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Abstract: Over the past two decades, RNA interference (RNAi) in ticks, in combination with omics
technologies, have greatly advanced the discovery of tick gene and molecular function. While
mechanisms of RNAi were initially elucidated in plants, fungi, and nematodes, the classic 2002
study by Aljamali et al. was the first to demonstrate RNAi gene silencing in ticks. Subsequently,
applications of RNAi have led to the discovery of genes that impact tick function and tick-host-
pathogen interactions. RNAi will continue to lead to the discovery of an array of tick genes and
molecules suitable for the development of vaccines and/or pharmacologic approaches for tick control
and the prevention of pathogen transmission.
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1. Introduction

RNA interference (RNAi) is a molecular methodology that, in combination with recent
omics technologies, has substantially advanced the understanding of tick gene function [1–3].
RNAi is effected by the introduction of double-stranded RNA (dsRNA) homologs to specific
messenger RNA (mRNA), resulting in sequence-specific degradation, thereby interfering
with gene expression, causing a subsequent loss of gene function.

The RNAi method used today evolved from studies on cellular phenomena identified
initially in 1990 by Napoli et al. [4] in petunia plants. In this study, the authors hypothesized
that the introduction of a chimeric gene would result in reversible co-suppression of
homologous genes in trans. A similar phenomenon was subsequently reported in the
fungus Neurospora crassa, which proposed that the introduction of homologous RNA would
cause quelling of a target gene [5]. Subsequently, RNAi was first reported in 1995 in the
nematode Caenorhabditis elegans [6].

In 1998, a pioneering study by Fire et al. [7] elucidated the mechanisms by which
dsRNA impacted the phenomena of co-suppression in plants [4], quelling in fungi [5],
and RNAi in nematodes [6]. Further key advances in RNAi research included evidence of
parent-to-offspring transmission in C. elegans [8,9], identification of small interfering RNAs
(siRNAs) as stable RNAi intermediates [10–13], siRNA-mediated silencing of endogenous
and heterologous genes in mammalian cells [14], and identification of enzymes and other
components of the RNA-induced silencing complex (RISC) [15–17].

The first report of RNAi in ticks in 2002 by Majd N. Aljamali, John R. Sauer, and
Richard C. Essenberg from Oklahoma State University (Stillwater, OK, USA) [18], based
on these previous studies, was a fundamentally important advance in the study of ticks.
RNAi in ticks led to the elucidation of tick gene function and the molecular interactions
between ticks and pathogens required for pathogen development and transmission. These
studies allowed for the identification of tick genes for use in the development of novel
interventions for the control of tick infestations and tick-borne diseases [19].
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2. Discovery/Methodology

The classic proof-of-concept study of dsRNA-mediated RNAi in ticks by Aljamali et al. [18]
was done using Amblyomma americanum female ticks. In this study, dsRNA targeted to
the histamine binding protein (HBP) by RNAi was incubated in vitro with extracted tick
salivary glands or injected into female ticks. The incubation and injection of this specific
dsRNA caused a reduction in HBP mRNA levels impacting tick feeding, most likely due to
higher histamine concentrations at the feeding site [18].

These and other methodologies subsequently developed for RNAi in ticks confirmed
previous reports using other species, provided methods for the study of tick gene function,
and also led to development of applications for studies on other arthropod ectoparasites
(Figure 1).

dsRNA
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Tick organs (e.g., salivary glands)

In vitro incubation of dsRNA In vivo injection of dsRNA

Gene expression, protein function, molecular pathways, effect on tick feeding, 
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Figure 1. Model of the mechanism of RNAi applications in tick biology. Both model and applications
were inspired in the classic paper by Aljamali et al., 2002 [18]. Ixodes scapularis tick and ISE6 cell
images are courtesy of the authors.

RNAi in ticks is induced with endogenously present or exogenously introduced
dsRNA cleaved to produce siRNAs (21–25 bp) by the ATP-dependent RNase III-like enzyme
Dicer. The siRNAs then recruit and activate RISC resulting in unwinds of the siRNA in
the siRNA-protein complex. Each strand of the siRNA binds to complementary sequences
with activated RISC binding to the targeted RNA, cleaving it and resulting in mRNA
degradation. For RNAi in ticks, dsRNA can either be injected in vivo into live ticks or
incubated with tick tissues (e.g., salivary glands) or cultured tick cells [20]. The assessment
of the effect of RNAi can subsequently be done by analysis of gene mRNA expression
and by the impact on the target gene protein function. Additionally, the effect of RNAi
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on molecular pathways, tick feeding, reproduction and fertility, pathogen infection, and
tick-host-pathogen interactions can be evaluated. Through this methodology, candidate
protective antigens can be identified, studied, and used for the discovery of novel antigens
for vaccine development or for use in other tick interventions.

