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Abstract

While numerous RNA-seq data analysis pipelines are available, research has shown that the choice 

of pipeline influences the results of differentially expressed gene detection and gene expression 

estimation. Gene expression estimation is a key step in RNA-seq data analysis, since the accuracy 

of gene expression estimates profoundly affects the subsequent analysis. Generally, gene 

expression estimation involves sequence alignment and quantification, and accurate gene 

expression estimation requires accurate alignment. However, the impact of aligners on gene 

expression estimation remains unclear. We address this need by constructing nine pipelines 

consisting of nine spliced aligners and one quantifier. We then use simulated data to investigate the 

impact of aligners on gene expression estimation. To evaluate alignment, we introduce three 

alignment performance metrics, (1) the percentage of reads aligned, (2) the percentage of reads 

aligned with zero mismatch (ZeroMismatchPercentage), and (3) the percentage of reads aligned 

with at most one mismatch (ZeroOneMismatchPercentage). We then evaluate the impact of 

alignment performance on gene expression estimation using three metrics, (1) gene detection 

accuracy, (2) the number of genes falsely quantified (FalseExpNum), and (3) the number of genes 

with falsely estimated fold changes (FalseFcNum). We found that among various pipelines, 

FalseExpNum and FalseFcNum are correlated. Moreover, FalseExpNum is linearly correlated with 

the percentage of reads aligned and ZeroMismatchPercentage, and FalseFcNum is linearly 

correlated with ZeroMismatchPercentage. Because of this correlation, the percentage of reads 

aligned and ZeroMismatchPercentage may be used to assess the performance of gene expression 

estimation for all RNA-seq datasets.
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1. INTRODUCTION

RNA sequencing (i.e., RNA-seq) refers to the technologies and applications for high-

throughput sequencing of RNA [1]. With the development of next-generation sequencing 

technology, RNA-seq has evolved to be a promising technology that plays an important role 

in several applications such as differential expression analysis, single nucleotide variation 

discovery, fusion gene detection, and co-expression network construction [2–6].

Typically, an RNA-seq data analysis pipeline includes (1) sequence read alignment, (2) 

expression quantification, (3) expression normalization, and (4) differentially expressed gene 

(DEG) detection. For each step of the pipeline, many algorithms or tools have been 

developed. Being aware of a large amount of combinations of RNA-seq data analysis 

pipelines, researchers have conducted comparative and quality control studies [7–14] for 

quantifying the performance of tools or algorithms and ensuring the accuracy and 

reproducibility of RNA-seq. Conclusions from most studies support that the choice of 

pipelines affects the analysis results. For example, Grant et al. [13] evaluated various 

alignment algorithms and observed the discrepancy of alignment performance. Fonseca et al. 

[8] combined various alignment algorithms and three quantification tools to analyze the 

variance of detected and true gene expression levels, and proved that different analysis 

pipelines affected the gene expression levels. Soneson et al. [9] compared methods for 

differential expression analysis and found that shared differentially expressed genes detected 

by different methods varied significantly. Most of these studies focus on the comparison of 

algorithms or tools belonging to each step, which cannot illustrate how the impact 

propagates through the steps of RNA-seq analysis pipelines. Although Fonseca et al. [8] 

combined aligners and quantifiers to investigate the variance of detected and true gene 

expression, they mainly compared the performance of the pipelines, and did not explain how 

alignment pipelines affected the gene expression estimates. The SEQC/MAQC-III 

consortium conducted a large-scale, multisite, cross-platform RNA-seq study that aimed to 

build standards for RNA-seq research from sample preparation to downstream analytics. 

