
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candidates. This is rather unsurprising because, although theD

statistic is powerful at detecting genome-wide excess of shared

derived alleles between groups (a metric indicating admix-

ture), studies have shown its limitations and reduced reliability

for inferring local ancestryusingsmall genomic regions (Martin

et al. 2014). The fD statistic, on the other hand, is powerful at

detecting introgression at localized loci, and does not show

unusually high FPR for all candidate regions.

Notably, with the exception of two simulated regions

(representing the regions of HLA and HYAL2, Figure 5), we

find that the FPR is well-controlled in the other 24 simulated

AI candidate regions (Figure S7). Here, we show the FPRs for

the EPAS1 and the BNC2-like regions (Figure 5) since these

two regions have similar recombination rates, exon density

and FPRs as the other AI regions considered here. Other than

the D statistic discussed above, the rest of the summary sta-

tistics show an average of FPR around or ,5%. In particular,

the Q and U statistics appear to be the most robust against

false positives from deleterious mutations. In contrast, HLA-A,

HLA-B, and HLA-C genes (referred to as “HLA” in this work),

and a segment on chromosome 3 that contains HYAL2 gene

show elevated FPRs on nearly all statistics.

High exon density and low recombination rate can lead
to deleterious mutations mimicking AI in humans

To understand why the HYAL2 and HLA genes exhibit higher

FPRs in the presence of recessive deleterious variants, we

evaluated several possible factors that could contribute to

the false positives, including: (1) recent human population

growth, (2) the mean recombination rate, (3) the density of

exons where deleterious mutations occur, and (4) the strength

of natural selection in these genes.

We first simulated genomic regions with the structure of

the four genes shown in Figure 5 under four different scenar-

ios of population size change (Figure S9).We find that outlier

regions, such as HYAL2 and HLA, continue to have high FPRs

across the different growth scenarios. Growth (e.g., “Growth

2” and “Growth 4” in Figure S9 where the population size at

the end generation is .70-fold larger than the initial size)

slightly intensifies the already high FPRs in these two genes

(Figure S10), which can be explained by an increase in the

efficacy of selection when the effective population size is

large (Fisher 1923; Wright 1931). The other two simulated

regions (representing the BNC2 and EPAS1 regions) do not

exhibit increased FPRs in the presence of population growth.

We next explored how changes in recombination rate

impact the FPRs for the summary statistics used to detect

AI. By using a uniformly low or high recombination rate in the

simulations under Model_h (Figure S11), we observed that a

high recombination rate can substantially reduce the FPRs to

nominal levels (�0.05) on all statistics in all genes. Con-

versely, a uniformly low recombination rate led to high FPRs

in the two outlier regions (HYAL2 and HLA), while the FPRs

do not necessarily increase in most statistics in other regions

like BNC2 and EPAS1.

Motivated by this finding that the recombination rate can

influence the FPR in HYAL2 and HLA regions as well as prior

work suggesting that low recombination rate and high exon

density can lead to deleterious mutations mimicking signals of

AI (Kim et al. 2018), we performed a more detailed analysis as

to whether the combination of exon density and recombina-

tion rate can explain the elevated FPRs in the HYAL2 and HLA

regions.We computed themean recombination rates and exon

densities for sliding 5-Mb windows across the human genome

(see Materials and Methods), and found that that HYAL2 and

HLA regions are indeed outliers. These two genes have both

high exon density and low recombination rate compared to

most of the other regions of the genome (Figure 6A).

It is also possible that the high FPR in HLA and HYAL2

could be due to mutations in these genes being unusually

Table 1 Summary statistics informative about AI examined in this study

Statistic Definition Reference

pI Ancestry in the recipient population introgressed from the donor population.

This measurement is directly tracked in simulations using tree sequences.

Kelleher et al. (2016),

Kim et al. (2018)

RD Average ratio of sequence divergence between an individual from the

recipient and an individual from the donor population, and the divergence

between an individual from the outgroup and an individual from the

donor population

Racimo et al. (2017)

D Patterson’s D statistic, which measures the excess allele sharing between the

recipient and donor population than between the recipient and an out-

group population that is unadmixed.

