The Impact of Resource Sharing Control on the
Design of Multicore Processors

Chen Liu' and Jean-Luc Gaudiot?

! Department of Electrical and Computer Engineering,
Florida International University, 10555 West Flagler Street,
Miami FL 33174, USA
cliu@fiu.edu
2 Department of Electrical Engineering and Computer Science,
University of California, Irvine CA 92697, USA
gaudiot@uci.edu

Abstract. One major obstacle faced by designers when entering the
multicore era is how to harness the massive computing power which these
cores provide. Since Instructional-Level Parallelism (ILP) is inherently
limited, one single thread is not capable of efficiently utilizing the re-
source of a single core. Hence, Simultaneous MultiThreading (SMT) mi-
croarchitecture can be introduced in an effort to achieve improved system
resource utilization and a correspondingly higher instruction through-
put through the exploitation of Thread-Level Parallelism (TLP) as well
as ILP. However, when multiple threads execute concurrently in a sin-
gle core, they automatically compete for system resources. Our research
shows that, without control over the number of entries each thread can
occupy in system resources like instruction fetch queue and/or reorder
buffer, a scenario called “mutual-hindrance” execution takes place. Con-
versely, introducing active resource sharing control mechanisms causes
the opposite situation (“mutual-benefit” execution), with a possible sig-
nificant performance improvement and lower cache miss frequency. This
demonstrates that active resource sharing control is essential for future
multicore multithreading microprocessor design.

1 Introduction

With multicore microprocessors being introduced into commercial desktop and
laptop computers, parallel computing has become mainstream in the computing
community. While 2-core and 4-core microprocessors still dominate the market,
projections and early prototypes already indicate that we could soon be look-
ing at hundred, even thousand cores on a single chip in the near future. Since
Instructional-Level Parallelism (ILP) for a single thread is inherently limited,
we believe future multi/many-core microprocessor should have the capability
of multithreading. Hence, in this article, we focus on the design of Multicore
Multithreading MicroProcessor (MMMP). At first glance, it might appear that
scheduling threads to execute on an MMMP is as straightforward as simply

A. Hua and S.-L. Chang (Eds.): ICA3PP 2009, LNCS 5574, pp. 31513261 2009.
© Springer-Verlag Berlin Heidelberg 2009



316 C. Liu and J.-L. Gaudiot

following existing techniques similar to scheduling multiple tasks onto multi-
ple single-core microprocessors, which does not presenting a substantially diffi-
culty. The truth is, however, how to achieve efficient utilization of these many
processing elements and harness the tremendous computing power of future
multi/many-core processors presents a great challenge to system architect.

In MMMP, the resource sharing control scheme has a significant impact on
overall system performance and power efficiency. The scheme must decide how
the system resources on each core are divided among multiple threads. For exam-
ple, how many entries one thread can occupy in Instruction Fetch Queue (IFQ),
Instruction Issue Queue (IIQ), ReOrder Buffer (ROB), Renaming Register, sep-
arately. How to divide the issue and commit bandwidth among multiple threads
is also a part of the scheme. If there is no control on the resources that can be
assigned to one thread in one core, this would cause the uneven distribution of
resources among threads and uneven execution of the threads. This also trans-
lates into the overall time to execute all threads being extended and more power
being consumed in this prolonged process. On the other hand, an active resource
sharing control scheme will alleviate these symptoms or even avoid them from
happening. Our goal is to achieve sustained computational throughput at an ac-
ceptable level so that the overall time to execute multiple threads is reduced and
less power is consumed. This would require all the threads progress at a similar
rate, if not the same, which can be achieved through resource sharing control.
In addition, through resource sharing control, we can even satisfy the required
Quality-of-Service (QoS) criteria for real-time applications [I]. Hence, resource
sharing control of an MMMP is a fundamentally different and much more dif-
ficult problem than that of Single-core Single-thread MicroProcessor (SSMP)
design.

The purpose of this paper is to validate the necessity of an active resource man-
agement scheme for future MMMP design. We demonstrate the effectiveness of
such a scheme in a Single-core Multithreading MicroProcessor (SMMP) design,
and argue that this design can be easily imported into future MMMP design. In
section 2 we introduce some background on microprocessor design and related re-
search. Our experiments allow us to frame the issue related to resource sharing
control in section 3. In section 4 we discuss future design trends and conclude.