They found that RNA-seq measurement performance depended on platforms and data 

analysis pipelines [7]. However, the choice of which pipeline researchers should apply still 

remains unclear. To solve this problem, the intuition is to conduct a pipeline-level 

comparative study for RNA-seq data analysis. However, the huge amount of pipelines 

impedes a comprehensive evaluation. Even though a comprehensive comparative study 

could be realized for some datasets, we cannot be assured of finding a pipeline that always 

outperforms other pipelines for all datasets. To ensure the accuracy and reproducibility of 

RNA-seq data analysis results, we need to investigate the cause of the performance variance 

among RNA-seq data analysis pipelines. Indeed, if we can identify the impact of error 

propagation of the RNA-seq data analysis pipelines, we might be able to design the pipeline 

or redesign the tool or algorithms of each step to achieve better performance.

Gene expression quantification is a key step in the RNA-seq data analysis pipeline, and the 

accuracy of expression quantification can profoundly affect the subsequent analysis. 

However, accurate gene expression quantification requires accurate sequence read 

alignment. As previously mentioned, Fonseca et al. [8] evaluated the effect of different 

Yang et al. Page 2

ACM BCB. Author manuscript; available in PMC 2016 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis pipelines on gene expression estimation and assessed the difference between true 

and estimated expression, but they mainly focused on the comparison of the pipelines and 

cannot reveal why and how the choice of aligners and quantifiers influences the gene 

expression level. We investigate the impact of aligners on gene expression estimation and try 

to find indicators which can correlate the performance of aligners and gene expression 

estimation.

2. METHODS

The workflow of our study is shown in Figure 1. To investigate the impact of RNA-seq 

aligners on gene expression estimation, we vary aligners which are specifically designed for 

genome alignment. For quantification tool, we use a fixed tool: HTSeq [15].

2.1 Simulation of RNA-seq Dataset

Real RNA-seq datasets do not contain ground-truth information. To facilitate the 

investigation of the impact of RNA-seq aligners on gene expression estimation, we need to 

know the true expression level of every gene. Therefore, we use a simulated RNA-seq 

dataset for this study. We employ rlsim [16] with simNGS [17] to generate RNA-seq data. 

rlsim integrates a collection of tools to simulate RNA-seq library construction [16] and can 

generate the simulated RNA fragments. simNGS can simulate observed reads from Illumina 

sequencing machines and incorporate noise due to sequencing. We apply rlsim to generate 

RNA fragments and simNGS to simulate RNA-seq reads.

For constructing the RNA library, we use the default setting of rlsim to generate 20 million 

RNA fragments based on the RefSeq gene annotation and the UCSC hg19 reference 

genome. First, we employ the “sel” tool from rlsim package to sample the expression level 

of each transcript from a mixture of gamma distributions including Gamma(5000, 0.1) and 

Gamma(10000, 100). Second, we adopt rlsim to generate RNA fragments from the previous 

FASTA file. With RNA fragments, we then employ simNGS to simulate paired-end reads: 

we use “s_6_4x.runfile”, which is shipped with the simNGS package, to simulate 101bp 

paired-end reads from each fragment. Besides the absolute expression of each gene, we are 

also interested in the relative gene expression levels. Thus, we simulate two samples—

Samples A and B—each of which has five replicates, and each replicate has 20 million 

paired-end reads. For gene expression fold changes, we follow the simulation strategy 

proposed by Zheng et al. [18]. Using the same simulated expression levels generated by 

“sel”, we artificially introduce some differentially expressed genes with predefined fold 

changes. Sample A was simulated by using the original expression profile. For Sample B, 

we randomly choose ~10% genes to be overexpressed, ~10% genes underexpressed, and the 

rest ~80% genes remain unchanged. Among all overexpressed and underexpressed genes, 

we randomly and equally assign a predefined fold change to each gene. Table 1 summarizes 

the preset gene expression fold change. With these settings, we obtain two samples with 

built-in truths about absolute gene expression and relative expression fold changes.
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2.2 Sequence Alignment