Green et al. (2010)

fD A statistic that measures the excess allele sharing while controlling for local

variation in ancestry in the recipient population

Martin et al. (2015)

U20/U50/U80 Number of uniquely shared alleles between the recipient and donor

population that are of frequency ,1% in the outgroup, 100% in the

donor, and more than 20/50/80% in the recipient population

Racimo et al. (2017)

Q90/Q95 90/95% quantile of the distribution of derived allele frequencies in the

recipient population, that are of frequency below 1% in the outgroup and

100% in the donor population.

Racimo et al. (2017)

Heterozygosity Expected heterozygosity in the recipient population measured by the mean

of 2*p*(1-p), with p being the frequency of any given allele in the re-

cipient population

Crow et al. (1970)
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deleterious compared to mutations in the other candidate AI

regions. To test for this, we considered two summary statis-

tics that quantify the amount of selection in local regions of

the genome. Specifically, we examined the degree of back-

ground selection measured by the B-statistic inferred across

the human genome (McVicker et al. 2009), and, second, we

used the dN/dS ratio computed across primate species in-

cluding humans (Enard et al. 2016) as a proxy for the degree

of selective constraint (i.e., selection coefficients at nonsy-

nonymous mutations) in these genes. We found that HLA

and HYAL2 have low B-values (McVicker et al. 2009) relative

to other 5-Mb regions of the genome (Figure 6B and Figure

S14), suggesting that these genes are experiencing more

linked selection than the rest of the genome. However,

HYAL2 and HLA have dN/dS ratios that are well within the

genome-wide distribution (Figure 6B), suggesting that the

strength of selection is not the main factor inflating the FPRs

in these regions. Since the B-values are influenced by the

combined effects of the density of functional elements in

which deleterious mutations occur, recombination rate, and

the selective effects of coding and noncoding regions, the fact

that HLA and HYAL2 are outliers on this metric confirms our

conclusion that the high exon density, together with low re-

combination rate, are the major factors influencing false-pos-

itive inferences of AI due to recessive deleterious mutations.

A null model with deleterious variation reduces the
number of statistically significant AI candidates

Lastly, we askedwhether the empirical values of the summary

statistics at the 5-Mb regions surrounding the AI loci studied

are statistically significant under a null model assuming mu-

tations are neutral or amodel assumingmutations are neutral

or recessive and deleterious. We used the Altai Neanderthal

(Prüfer et al. 2013) or Denisovan (Meyer et al. 2012) as the

donor population, Yorubans (YRI) as the outgroup (nonad-

mixed) population and a non-African population from the

1000 Genomes Project dataset (The 1000 Genomes Project

Consortium et al. 2015) as the recipient population (see

Materials and Methods). We computed their p-values using

the distributions from the simulations under two different

(Neutral or Deleterious) null models. Given that our delete-

rious null model assumes all deleterious mutations are re-

cessive (h = 0), it maximizes the impact of false positives

due to deleterious mutations. Under this model, if the values

of the summary statistics in the regions surrounding the can-

didate genes are statistically significant, then the AI signals

cannot be explained by the heterosis effect.

We calculated the critical values for all summary statistics

using the most extreme 5% tail values under the two null

models, and computed the P-values of the empirical data

points for the statistics. Among the four genes we use as

examples (Figure S15), the “outlier” genes (HLA region and

HYAL2) on average have higher P-values under the deleteri-

ous null models than under the neutral null models. This

trend is reflected by the points falling mostly above the di-

agonal in Figure S15. The higher P-values when we use the

Deleterious null model indicate that this model is more con-

servative at AI inference. Note that, for the two “typical” AI

genes, the P-values fall along the diagonal (Figure S15), sug-

gesting that a null model with and without deleterious mu-

tations yield similar results.

To summarize the difference between the two nullmodels,

we computed the number of 50-kb windows that fell in the

extreme5%tail of theNeutral orDeleterious null distribution.