2 Background

With the emergence of multicore processors, a new prediction after Moore’s law
[2] has been born, stating that instead of doubling the number of transistors, it
is the number of cores on a single chip that will double every 18 months from
now on [3]. While putting a large number of cores on the same chip, however, we
still face the same “Memory Wall” problem [4] as in the single-core era. This is
one of the motivations of our work. As such, attempting to exploit Thread-Level
Parallelism (TLP) is an effort to overcome the limitation due to low ILP within
a single program. There are two ways to explore TLP: multicore architectures
and multithreading architectures.



The Impact of Resource Sharing Control 317

2.1 Multicore and Multithreading

As a result of a number of limiting factors including VLSI layout, architectural
design, and more importantly, the dilemma between power and frequency, the
general-purpose processor architecture paradigm is facing a change. The other-
wise too-complex too-high-frequency single-core processor design has to be aban-
doned. With an abundance of transistor real estate, we are turning to improving
the performance by having multiple low-complexity cores on the same die. High-
performance processor design is rapidly moving towards many-core architectures
that integrate tens (or more) of processing cores on a single chip, represented by
Intel® Teraflops [5], IBM Cyclops-64 [6] and Nvidia® Tesla™ architectures.

There are two different architectural technologies for multicore processor de-
sign. One is to integrate tightly-coupled identical processing elements on a single
chip, this is called homogeneous multicore, represented by the Intel® Core™ 2
Duo and the AMD Turion™ 64 X2. The other is to integrate a number of dif-
ferent processing elements (some of them maybe application specific) on a single
chip, called heterogeneous multicore, represented by the IBM Cell Broadband
Engine™. The many-core-on-a-chip architecture naturally exploits the Thread-
Level and Process-Level Parallelism, which will enable tomorrow’s emerging ap-
plications and is expected to be supported by multicore-aware operating systems
(OS) and environments.

By allowing one processor to execute two or more threads concurrently, Simul-
taneous MultiThreading architecture is able to exploit both Instructional-Level
Parallelism and Thread-Level Parallelism, accordingly achieving improved in-
struction throughput [7I8]. Hence, Simultaneous MultiThreading is one of the
best architectures for utilizing the vast computing power that such a micro-
processor would have, achieving optimal system resource utilization and higher
performance. For this reason and also because of the limited ILP from a sin-
gle thread, SMT is a good architectural technique which can maximize system
performance.

2.2 Resource Allocation and Management

Researchers have certainly realized the importance of active resource allocation
for an SMT processor design in order to achieve the optimum resource distribu-
tion among threads, which leads to desired performance improvement. Indeed,
Raash et al. [9] studied various system resource partitioning mechanisms on SMT
processors. They concluded that the true power of SMT lies in its ability to issue
and execute instructions from different threads at every clock cycle, hence, the
issue bandwidth has to be shared all the time. Incidentally, it should be noted
that we certainly incorporated this philosophy into our design. Fetch policy can
achieve implicit resource distribution among threads with very limited effect.
For example, ICOUNT policy [8] prioritizes the threads based on the number
of instructions in the front-end stages from each thread to decide from which
thread to fetch instructions. DCRA [I0] was proposed in an attempt to dynam-
ically allocate the resources among threads by dividing the execution of each



318 C. Liu and J.-L. Gaudiot

thread into different phases, using instruction and cache miss counts as indica-
tors. The study shows that DCRA achieves around 18% performance gain over
ICOUNT in terms of harmonic mean. Hill-Climbing [T1I] dynamically allocates
the resources based on the current performance of each thread and feedback into
the resource-allocation engine. It used its learning-based algorithm to selectively
sample different resource distributions first to find out the local optimum and
then adopt that distribution. It achieves a slightly higher performance (2.4%)
than DCRA but is certainly the most expensive one in terms of execution over-
head. ARPA [12] is proposed as an adaptive resource partitioning algorithm that
dynamically assigns resources (IFQ, IQ and ROB) to the threads according to
thread behavior changes. ARPA analyzes the resource usage efficiency of each
thread in a time period and assigns more resources to threads which can use
them more efficiently. It outperforms Hill-Climbing scheme by 5.7%.