To analyze the impact of alignment on gene expression estimation, we use various alignment 

tools and a fixed quantification tool to control variables. Until now, researchers have 

developed many RNA-seq alignment tools or pipelines, which can be categorized as 

transcriptome aligners and genome aligners. Transcriptome aligners can reduce the 

alignment complexity by aligning sequence reads to known transcripts, while genome 

aligners directly align the reads to the genome and must address the reads derived from 

splice junctions [19]. However, transcriptome aligners are usually combined with isoform 

expression quantification, which need to be translated to gene expression levels if we are 

interested in the latter. Therefore, we select nine recently released spliced aligners, including 

Tophat2 [20], STAR [21], MapSplice [22], GSNAP_spliced [23], PASSION [24], OLego 

[25], Subread [26], SOAPSplice [27], and GEM [28]. We use UCSC hg19 as the reference 

genome. If the alignment tool supports multiple-hit mapping strategy, such as Tophat2, 

GSNAP_spliced, OLEGO, STAR, and Subread, we allow up to twenty hits for each read. 

For other options, we follow default settings.

2.3 Expression Quantification

For gene expression quantification, we use HTSeq (the intersection-nonempty mode) with 

RefSeq as the genome annotation. HTSeq is a count-based quantification tool, enabling us to 

compare the estimated gene expression to the built-in truth. Because counting multiple-hit 

reads (reads that have multiple mapping locations) might cause false positive differentially 

expressed genes [15], the default setting of HTSeq tends to discard all of these multiple-hit 

reads. However, discarding the multiple-hit reads may also incur false negative errors in 

terms of gene detection. For example, if one and only one mapping of a multiple-hit read is 

correct and we discard it, then the expression of the associated gene will be underestimated. 

In this study, we choose to keep all multiple-hit reads by removing the tag that HTSeq uses 

to identify the multiple-hit reads.

2.4 Performance Evaluation

2.4.1 Alignment Profile Construction—Here we propose to use the percentage of reads 

aligned (ReadsAlignedPercentage), the percentage of reads aligned with zero mismatch 

(ZeroMismatchPercentage) and at most one mismatch (ZeroOneMismatchPercentage) as the 

metrics for assessing alignment quality. We hypothesize that the percentage of reads aligned 

can quantify the mapping capability of an alignment pipeline, and reads aligned with less 

than one mismatch are more reliable for downstream expression estimates.

2.4.2 Gene Expression Evaluation—After quantifying the gene expression, we get the 

gene count number for each gene. Since we already know the true expression for each gene, 

we can compare the estimated gene expression to the built-in truth. However, not all reads 

can be aligned through alignment, and not all reads will be assigned to a specific gene (e.g., 

assigned to no-feature and ambiguous) during quantification, which indicates a portion of 

reads will be discarded and cannot account for the gene expression. If we directly compare 

estimated expression to true expression, discrepancy between them is definitely expected. To 

compensate for this discrepancy, we propose to use the following two metrics to measure 
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expression accuracy: (1) the detection ability of genes (Table 2) measured by Accuracy = 

(TP + TN)/(TP + TN + FP + FN) and (2) the number of genes falsely quantified (Notation: 

FalseExpNum) measured by (Equation 1), which normalizes the difference between gene 

counts by median gene expression in the ground truth and estimated expression respectively.

(Equation 1)

where Ti and Ri represent the true and estimated expression level of the i-th gene after 

normalization, respectively; I is the indicator function (I = 1 if the formula in parentheses is 

true; I = 0 otherwise; we consider 0/0 = 1); Threshold is between 0.2 and 1; and n is the total 

number of genes. To determine a falsely quantified gene, we incoporate the threshold, which 

quantifies the deviations compared with true expression level. Generally, a larger threshold 

indicates more tolerance to the deviations.

2.4.3 Fold-change Variance Evaluation—Besides the absolute expression accuracy, 

we also evaluate the relative expression accuracy (fold changes). We compute gene 

expression fold changes between Samples A and B using estimated gene expression. We 

then compare the estimated fold changes to the ground truth. We count the number of genes 

with falsely estimated fold changes (Notation: FalseFcNum) given by Equation 2.