We calculated the difference between the number ofwindows

that are significant under the Neutral null model and the

number ofwindows that failed to reach significance under the

Deleteriousnullmodel, computedwithin a500-kb core region

that encompasses each AI candidate gene (Figure 7 and Fig-

ure S16). Promisingly, we find that most of the candidate

regions (24/26) show similar P-values on most, if not all, of

the statistics, regardless of whether a null model with dele-

terious mutations or neutral mutations is used. This observa-

tion further confirms the conclusion from an earlier section,

that the recessive deleterious variants have a limited impact

on the detection of the majority of modern human adaptive

Table 2 Summary of the FPR and TPR under different models

Simulation

Scenario Statistics

Mean of FPR in

Deleterious Model

SD of FPR in

Deleterious Model

Focal Window

TPR in Mild-Pos Model

Focal Window TPR

in Strong-Pos Model

Model_0; Chr11Max;

r = 1e-9

pI 0.354 0.047 0.900 1.000

RD 0.204 0.048 0.521 0.569

U50 0.117 0.037 0.438 0.432

Q95 0.437 0.051 0.875 1.000

Model 0, Chr11Max;

r = hg19

pI 0.229 0.086 0.885 1.000

RD 0.134 0.061 0.577 0.648

U50 0.081 0.046 0.365 0.444

Q95 0.121 0.034 0.637 0.752

Model_h; Chr11Max;

r = hg19

pI 0.087 0.108 0.967 1.000

RD 0.098 0.117 1.000 0.654

U50 0.097 0.036 0.767 0.500

Q95 0.099 0.120 1.000 0.933

For the deleterious model, we computed the false positive rates (FPRs) in 50-kb nonoverlapping windows using the most extreme 5% value from

the neutral distribution as the critical value, and show the mean FPR in the third column. For the AI models (Mild-Pos and Strong Pos), we computed

the TPRs using the same neutral cutoff value in all windows, and show the TPR in the window that contains the adaptive mutation (“Focal TPR”).

Note that a properly calibrated null model should have a FPR of 0.05.
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introgression candidates. However, two genes (HLA and

HYAL2) do exhibit a reduced signature of AI under a delete-

rious null model. As shown in the previous section, these two

genes have low recombination and high exon density which

are two factors that enhance the effect of heterosis. There-

fore, these regions may not be adaptively introgressed, in

contrast to previous findings (Ding et al. 2013; Vernot and

Akey 2014; Racimo et al. 2017; Browning et al. 2018).

Discussion

Our work represents one of the first comprehensive efforts to

consider the influence of negative selection in the detection of

AI in humans. We systematically examinedwhether recessive

deleterious variants carried by populations prior to admixture

can affect the robustness of signals in summary statistics that

have been shown to be informative about AI.

Through these simulations, we found that the presence of

recessive deleterious mutations alone is sufficient to signif-

icantly increase the mean and variance of AI summary

statistics in at least some genomic regions. These shifts in

the distribution of statistics (Figure 3) lead to a higher prob-

ability of falsely identifying “AI candidates” when using a

neutral demographic model to define the critical value for

the AI summary statistics. However, most of the previously

identified top AI candidates in humans are unaffected, due

to the fact that their signals of AI are too strong to be

accounted for by deleterious mutations and/or that the

exon density and recombination rates of these regions de-

crease the chance that recessive deleterious mutations can

generate false-positive signals. However, recessive deleteri-

ous mutations may still impede the detection of weaker

signals of AI or for genes within a specific genomic context.

In fact, by examining population genomic data, we show

that such effects from recessive deleterious variants can

result in spurious signals of AI in two candidate genes

(HLA and HYAL2) in humans.