Some other recent work has explored various design approaches, which all
requires a closer interaction between OS and the multicore microarchitecture,
including resource management. Based on their work in fault-handling and thread-
scheduling in SMT processor design, Bower et al. [I3] argued that under the het-
erogeneous multicore processor scenario, we should schedule threads by pairing
the thread with the core which best matches its execution demand. Elevating
this decision-making process up to the OS level would be even more beneficial.
Knauerhase et al. [I4] basically agrees with this approach in the MMMP de-
sign. They suggested that the OS should be able to dynamically migrate the
thread onto a different core, so as to achieve the ideal scheduling of pairing the
cache-heavy and cache-light threads on the same core. This would improve over-
all system performance, improve application performance and decrease system
power consumption, similar to the “mutual-benefit” and “mutual-hindrance”
scenarios we address in this paper. Nesbit et al. [15] introduced Virtual Private
Machine (VPM) into the resource management of multicore processors. Their
goal is to elevate the resource management to the software level, not solely at the
hardware level. After the application specifying the QoS objective, the system
software translates these objectives into hardware resource assignment, e.g., the
number of cores and the portion of shared L2 cache to be dedicated to this appli-
cation solely, through a software/hardware interface based on VPM abstraction.
In this way, the QoS objective is satisfied.

3 Impact of Resource Sharing Control

Here we use a set of simple experiments to demonstrate that resource sharing
control can provide a substantial advantage in terms of overall performance
improvement and weighted speedup over no-control schemes. However, before
that, we will briefly introduce our evaluation methodology.

3.1 Evaluation Methodology

Our simulator is based on the SMT simulator developed by Kang et al. [16],
which itself is derived from SimpleScalar [I7]. Our simulator is meant to



The Impact of Resource Sharing Control 319

Table 1. Baseline parameters

Parameter Value

IF, ID, IR Width 8-way

Queue Size 64 11Q, 64 LQ, 64 SQ
Functional Units 6 INT, 2 FP, 4 Load/Store

2 INT Mul/Div, 2 FP Mul/Div
Instruction Fetch Queue Size 256 entries

ReOrder Buffer Size 256 entries

BTB 512 entries, 4-way associative
Branch Predictor Hybrid: 1K gshare + 1K bimodal
L1 D-Cache 64KB, 4-way

L1 I-Cache 64KB, 4-way

Combined L2 Cache 1MB, 4-way associative

L2 Cache Hit Latency 6 cycles

Main Memory Hit Latency 100 cycles

Table 2. Nine SPEC CPU2000 benchmarks used in this study

Benchmark Type Character. Benchmark Type Character. Benchmark Type Character.

mcf INT MEM gce INT ILP equake FpP MEM
parser INT MEM gzip INT ILP art FP MEM
twolf INT MEM bzip2 INT ILP

vpr INT MEM

simulate an SMT architectural model which supports out-of-order and specu-
lative execution. The major baseline SMT simulation parameters are listed in
Table [l

Table [2 lists the nine benchmarks we used in our simulations. All bench-
marks are from the SPEC CPU2000 suite [I8] with the reduced input set from
MinneSPEC [19]. Following the same methodology as shown in [I0[TII12], we
divide the benchmarks into two different categories: memory-bound (we refer to
them as MEM for short) and computation-bound (ILP for short). Based on these
characteristics of the benchmarks, we created appropriately mixed 2-thread mul-
tiprogramming workloads shown in Table[3l For this study we only focus on the
2-thread SMT architecture.