(Equation 2)

where TFCi and EFCi means the true and estimated fold change of the i-th gene, 

respectively; I is the indicator function (I = 1 if the formula in parentheses is true; I = 0 

otherwise; we consider 0/0 = 1); Threshold is between 0.2 and 1; and n is the total number of 

genes. Also, threshold is used to quantify the deviations of true fold change.

2.4.4 Correlation—Once we acquire the alignment profile (i.e., ReadsAlignedPercentage, 

ZeroMismatchPercentage, and ZeroOneMismatchPercentage) and the aforementioned 

evaluation metrics (i.e., the gene detection accuracy, FalseExpNum, and FalseFcNum) we 

apply linear regression analysis to model their relationship. Since the only difference among 

the gene expression estimation pipelines we use is the aligner, if any discrepancy exists in 

the gene expression, the only source would be aligner. Thus, the logic would be treating 

alignment profile as the explanatory variable, and the evaluation of gene expression as 

dependent variable. For real data, we do not know the built-in truth, and we can only 

compute the metrics for alignment profiles. If we can observe some correlation between 

alignment profile and expression evaluation, we might be able to predict the expression 

performance based on the alignment profile. Therefore, we fit linear regression between 

alignment profile and the evaluation metrics under various threshold values (to verify if the 

alignment profiles correlate with expression evaluation), and we compute adjusted R2 value 

for each one.
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RESULTS AND DISCUSSION

3.1 Alignment Profile

At the first sight, we might total the ratio of correctly aligned reads as the metric of 

alignment pipeline’s performance, since we know the true mapping location of each read. 

However, for real data, we are not aware of the true alignment of every read, which negates 

the feasibility to employ the alignment accuracy as the metric. Thus, we introduce 

alternative metrics. The first metric in the alignment profile is the percentage of reads 

aligned. For every aligner, we observed that the percentage of reads aligned 

(ReadsAlignedPercentage) were almost of the same value in both Samples A and B, 

therefore we plotted them in one figure (Figure 2). The small error bars indicate consistent 

performance among both Samples A and B. Except GEM, the ReadsAlignedPercentage of 

most aligners were over 90%.

Then, with the alignment results, we computed the percentage of reads aligned with zero or 

one mismatch. For each aligner, we found that both ZeroMismatchPercentage and 

ZeroOneMismatchPercentage were almost the same in Samples A and B. As we can see 

from Figure 3 (each column includes all the replicates of Samples A and B), the reads 

aligned with zero and one mismatch can account for the majority of the aligned reads (over 

80%). In addition, we used ANOVA to analyze the difference among the metrics of all the 

aligners (we apply ANOVA to any two aligners’ metrics). And we observed that 

ReadsAlignedMismatch, ZeroMismatchPercentage and ZeroOneMismatchPercentage are all 

significantly different among different aligners since all the p-values are less than 0.001. We 

also ranked the aligners according to the above three metrics separately (Table 3).

3.2 Expression and Fold-change Evaluation

Figure 4 displays the gene detection accuracy of each pipeline. For most pipelines, gene 

detection accuracy is at the same level (up to 90%), and show little difference, indicating that 

the gene detection accuracy might not be an appropriate metric for the evaluation of gene 

expression.

For the number of genes falsely quantified (FalseExpNum), we observed significant 

discrepancy among pipelines (Figure 5). With the threshold increases, FalseExpNum 

decreases. This is reasonable because a larger threshold means higher tolerance to false 

quantified genes, which results in less number of genes falsely quantified. From Figure 6, we 

can observe that the number of genes with falsely estimated fold changes (FalseFcNum) also 

varies among pipelines and shows a similar trend with increase of threshold.