3. Impact

The development and validation of RNAi in ticks has impacted scientific research by
advancing studies on a wide variety of arthropod species, ranging from basic biology to
biotechnological studies [19]. Using scientometric and bibliometric analyses, 256 publica-
tions were identified in PubMed (https://www.ncbi.nlm.nih.gov) searching with “RNA”,
“interference”, and “tick” terms on 10 June 2022 (Figure 2A). As shown in this analysis, the
number of publications per year increased from one in 2002, the year of the publication of
first classic paper [18], to over ten publications per year from 2007–present (Figure 2A).
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Figure 2. Scientometric and bibliometric analyses of RNAi applications in ticks and other arthropod
species. Analyses were conducted based on publications identified in PubMed (https://www.ncbi.
nlm.nih.gov; accessed on 10 June 2022) using search with “RNA” and “interference” and “tick” terms
on 10 June 2022. (A) Number of publications per year. (B) Number of publications and percentage
per research area. (C) Number of citations per paper published before 2013 (in the first decade
after the classic paper by Aljamali et al., 2002 [18] was published) per research area. Reference to
the papers with highest citation score with corresponding number of citations at Web of Science
(https://www.webofscience.com) accessed on 10 June 2022, are shown. The citations of the classic
paper by Aljamali et al., 2002 [18], highlighted in this commentary, also shown.

While the application of RNAi has advanced research in several areas (Figure 2B,C),
most of the investigations (201 publications, 78%) with the highest citation scores were

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.webofscience.com
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focused on tick functional studies. Furthermore, research on naturally occurring RNAi
mechanisms and RNAi methods represented 7% (17 publications each) of the total number
of publications. Other research areas included vaccines for the control of tick infestations
and tick-borne pathogens (14 publications, 5%), RNAi in other arthropods (5, 2%), and
antiviral therapy (2, 1%). The examples below illustrate the impact of RNAi on various
areas of tick research.

RNAi has been used to address many aspects of tick biology by enabling the functional
analysis of individual genes or combinations of genes. Soon after the publication of the
classic paper of this commentary, Aljamali et al. [21] reported a silencing of the histamine
binding protein (HBP) in A. americanum in vivo and salivary glands, resulting in reduced
histamine binding capacity and altered tick feeding. A second paper by Narasimhan et al.
2004 [22] reported a disruption of the anticoagulation response in I. scapularis by silencing
the salivary gland gene that expresses the anticoagulant Salp14. In 2006, de la Fuente et al.
demonstrated the impact of the silencing of a single gene (subolesin), resulting in sterile
male ticks that were unable to mate successfully with female ticks, thus inhibiting comple-
tion of female engorgement and oviposition [23]. Collectively, these initial RNAi functional
studies in ticks demonstrated the relevance of this methodology for enhancing the under-
standing of tick biology. Additional subsequent studies have included the knockdown of
different tick genes for the characterization of multiple biological pathways involved in
tick-host-pathogen interactions [24–41]. In many studies, the results were used to propose
new candidate protective antigens for vaccine development or for use as pharmaceutical
targets [23,33–35,37].

RNA viruses were studied early [42], and RNAi is the major antiviral mechanism
against arboviruses in arthropod vectors. As in other organisms, this natural antiviral
response was also subsequently characterized in ticks [43–45].

RNAi methodology evolved from the original in vitro incubation of dsRNA with tick
salivary glands and from in vivo studies in live female ticks injected with dsRNA [18,20].
The variety of methodologies for tick RNAi subsequently included, in chronological order,
(a) RNAi in cultured tick cells [46], (b) transovarial RNAi [47], (c) in vitro feeding assays
for hard ticks [48], (d) dsRNA electroporation in tick eggs and nymphs [49], (e) cytoplasmic
RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs [50], (f) dual
luciferase reporter systems for optimization of RNAi [51], (g) non-invasive delivery of
dsRNA into de-waxed tick eggs by electroporation [52], (h) tick immersion in dsRNA [53],
(i) liposome mediated dsRNA delivery [54], (j) delivery of a genetically marked Serratia AS1
for RNAi [55], (k) functional RNAi analyses using tick organ cultures [56], and (l) cationic
glycopolyelectrolytes for RNAi in tick cells [57].

RNAi has also been used to identify and characterize candidate protective antigens
for the control of tick infestations and tick-borne pathogens [23,58–62]. In this approach,
the selection of protective antigens can be done prior to testing in animal vaccine trials.

Following validation of RNAi in ticks [18], the methodologies were also used in
other arthropod species, including the fruit fly Drosophila melanogaster [63], salmon louse
Lepeophtheirus salmonis [64], honeybee mite Varroa destructor [65,66], and mosquito Anopheles
arabiensis [67]. These studies were focused on the characterization of the function of
proteins in the biological processes of the arthropod life cycle, and on pathogen infection
and transmission.

The proposal of RNAi-based therapeutics for controlling the tick-borne encephalitis
virus (TBE) [68] and other flavivirus [69] infections was also based on the development
of antisense-based approaches derived from RNAi research in ticks and other arthro-
pod species.

Recently, RNAi has been incorporated into research on the Alpha-Gal Syndrome
(AGS), an IgE-mediated, delayed-type allergic reaction in response to the oligosaccharide
galactose-α-1,3-galactose (α-gal). Alpha-gal is present in tick biomolecules and injected
into humans during tick feeding [70].
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In conclusion, RNAi is the leading gene expression manipulation tool in arthropods
followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short
Palindromic Repeats and associated protein 9 system (CRISPR-Cas9) [71]. Characterization
of the microbiota composition in ticks and other arthropods may also provide targets for
the production of modified bacteria using paratransgenesis or RNAi [54,72–74]. The recent
report of the successful application of CRISPR-Cas9 in ticks [75] provides an opportunity to
combine these methodologies for the manipulation of tick gene expression and the devel-
opment of paratransgenic interventions for the control of tick infestations and transmission
of tick-borne pathogens.
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