Measuring the performance of multiprogramming workloads on a multithread-
ing processor can be tricky. We cannot only look at the overall instruction
throughput; we also need to consider fairness execution for each thread. In
this paper we use two metrics to evaluate both throughput and fairness as in
[ITIT2/20]. The first metric is avg_IPC, which is defined as:

N
avg_IPC = W (1)



320 C. Liu and J.-L. Gaudiot

Table 3. Workload combinations based on benchmark behavior

Name Combination Name Combination Name Combination

MEM1 vpr, art MEM6 art, mcf MEM11 mcf, parser
MEM2 vpr, mcf MEMT art, equake MEM12 mcf, twolf
MEMS3 vpr, equake MEMS8 art, parser MEMI13 equake, parser
MEM4 vpr, parser MEM9 art, twolf MEM14 eqauke, twolf
MEMS5 vpr, twolf ~ MEM10 mcf, equake MEM15 parser, twolf
MIX1 gzip, vpr MIX7  gce, vpr MIX13 bzip2, vpr
MIX2 gzip, art MIX8 gce, art MIX14 bzip2, art
MIX3 gzip, mcf MIX9 gcc, mef MIX15 bzip2, mcf
MIX4 gzip, equake MIX10 gcc, equake MIX16 bzip2, equake
MIX5 gzip, parser MIX11 gcc, parser MIX17 bzip2, parser
MIX6 gzip, twolf MIX12 gcc, twolf MIX18 bzip2, twolf
ILP1  gzip, gcc ILP2  gzip, bzip2 ILP3  gcc, bzip2

Where N is the number of threads, for our case N = 2. Note that avg_IPC
only measures the overall throughput, which may be biased under certain circum-
stances like executing more instructions from the thread with fewer long-latency
instructions while executing fewer instructions from the thread having more
long-latency instructions. Hence, we also need another metric to take fairness
into consideration:

ZN IPChew,i

avg_Baseline_Weighted_IPC = =l H;\C;b“e”"” (2)

avg-Baseline_Weighted_IPC weighs the IPC of each thread in the new scheme
with respect to its IPC in the baseline scheme and then calculates the average.
This takes the relative performance improvement of all threads into considera-
tion, which is a fairer measurement.

3.2 Performance Evaluation

In our previous work [2I], we proposed four different resource sharing control
schemes:

1. D-Share, where all the system resources are dynamically shared by both
threads.

2. IFQ-Fen, where one thread can only hold up to half of the Instruction Fetch
Queue (IFQ) entries and all other system resource are dynamically shared.

3. ROB-Fen, where one thread can only hold up to half of the ReOrder Buffer
(ROB) entries and all other system resource are dynamically shared.

4. Dual-Fen, where both IFQ and ROB are monitored and one thread can
only hold up to half of the entries of each queue. If any thread is beyond
its quota, the fetch from that thread is temporarily suspended until the
situation is resolved.



The Impact of Resource Sharing Control 321

2.5

B D-share MW IFQ-Fen = ROB-Fen M Dual-Fen

Fig. 1. avg_Baseline_Weighted IPC of different schemes for 36 workloads

This paper is a continuation of our previous work [2I]. We strive to evaluate the
impact of resource sharing control schemes on the performance of SMMP from a
different perspective, by introducing a new set of evaluation metrics and criteria.

Figure [ compares avg_Baseline_Weighted_IPC of all the schemes proposed
across the 36 workloads listed in Table [3] using D-Share as the baseline configu-
ration. We can see that the Dual-Fen scheme achieves a better speedup over the
D-Share scheme for almost all workloads in MEM and MIX groups; the improve-
ment in the ILP group is not significant compared with that in the MEM and
MIX groups. Overall, IFQ-Fen, ROB-Fen and Dual-Fen achieve 1.9%, —7.7%
and 31.0% improvements over D-Share for 2-thread workloads.

All the resource sharing control schemes run on top of the ICOUNT policy,
which is capable to indicate the current performance of the thread to some
extent. It, however, does not take speculative execution into consideration, nor
does it handle long latency (mainly cache miss) instructions well. If no preventive
measure is taken, the instructions from the thread with a cache miss will occupy
system resources in the pipeline. This directly translates into a reduction in the
amount of system resources that other thread(s) can utilize. This is what we call
“mutual hindrance” execution. Because the memory-bound threads in MEM and
MIX workloads more easily clog the pipeline than do computation-bound threads
in ILP workloads, we can see from Figure[Il that the improvement in MEM and
MIX workloads is much greater than that in ILP workloads. Resource sharing
control can prevent one thread from grabbing too many system resources. For
this case, our Dual-Fen scheme controls both the input to the pipeline and its
output in order to achieve what we call “mutual-benefit” execution. In this way,
we have control over the resource distribution, reduce the impact of cache misses
on the pipeline and enhance the overall system performance.