Logically, only the genes falsely quantified might have false estimated fold change. To 

investigate the consistency between the two metrics (FalseExpNum and FalseFcNum), we 

computed the Pearson correlation coefficient (Table 4). As we can see in Table 4, 

FalseExpNum and FalseFcNum show significant linear correlation with each other, 

suggesting that both FalseExpNum and FalseFcNum can be equally employed as the metric 

of gene expression estimates. However, comparing FalseExpNum and FalseFcNum, we 

observed that FalseExpNum was generally larger than FalseFcNum, indicating that even 
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though some genes have been falsely quantified, the fold changes of these genes will not be 

affected.

3.3 Correlation

Obtaining the alignment profile (ReadsAlignedPercentage, ZeroMismatchPercentage and 

ZeroOneMismatchPercentage) and the expression evaluation (FalseExpNum and 

FalseFcNum), we applied linear regression to fit their relationship. Since three metrics of 

alignment profile were available, we fitted the model (1) with only ReadsAlignedPercentage, 

(2) with ZeroMismatchPercentage, (3) with ZeroOneMismatchPercentage, (4) with both 

ReadsAlignedPercentage and ZeroMismatchPercentage, and (5) with both 

ReadsAlignedPercentage and ZeroOneMismatchPercentage. From Table 5, for 

FalseExpNum, we can see among all the linear regressions, when fitting with both 

ReadsAlignedPercentage and ZeroMismatchPercentage, the adjusted R2 is generally larger 

than others. In contrast, for FalseFcNum (Table 6), we found that when fitting with 

ZeroMismatchPercentage, the adjusted R2 is larger.

Overall, combined with Tables 5 and 6, Figures 7 and 8 show the key findings of our study. 

FalseExpNum shows linear correlation with ReadsAlignedPercentage and 

ZeroMismatchPercentage, and FalseFcNum shows linear correlation with 

ZeroMismatchPercentage. Since FalseExpNum and FalseFcNum are the metrics of gene 

expression estimation, and ReadsAlignedPercentage and ZeroMismatchPercentage are 

metrics of alignment, the linear correlation implies that with the increase of 

ReadsAlignedPercentage and ZeroMismatchPercentage, the performance of gene expression 

estimation will improve. We believe our foremost hypothesis might help to explain this 

phenomenon: reads aligned with zero mismatch have higher probability to be correctly 

mapped, and ReadsAlignedPercentage quantifies the portion of reads that have been 

mapped. Combining ReadsAlignedPercentage and ZeroMismatchPercentage, we might 

assess the performance of alignment, while the better the performance of alignment, the 

better gene expression estimates. Our finding also suggests applying aligners which can 

produce higher ReadsAlignedPercentage and ZeroMismatchPercentage when conducting 

gene expression estimates-related analysis, such as DEG detection.

CONCLUSIONS

We analyzed the impact of RNA-seq aligners on gene expression estimation by constructing 

RNA-seq data analysis pipelines with nine different aligners and one quantification tool, 

HTSeq. Using simulated RNA-seq data, we have the true gene expression and true gene fold 

change between samples.

We profiled the alignment performance with (1) the percentage of reads aligned 

(ReadsAlignedPercentage), (2) the percentage of reads aligned with zero mismatch 

(ZeroMismatchPercentage), and the percentage of reads aligned with at most one mismatch 

(ZeroOneMismatchPercentage). We observed that for most aligners, the 

ReadsAlignedPercentage can be over 90%, and the reads aligned with zero or one mismatch 

can account for over 80% of aligned reads.
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We evaluated the gene expression estimation with three metrics: (1) the accuracy of gene 

detection, (2) the number of genes falsely quantified (FalseExpNum), and (3) the number of 

genes with falsely estimated fold change (FalseFcNum). We found that for most pipelines, 

the accuracy of gene detection shows few discrepancies suggesting gene detection accuracy 

might not be a suitable metric for gene expression estimation. In contrast, for FalseExpNum 

and FalseFcNum, the discrepancy among pipelines is more significant. In addition, we 

observed linear correlation between FalseExpNum and FalseFcNum, suggesting both 

FalseExpNum and FalseFcNum might be equally applied as the metric of gene expression 

estimation. However, FalseExpNum is generally larger than FalseFcNum, implying that the 

fold change of some genes will not be affected even though they are falsely quantified.