We tested which individual genomic and/or evolutionary

parameters can explain why certain genes like HLA and

HYAL2 are more susceptible to false-positives in humans,

compared to the other candidates. We found that these two

genes have a high exon density and low recombination rate

when compared to the rest of the genome (Figure 6). High

exon density effectively creates a larger mutational target,

which leads to the accumulation of more deleterious muta-

tions in a given genomic region. Low recombination rate low-

ers the probability of crossing over, so linked recessive

deleterious variants aremore likely to remain linked on a given

haplotype. Effectively, both high exon density and low recom-

bination rate maximize the heterosis effect because admixture

with a distantly related population will bring in haplotypes

carrying nondeleterious alleles at these positions. Therefore,

the introgressed ancestry at these regions will increase in the

recipient population despite carrying a different set of delete-

rious variants, leading to the elevation of FPRs in the AI sum-

mary statistics. This process acts in a similar manner as AI,

except that no beneficial mutations are involved. Fortunately

for human geneticists, the density of exons in the human ge-

nome is rather low, mitigating the effect of recessive deleteri-

ous mutations on generating false positive signals of AI for

most (24/26) of the previously identified top candidates.

Other genomic factors, like the density of noncoding func-

tional elements as well as the strength on natural selection

acting on deleterious mutations could, in principle, affect the

FPR in certain genomic regions. To quantify the importance of

these factors, we examined the distributions of B-statistics

and dN/dS ratios. The B-statistic measures the strength of

background selection due to linked variants (Hudson and

Kaplan 1995; Charlesworth 2012), and its value is computed

by combining information from the distribution of exons,

Figure 5 False positive rates (FPR)

for summary statistics from hu-

man AI candidate regions. FPRs

for several summary statistics

are computed by simulating data

under the Deleterious mutation

model, using critical values deter-

mined from the neutral model. All

simulations assume Model_h and

the recombination rates and exon

density of these regions of the ge-

nome. The HLA and HYAL2-like re-

gions result in the highest FPRs,

while the EPAS1 and BNC2-like re-

gions have similar FPRs as the other

regions simulated.
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noncoding variants, recombination rate, and selection co-

efficient (McVicker et al. 2009). Notably, HYAL2 exhibits a

strikingly low B-statistic when compared to the rest of the

genome and HLA also has a below-average B-statistic, sug-

gesting these genes experience more linked selection. To

test whether the low B-statistics in these genes is driven

by mutations in these genes being highly deleterious, rather

than their high exon density and their low recombination

rate, we examined the distribution of dN/dS ratios. Neither

gene has unusually low dN/dS values, implying that the

selection coefficients for nonsynonymous mutations in these

genes are not more deleterious than these inmost other genes.

Taken together, these results argue that exon density and re-

combination rate are the important factors driving the ele-

vated FPR for AI in these regions of the genome.

We also show that the demographic history of human

populations, including a change in the recipient population

size, does not play amajor role in affecting the FPRof tests for

AI. However, the near-exponential population growth in the

recent history ofmodern humansmay have increased the FPR

in genes that are already susceptible to false-positive results

due to deleterious mutations. This is consistent with the

findings of Kim et al. (2018) where they showed that a re-

covery of population size after a bottleneck in the recipient

population can exaggerate the heterosis effect. This is likely

due to the fact that a large effective population size restricts

the extent of genetic drift, leading to a more prominent effect

of natural selection, including the complementation of dele-

terious alleles via the heterosis effect.

Our modeling approach makes a number of assumptions.

For instance, we mainly considered the extreme case where

deleterious variants are completely recessive (h = 0). The

reason for this is that we set out to determine whether dele-

terious variants are a concern for AI signals when this effect is

maximized. Kim et al. (2018) already studied the effect from

additive variants and observed little effect on introgressed

ancestry. In empirical genomic data, the distribution of dom-

inance should be in between the two extremes (Lynch et al.

1999; Whitlock et al. 2000; Eyre-Walker and Keightley 2007;

Lynch 2010; Agrawal and Whitlock 2011; Harris and Nielsen

2016; Kim et al. 2018). A current challenge is that the empir-

ical values of dominance coefficients for deleterious mutations

in humans remain unknown. We show in our simulations (Fig-

ure S13) that the genomic regionswith elevated FPRsmaintain

this behavior under models with a wide range of dominance

coefficients, including when the mutations are partially reces-

sive (hs relationship (Henn et al. 2016)). It is promising that,

even when the heterosis effect acts in its most extrememanner

(assuming h = 0), the signature of AI in the top candidate

regions persists. Other values of h would be unlikely to affect

the conclusion that 24/26 candidates are robust to confound-

ing by deleterious mutations.