Figure2lshows the avg_IPC improvement and the avg_Baseline_ Weighted_IPC
improvement on average for the MEM, MIX and ILP workloads separately. With
avg_IPC metric, IFQ-Fen, ROB-Fen and Dual-Fen achieve —0.2%, —7.9% and



322 C. Liu and J.-L. Gaudiot

50%
M |FQ-Fen ®ROB-Fen ® Dual-Fen M IFQ-Fen W ROB-Fen Dual-Fen

40%

30% —

20%

avg_IPC improvement

10%

0% | ||
& f R

-15% -10%

avg_Baseline_Weighted_IPC improvement

w o
x x
o
&
R
]
oa
ﬂ
¢

-10%

Fig. 2. avg_IPC and avg_Baseline_Weighted_IPC improvement of different schemes over
D-Share across 36 workloads

14.0% improvements over D-Share, respectively. The avg_Baseline_ Weighted_IPC
improvement for Dual-Fen and IFQ-Fen over D-Share is much better than the
avg_IPC improvement for the MEM and MIX groups. For example, Dual-Fen
achieves a 24% improvement in avg_Baseline_ Wei-ghted_IPC over D-Share for
MIX _avg, but using the avg_IPC metric, the improvement is only 12%. This is
caused by the different characteristics of the metrics.

Dual-Fen performs much better than D-Share, IFQ-Fen and ROB-Fen schemes
in MEM and MIX workloads but shows no significant advantages for ILP work-
loads. The reason is that computation-bound threads normally requires fewer
resources to exploit ILP and not prone to cache miss instructions, while memory-
bound threads requires more resources to exploit ILP, with more cache misses
and clogging the pipeline. Dual-Fen scheme shows the capability of effectively
controlling the resource utilization by potentially clogging thread to improve
the overall throughput, while ROB-Fen scheme is not able to achieve the same
level of control. Since a clogging thread which uses clogged resources for a long
period of time usually has a low IPC reading for the dynamic sharing case, re-
source sharing control scheme such as Dual-Fen greatly reduces the extend of
this kind of clogging from happening, which resulted in a greater weighted IPC
improvements.

Some benchmarks, like art, achieve a better performance improvement than
others. There are two reasons for that. One is that art is of floating-point type.
When executing side-by-side with an integer-type thread, it is not competing for
the same type of functional units, and hence more TLP can be explored. Another
reason, is that art itself when running alone is prone to cache misses. With our
resource sharing control scheme Dual-Fen, the L1 D-Cache miss rate for art has
been greatly reduced compared with D-Share case when running with another
thread. This proves that our resource sharing control scheme effectively reduces
the extent of clogging of the pipeline caused by long-latency operations. Also
because the reduction in cache-miss rate, the overall time that the instruction

spends in the pipeline (slip-time) has also been reduced on average by 34%, as
shown in [21].



The Impact of Resource Sharing Control 323

1.4

D——————
1.2
—_—
1
g 0.8 ——D-Share
;DI -=-|FQ-Fen
® 0.6 ROB-Fen
—~-Dual-Fen
0.4
0.2
0
11Q-64, LQ-64, SQ-64 11Q-128, LQ-128, SQ-128

Fig. 3. avg_IPC of different schemes as the number of queue entries changes across 36
workloads

3.3 Sensitivity Analysis

In this section, we study the impact of the queue size and functional units on
resource sharing control. Figure [3] shows the average IPC of Dual-Fen versus D-
Share, IFQ-Fen and ROB-Fen schemes across the 36 workloads as the Instruction
Issue Queue (IIQ), Load Queue (LQ) and Store Queue (LQ) are all increased
from 64 entries to 128 entries with the IFQ and ROB remaining at 256 entries.
We can see all schemes only achieve minor performance improvement. Actually
increasing the I1Q, LQ and SQ size almost has no impact on ROB-Fen and D-
Share. IFQ-Fen and Dual-Fen performance improves by 3%. With more entries
in the queue, more ILP can be exploited when searching for ready instructions
to execute within limited extent. While ROB-Fen still under-performs D-Share,
which means controlling the ROB alone cannot achieve the desired resource
distribution.