We applied linear regression to model the relationship between the alignment profile 

(ReadsAlignedPercentage, ZeroMismatchPercentage and ZeroOneMismatchPercentage) and 

the evaluation of gene expression (FalseExpNum and FalseFcNum). We observed that 

FalseExpNum shows linear correlation with ReadsAlignedPercentage and 

ZeroMismatchPercentage, and FalseFcNum shows linear correlation with 

ZeroMismatchPercentage. An explanation might be: (1) the reads aligned with zero 

mismatch are more likely to be correctly mapped, which contributes more to accurate 

quantification; (2) the percentage of reads aligned represents the amount of reads that might 

be correctly mapped. Therefore, ZeroMismatchPercentage and ReadsAlignedPercentage 

might be combined as predictors of the performance of gene expression estimates. We plan 

to verify this by applying our method to real data in a future study. Since 

ZeroMismatchPercentage and ReadsAlignedPercentage can be calculated without knowing 

the true alignment, indicating we can calculate these two metrics for real data. Once got the 

above two alignment metrics, we might assess the performance of gene expression 

estimation.

Overall, based on the results of our experiment, when conducting gene expression 

estimation, we suggest applying aligners that produce higher ReadsAlignedPercentage and 

ZeroMismatchPercentage. Using this criterion, STAR, PASSION and GSNAP_spliced 

aligners outperform other aligners when applied to our simulated dataset (Table 3).
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Figure 1. 
The workflow of experimental design and data analysis
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Figure 2. 
The percentage of reads aligned
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Figure 3. 
The percentage of reads aligned with 0 or 1 mismatch
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Figure 4. 
The accuracy of gene detection

Yang et al. Page 14

ACM BCB. Author manuscript; available in PMC 2016 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The number of genes falsely quantified

Yang et al. Page 15

ACM BCB. Author manuscript; available in PMC 2016 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The number of genes with falsely estimated fold-change
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Figure 7. 
Correlation between predicted FalseExpNum (with ReadsAlignedPercentage and 

ZeroMismatchPercentage) and true FalseExpNum
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Figure 8. 
Correlation between FalseFcNum and ZeroMismatchPercentage
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Table 1

Simulation strategy

Gene Types
Gene expression levels

Number of genes (25,678)a Gene expression fold change A vs. B
Sample A Sample B

I Normal Over expressed

576 1:2

568 1:3

579 1:4

557 1:5

II Normal Under expressed

576 2:1

589 3:1

598 4:1

519 5:1

III Normal Normal 21116 1:1

a
Total number of genes
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Table 2

Definition of gene detection accuracy

True expression

Total Gene # Expressed Not Expressed

Reconstructed expression

Expressed TP FP

Not Expressed FN TN
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Table 3

The rank of alignment profiles

Aligner ReadsAlignedPercentage ZeroMismatchPercentage OneMismatchPercentage

GEM 9 9 9

GSNAP_spliced 3 2 2

MapSplice 1 6 7

Olego 8 5 6

PASSION 4 1 5

SOAPsplice 6 7 8

STAR 2 4 3

Subread 5 8 4

Tophat2 7 3 1

ACM BCB. Author manuscript; available in PMC 2016 August 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 22

Table 4

Correlation efficient of FalseExpNum and FalseFcNum

Variance threshold r2 P value

0.2 0.8879 0.0001

0.3 0.9173 0.0000

0.4 0.8945 0.0001

0.5 0.8949 0.0001

0.6 0.8864 0.0002

0.7 0.8938 0.0001

0.8 0.8906 0.0001

0.9 0.8956 0.0001

1 0.9613 0.0000
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