Another simplifying assumption made in most of simula-

tions with genuine AI is that the positive selection on the

archaic variant began immediately after introgression. To

explore whether the time of positive selection affects the

distribution of AI statistics on HLA and HYAL2, we performed

additional simulations of these regions when there is a gap

between the timing of introgression and positive selection

[Standing Archaic Variation (SAV); Supplemental Methods;

Jagoda et al. 2017]. We observe that the AI summary statis-

tics from this model, which in effect resemble a weaker pos-

itive selection signal, are even less distinguishable from the

Deleterious model than the Mild-Pos model (Figure S8).

Figure 6 Genomic factors that contribute to high FPRs in the outlier regions. (A) The relationship between the exon density and mean recombination

rate in 5-Mb sliding windows across the human genome (step size 100 kb). (B) The relationship between background selection strength (measured by

the B-statistic), and the strength of selection in protein-coding regions (measured by dN/dS ratio), on 5-Mb sliding windows (step size 100 kb) across the

human genome (hg19). A low value of the B-statistic indicates stronger selection on linked variants, and a low value of the dN/dS ratio indicates more

constrained regions. The contour lines show the quantile of the gray points. The blue points highlight the regions of AI candidate genes mentioned in

the main text, including the outliers (HYAL2, HLA), and the typical ones (EPAS1, BNC2). The black point represents the “Chr11max” region mentioned in

earlier sections. The dashed lines denote the mean values of the respective axes.
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Even though the signals in most of the top AI candidate

genes inhumansareunaffectedbydeleterious variation, there

are several reasons why deleterious mutations should still be

considered in null models for detecting AI. First, the combi-

nation of evolutionary parameters (low recombination rate

and high exon density) that leads to an elevation of false-

positives may occur much more commonly in other study

systems. Moreover, even for modern humans, the demogra-

phy used in simulations is an approximation of the modern

Eurasian population history,whichmay not represent the true

evolutionary history of all non-African populations. For ex-

ample, when more than one introgression event occurs [e.g.,

Denisovan introgression in Asia (Browning et al. 2018;

Jacobs et al. 2019)], and when the ancestral modern human

populations were small, the heterosis effect from deleterious

variants could have a different impact under a complex de-

mography. And finally, subtle signals of true AI might not be

as distinct from the signals left by deleterious mutations. For

instance, a model where selection does not act immediately

after introgression may lead to a weaker signature of adap-

tive introgression. We recommend caution in interpreting

these weaker signals, especially in regions of the genome

with low recombination rate and high exon density.

Futurework to try todistinguish trueAI fromfalse-positives

due to deleterious mutations in regions of the genome with

low recombination rate and high exon density could use the

spatial pattern of summary statistics across a genomic region.

Indeed, Figure 3 shows that genuine AI leads to a more

peaked elevation of U50 at the adaptive mutation compared

to recessive deleterious mutations. However, these plots

show the distribution over 200 simulation replicates. By vi-

sualizing the distribution of statistics values in randomly se-

lected single replicates of simulations (Figure S12), an

elevated statistical “peak” value, which is a typical signature

of AI, can be generated at a random region of the genome by

recessive deleterious mutations only. Thus, the spatial pat-

tern may not be a complete solution in any particular region

of the genome with low recombination rate and high exon

density.

Although heterosis upon admixture effectively reduces the

deleterious effect of recessive variants, its mechanism and

biological consequences are essentially different from adap-

tive introgression, which we expect to produce phenotypic

variation in biologically meaningful genes under a given

environment. It is thus important to distinguish the signals

generated by the heterosis effect on recessive deleterious

mutations from legitimate adaptive introgression. Therefore,

improving null models to better distinguish between these

two processes is important, especially when studying organ-

isms that have compact genomic structures, and/or distinct

demographic events that may accelerate the dynamics of the

heterosis effect after introgression.
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