Figure M compares the avg_Baseline_Weighted_IPC improvement of different
schemes over D-Share as the functional units of the pipeline increase from (4-
INT, 4-FP) to (8-INT, 8-FP) across all 36 workloads as the IIQ, LQ and SQ
sizes are fixed at 128 entries. We can see that as the number of functional
unit increases, the performance of Dual-Fen scheme over D-share is the biggest
among all the schemes, achieving 43%, 37% and 38%, respectively, while IFQ-Fen
only achieves 3%, 6% and 10% improvements. ROB-Fen scheme keeps under-
performing. When the number of functional units increases from (4-INT, 4-FP)
to (8-INT, 4-FP), we see the IFQ-Fen performance is improved by 3% while
the Dual-Fen drops by 4%. However, when the number of functional units in-
creases from (8-INT, 4-FP) to (8-INT, 8-FP), we see the IFQ-Fen performance
is improved by another 4% while the Dual-Fen only improved by 1%.

We believe the reason for that is when we increase the number of integer
functional units, the benchmark with more ILP can benefit from this change
because now its instructions can be issued for execution at a faster speed. Since
IFQ-Fen only controls the input to the pipeline, and the increase of the function



324 C. Liu and J.-L. Gaudiot

50%

40%

u INT-4, FP-4
20% uINT-8, FP-4
a0 INT-8, FP-8

g ox ‘
IFQ-Fen R n Dual-Fen

Fig. 4. avg_Baseline_Weighted TPC improvement of different schemes over D-Share as
the number of functional unit changes across 36 workloads

-10%

units mainly affects the execution and retirement stages of the pipeline, which
is why we see a performance jump for IFQ-Fen. As for Dual-Fen, because it also
controls the ROB, which affects the instruction retirement speed. This is why
we do not observe a performance improvement of Dual-Fen as the number of
functional units increases, as opposed to the IFQ-Fen case. This can be deemed
as a trade-off for avoiding the clogging of the pipeline from cache misses. Overall,
Dual-Fen scheme still achieves a huge performance improvement over all other
schemes, just it does not benefit from the extra functional units added.

4 Conclusion and Future Design Trends

From a number of experiments we have shown that resource sharing control is
essential for SMMP design, which naturally extends to MMMP design as well.
Under a multithreading execution scenario, one of the evaluation metrics on
which we focus is the overall system throughput, which translates into overall
execution time in the completion of multiple-thread workload. Through active
resource sharing control, first of all, we can avoid the scenario that one thread
grabs too many resources and then clog the pipeline when a long-latency oper-
ation happens. Secondly, this will also contribute towards closing the execution
speed gap between the fast-moving thread and slow-moving thread, moving to-
wards an even-execution of both threads. Under this “mutual-benefit” execution
scenario, we could achieve the maximum TLP, with the resource sharing control
schemes controlling the ILP of each thread.

As we have seen, resource sharing control scheme does not work well when
computation-bound thread running together with a similar type thread. So if
we can get help from OS scheduler, when scheduling the job, always trying to
pairing a computation-bound thread with a memory-bound thread onto one core,
this would definitely improve the overall system performance in MMMP. What’s
more, each thread’s behavior changes as it passes through phases of execution.



The Impact of Resource Sharing Control 325

Built on top of the resource sharing control scheme for each core, we may need
support from OS to hot-swab the thread from one-core to another if the thread is
in a different phase of execution and we want to keep matching one computation-
bound thread with one memory-bound thread, as long as the benefits justify
the swabbing overhead. This would greatly benefit the performance of future
MMMPs, even satisfy certain QoS specifics.

We mean for this paper to demonstrate the urgent need for resource shar-
ing control for multicore multithreading microprocessors. Controlling resource
sharing for this new type of microprocessor is a new problem, which requires
knowledge of the dynamic status of cores and the dynamic characteristics of
threads. This would require that the operating system designer, the compiler
designer, and the hardware architect collaborate accordingly. We will need to
construct an interface to better communicate across the different layers in order
to achieve this goal.

References

1. Cazorla, F., Ramirez, A., Valero, M., Knijnenburg, P., Sakellariou, R., Fernan-
dez, E.: QoS for high-performance SMT processors in embedded systems. IEEE
Micro 24(4), 24-31 (2004)

2. Moore, G.E.: Cramming more components onto integrated circuits. Electron-
ics 38(8), 114-117 (1965)

3. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.-W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, University of California at Berkeley (2006)

4. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2006)

5. Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar,
N., Borkar, S.: An 80-tile sub-100-w teraflops processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits 43(1), 29-41 (2008)

6. Zhang, Y.P., Jeong, T., Chen, F., Wu, H., Nitzsche, R., Gao, G.: A study of the
on-chip interconnection network for the IBM Cyclops64 multi-core architecture.
In: IPDPS 20: Proceedings of the 20th International Parallel and Distributed Pro-
cessing Symposium, p. 44. IEEE Computer Society, Los Alamitos (2006)

7. Tullsen, D., Eggers, S., Levy, H.: Simultaneous multithreading: Maximizing on-chip
parallelism. In: ISCA 22: Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pp. 392-403. IEEE Computer Society Press, Los
Alamitos (1995)

8. Tullsen, D., Eggers, S., Emer, J., Levy, H., Lo, J.L., Stamm, R.: Exploiting choice:
Instruction fetch and issue on an implementable simultaneous multithreading pro-
cessor. In: ISCA 23: Proceedings of the 23rd Annual International Symposium on
Computer Architecture, p. 191. IEEE Computer Society, Los Alamitos (1996)

9. Raasch, S., Reinhardt, S.: The impact of resource partitioning on SMT processors.
In: PACT 2003: Proceedings of the 12th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pp. 15-25. IEEE Computer Society, Los
Alamitos (2003)



326

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Liu and J.-L. Gaudiot

Cazorla, F.J., Ramirez, A., Valero, M., Fernandez, E.: Dynamically controlled re-
source allocation in SMT processors. In: MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pp. 171-182. IEEE
Computer Society, Los Alamitos (2004)

Choi, S., Yeung, D.: Learning-based SMT processor resource distribution via hill-
climbing. In: ISCA 2006: Proceedings of the 33rd Annual International Symposium
on Computer Architecture, pp. 239-251. IEEE Computer Society, Los Alamitos
(2006)

Wang, H., Koren, I., Krishna, C.M.: An adaptive resource partitioning algorithm
for SMT processors. In: PACT 2008: Proceedings of the 17th International Con-
ference on Parallel Architectures and Compilation Techniques, pp. 230-239. ACM
Press, New York (2008)

Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous
multicore processors on thread scheduling. IEEE Micro 28(3), 17-25 (2008)
Knauerhase, R., Brett, P., Hohlt, B., Li, T., Hahn, S.: Using OS observations to
improve performance in multicore systems. IEEE Micro 28(3), 54-66 (2008)
Nesbit, K.J., Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M., Smith, J.E.:
Multicore resource management. IEEE Micro 28(3), 6-16 (2008)

Kang, D., Liu, C., Gaudiot, J.L.: The impact of speculative execution on SMT
processors. International Journal of Parallel Programming 36(4), 361-385 (2008)
Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. ACM SIGARCH
Computer Architecture News 25(3), 13-25 (1997)

Henning, J.L.: SPEC CPU 2000: Measuring CPU performance in the new millen-
nium. Computer 33(7), 28-35 (2000)

KleinOsowski, A.J., Lilja, D.J.: MinneSPEC: A new SPEC benchmark workload
for simulation-based computer architecture research. IEEE Computer Architecture
Letters 1(1), 7 (2002)

Luo, K., Gummaraju, J., Franklin, M.: Balancing thoughput and fairness in SMT
processors. In: ISPASS 2001: Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 164-171 (2001)

Liu, C., Gaudiot, J.L.: Resource sharing control in simultaneous multithreading mi-
croarchitectures. In: ACSAC 2008: Proceedings of the 13th Asia-Pacific Computer
Systems Architecture Conference, pp. 1-8 (2008)



	The Impact of Resource Sharing Control on the Design of Multicore Processors
	Introduction
	Background
	Multicore and Multithreading
	Resource Allocation and Management

	Impact of Resource Sharing Control
	Evaluation Methodology
	Performance Evaluation
	Sensitivity Analysis

	Conclusion and Future Design Trends


